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Abstract—Machine learning and especially deep learning
techniques are dominating medical image and data analy-
sis. This article reviews machine learning approaches pro-
posed for diagnosing ophthalmic diseases during the last
four years. Three diseases are addressed in this survey,
namely diabetic retinopathy, age-related macular degener-
ation, and glaucoma. The review covers over 60 publica-
tions and 25 public datasets and challenges related to the
detection, grading, and lesion segmentation of the three
considered diseases. Each section provides a summary of
the public datasets and challenges related to each pathol-
ogy and the current methods that have been applied to
the problem. Furthermore, the recent machine learning ap-
proaches used for retinal vessels segmentation, and meth-
ods of retinal layers and fluid segmentation are reviewed.
Two main imaging modalities are considered in this sur-
vey, namely color fundus imaging, and optical coherence
tomography. Machine learning approaches that use eye
measurements and visual field data for glaucoma detection
are also included in the survey. Finally, the authors provide
their views, expectations and the limitations of the future of
these techniques in the clinical practice.

Index Terms—Ophthalmic diagnostics, deep learning,
diabetic retinopathy, age-related macular degeneration,
glaucoma.

[. INTRODUCTION

URING the past years, machine learning has been widely
D employed in both ophthalmic data analysis [1], [2], and
ophthalmic image analysis [3]-[5]. The application of machine
learning for ophthalmic image analysis covered in this survey
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broadly falls into two categories, 1) Detection and grading of
diseases where the objective is to classify the disease found in
an image or a set of images [6]. Further works use multi-class
classification to grade the level of severity of a given pathology
rather than merely detecting it [7]; 2) Segmentation of anatom-
ical structures from pixel-wise labels, such as segmentation
of retinal vessels [3], haemorrhages [8], drusen [9] or optic
disk [10]. Analyzing images with machine learning systems
involves extraction of features that represent the input data in a
way suitable for the classification or segmentation task. Features
are either hand-crafted, i.e. defined manually for example by an
algorithm developer, or they are extracted with a predefined filter
banks, or ultimately learned during training to perform suitable
task-specific processing of the input data. The latter is referred
to as automatic feature extraction. Recently, after the success
of AlexNet in image classification [11], automatic feature ex-
traction using Convolutional Neural Networks (CNNs) surfaced
as the preferred feature extraction method in medical image
analysis [12] and it is widely used for ophthalmic image anal-
ysis [13]-[15]. In this review, publications about both feature
extraction methods (handcrafted and automatic) are discussed.
Methods of Ophthalmic data Analysis for glaucoma analysis
based on multiple anatomical and functional measurement are
also reviewed in this paper [1], [2].

Classification and segmentation works related to three dis-
eases namely diabetic retinopathy, age-related macular degen-
eration, and glaucoma are considered in the this review. Further-
more, the recent machine learning approaches used for retinal
vessels segmentation, and methods of retinal layers and fluid
segmentation are reviewed. Two main image modalities that are
widely used to investigate ophthalmic related pathologies are
considered in this survey. (1) Fundus Color images that show
the retinal vasculature, optic disk, macula, and various abnor-
malities related to ophthalmic diseases. (2) Optical Coherence
Tomography (OCT) imaging is used to acquire high-resolution
cross-sectional scans of the retinal layers in the eye’s posterior
segment or the anterior segment structure. Only the former is
considered in this review. As a subcategory of OCT, few works
on OCT Angiography (OCTA) are considered in the survey.
OCTA is used to examine the microvasculature of the retina by
differentiating blood flow from static tissue in OCT over time.
Fig. 1 shows fundus and OCT example images with pathologies.

Various works in the literature have been proposed to review
deep learning for ophthalmology or a specific ophthalmic dis-
ease [16]-[19]. To our knowledge, none of the existing works
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Fig. 1. (a) is an example fundus image from IDRID dataset with retinal
lesions and optic disk/cup highlighted, (b) left is a healthy OCT B-scan
cross-section that shows retinal layers, and right is an OCT B-scan of
patient with AMD signs [20].

combine technical details with disease/application categoriza-
tion and list all datasets used in the works to make the reader
more aware of the limitations and strengths of the discussed
works. This is beneficial for readers from technical backgrounds
who are interested in the ophthalmic data analysis domain and
require an overview of the advances, the common diseases and
applications, the available datasets, and the current limitations.
To select papers in this review, we have looked into the most
impactful papers in the past 4 years that appeared in ophthal-
mology/medical high impact journals/conferences. From these
works, we branched to other works and studied them as well and
kept branching in the publications graph. We have reached over
100 submissions in total and filtered some of them for the sake
of capacity and impact. We included papers that have used a new
methodology that has not been seen before to our knowledge.
We eventually settled on more than 60 works that are presented
in the manuscript.

In each of the following sections, we focus on an ophthalmic
pathology and list the major machine learning publications
relevant to it with a summary of the main contributions. We
then select a number of these methods and discuss them in
more details. The results of each method are presented alongside
the used datasets in a summary table. Moreover, the public
datasets and challenges relevant to the presented publications are
presented in tabular format. The works since 2015 are considered
in these sections except for the used public datasets which could
be older.

For reporting the results of works included in the review,
we have used the metrics reported by the included papers.
Whenever it is feasible, we report the area under the curve

(AUC) of the receiver operating characteristic (ROC) curve
because it does not require a cut-off point which gives a more
general idea about the classifier performance. For segmentation
approaches, we report dice or intersection over union (IOU)
whenever feasible. Dice and IOU measure the overlap area
between the gold standard segmentation and predicted one. Ac-
curacy, sensitivity, specificity, precision, recall or kappa scores
are reported otherwise depending on the paper content. Section I1
focuses on diabetic retinopathy, detection of the disease and
segmentation of various lesions are covered. Section III deals
with Age-related Macular Degeneration (AMD) detection and
segmentation tasks. Section IV presents glaucoma detection
and segmentation. Section V looks at the task of retinal vessel
segmentation in fundus and OCT-A images, and in Section VI
we focus on retinal layer and fluid segmentation in OCT scans.
At the end, Section VII discusses the limitations and future of
machine learning in ophthalmology. A summary of the paper is
finally provided in Section VIII.

Il. DIABETIC RETINOPATHY

Diabetic Retinopathy (DR) is the leading cause of visual
impairment in middle-aged groups [21]. Screening for early
detection and referral is the widely adopted strategy in practice
for blindness prevention. It is still challenging to implement
screening programs as needed because of financial issues and
the availability of human monitoring to all sites. Hence, the need
for reliable automatic systems for detecting DR emerges. The
capillaries start to weaken even at the early stages of DR. This
causes abnormalities in the microvascular structure leading to
microaneurysms (MA), which appear as small red dots on the
retina. These weak capillaries may rupture causing hemorrhages
(HA), which appear as larger darker red areas. Moreover, DR
makes capillaries more permeable causing hard exudates (HE).
When the capillary support fails, pale areas with soft edges
appear as soft exudates (SE). In more severe cases, dilation
appears in the intraretinal microvascular structure. New fragile
small vessels start growing in response to the signals from
tissues that lack nutrition which could lead to a sudden loss of
vision when growing into the vitreous humour. This process is
known as neovascularisation [22]. In the following subsections,
literature related to the tasks of detection and grading of diabetic
retinopathy, segmentation of lesions that characterize diabetic
retinopathy, and attempts to use the detection and grading re-
sults for weakly supervised lesion localization are discussed.
Table I lists the publicly available datasets for DR detection and
segmentation.

A. Detection and Grading of Diabetic Retinopathy

Recent approaches have applied machine learning techniques
and convolutional neural networks for the task of Diabetic
Retinopathy grading based on image data. Typically, in studies
presented in the literature, datasets are annotated for five grades
of DR according to the International Clinical Diabetic Retinopa-
thy Disease Severity Scale ICDRD) [31] namely healthy, mild
DR, moderate DR, severe DR, and proliferative DR. In this scale,
DR is defined as the signs of any DR related lesions which is mild
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TABLE |
PuBLICLY AVAILABLE FUNDUS IMAGE DIABETIC RETINOPATHY DATASETS
Dataset Count Modality Task Notes
DiaretDBO0 [23] 130: 22 normal, 108 DR Fundus Segmentation Exudates, icroaneurysms, haemorrhages
segmentation
DiaretDB1 [24] 89: 5 normal, 84 mild signs of Fundus Segmentation microaneurysms, haemorrhages, hard and
DR soft exudates

Retinopathy Online . . .
Challenge [25] 100 Fundus Segmentation Annotations for microaneurysms

g 381: 233 normal, 148 with red Segmentation, Segmented small red lesions. Images with
E-Ophtha [26] lesions Fundus Classification any red lesion is labeled as DR

. . e Images are graded into 4 DR stages:
Messidor [27] 1200: 4 DR stages Fundus Classification healthy, mild, moderate and severe
Messidor-2 [27] 1748: 5 DR stages Fundus Classification Images are graded into 5 ICDRD stages
I Only the presence (not the location) of
DR2 [28] 529 Fundus Classification different types of lesions is provided
Kaggle DR challenge 88702: 5 DR stages split into e .
[29] train, validation, and test sets Fundus Classification Images are graded into 5 ICDRD stages
IDRID [30] 516 images split into train and Fundus Segm.er.'ttat.lon, DR grac?hng, pixel leyel annotation for
test sets Classification four lesions and optic disc.

or more DR. Patients with moderate or more severe retinopathy
are referred to ophthalmologists for examination and treatment.
This level of DR is called referable DR.

In [32], the authors use multiple deep feature extractors for
DR lesions and anatomies in fundus (e.g. optic disk). These
features are then fused together to get good referable DR classi-
fication. The method is trained on a private dataset and evaluated
on Messidor-2 dataset. This approach, while performing well,
requires multiple steps of segmentation and feature extraction
to detect DR. To mitigate the effect of sub-optimal solutions of
multi-stage models, Google team [4] have used an end-to-end
model consisting of an ensemble of 10 inception networks [33].
The training is done on a private dataset containing 128,175
fundus images provided by EyePACS. The images are graded
by 3-7 annotators according to the ICDRD severity scale. The
network is trained for a binary classification problem of detecting
referable Diabetic Retinopathy. The model is evaluated on the
publicly available Messidor-2 dataset and another private dataset
of 9963 images provided by EyePACS that does not overlap with
the training dataset. To have a more robust detection model that
could generalize better to different types of retinas, the authors
in [5] use a dataset of multi-ethnic populations with diabetes to
develop and evaluate the model. In order to focus the training
of lesions and informative areas of the retina, Wang et al. [34]
utilize attention mechanisms for DR grading. This enforces the
network to be more attentive to discriminative areas of the image
for making grading decisions. Furthermore, the areas of focus are
cropped and used in higher resolution alongside the full image to
make a more informed decision. Ultra-widefield (UWF) fundus
imaging is a newer more advanced technology with the ability
to show a wider area of the retina to examine the periphery in
addition to the foveal area. This, in turn, allows for better staging
of diabetic retinopathy [35]. Since large datasets of UWF fundus
images are not yet available, utilization of narrow field fundus
large datasets through transfer learning is done to improve the
grading of UWF fundus images [36]. Table II summarizes DR
related works by stating the main task, the datasets used, and

the results of each work. Results are not directly comparable
because of utilizing different datasets and splits.

In a step to make the models more interpretable visually
and have some insights about the classification results, weak
localization is utilized to generate heatmaps similar to the input
image size. In these heatmaps, areas that have more effect on
the classification have higher values [14], [37]-[39]. In early
works, Class Activation Map (CAM)s [40] are used to visualize
the prominent areas of the image. CAMs are easy to calculate
and widely used in the literature to localize areas of the image
that are responsible for specific pathology (e.g. DR) [37]-[39].
In [38], the authors use a classification network to differentiate
normal fundus images from ones with DR. This networks is
then used to localize salient features in the image guiding the
DR prediction. CAMs are not only used for qualitative analysis
of trained models but are also evaluated quantitatively as in [39]
where localization results are evaluated for sensitivity and false
positives per image using an annotated dataset on pixel level.
To calculate CAMs, specific network design guidelines should
be taken into consideration which limits the applicability of the
method. Some authors have analyzed the gradients flowing back
in the neural network as in [14] where the significance of each
pixel is calculated by computing the g-norm of the last layer
gradient with respect to the pixel of the channel. Methods for
detection and grading of DR have gone a long way and are
now performing in competitive levels compared with human
annotators. However, there are still issues with trust, domain
shifts and explainability of these models. Research directions
into utilizing other modalities such as UWF or studying the
progression of the disease over time could be promising fields
for better understanding DR.

B. Diabetic Retinopathy Segmentation

Further assessment of Diabetic Retinopathy characteristics
is done by the identification and segmentation of lesions that
characterize DR such as microaneurysms, haemorrhages, hard
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TABLE Il

SUMMARY: DIABETIC RETINOPATHY. AUC IS AREA UNDER THE CURVE OF ROC CURVE. AcC Is THE ACCURACY SCORE. SEN IS THE SENSITIVITY SCORE.

FPs/I IS FALSE POSITIVES PER IMAGE

Reference Task Summary Results Dataset(s)
Gulshan et al. e Ensemble of 10 inception neural networks for . . .
[4] Classification referable DR classification AUC: 0.99 Messidor-2, private
Abramoff et al. e Deep learning used for feature extraction and . . .
Classification features are used as input to IDx-DR X2.1 AUC: 0.98 Messidor-2, private
Learning referable diabetic retinopathy .
Ting et al. [5] Classification classification from multi-ethnic population AUC: 0.93 iI;rl;/aéi >76k fundus
dataset &
s Fusion of multiple attention maps to focus the . .
Wang et al. [34] | Classification training of DR grading on pathological areas AUC: 0.95 Kaggle, Messidor
Using a classification model with extra bounding
Lin et al. [41] Classification box annotations for some lesions to enhance the AUC: 0.96 Kaggle, Messidor
detection of DR
Sarhan et al Grading of UWF fundus images by utilizing a
36] ’ Classification large dataset of narrow field fundus and transfer | AUC: 0.99 Kaggle, private 154 UWF
learning
Gargeva & Classification & Two level classification: GAP for visualization,
L &€ o decision tree ensemble for GAP features + image | AUC: 0.94 Messidor-2, E-Ophtha
eng [38] Weak Localization metadata
Classification Two-stage CNN with local lesion detection CNN .
Yang et al. [7] &Localization and a global image level grading deeper CNN AUC: 0.95 Kaggle
Quellec et al. Classification & Ger;eiahza’;llotr; ?;tb ?Cfltfoiﬁ?faho?nwuh a AUC: 0.95, Kaggle, E-Ophtha,
[14] weak localization :Ie)?o;ctl}—,oi(c)lei gia dieﬁts aming using Lesion: 0.95 DiaretDB1
- Use a combination of deep and hand crafted .
Orlando et al. Red 1e510n_ features to train a random forest on pixel level AUC: 093 E—Ophtha, DiaretDB1,
[15] segmentation . . I S Messidor
segmentation and image level classification
Van Grinsven Haemorrhages Introduce selective sampling for training datasets
etal. [8] seementati ogn with unbalanced labels and apply it to AUC: 0.97 Kaggle, Messidor-2
’ & haemorrhages segmentation
SAEIZi?';ni ot al Exudates Residual networks with selective sampling for Dice: 0.83 E-Ophtha-EX, DiaretDB1,
[42] ) * | segmentation full image segmentation T DR2
Huang et al. Neovascularization Extreme Learning Machine with pixel-wise filter Acc: 0.89 Messidor-2, DiaretDBO0,
[43] segmentation banks as input features for the model T DiaretDB1
Levenkova ef al. | Seementation in Lesion segmentation in ultra wide-field fundus
’ & imaging using a deep feature extractor and an AUC: 0.86 Private 146 UWF
[44] UWF SVM
Segmentation of multiple DR lesions in fundus
Lam et al. [45] Segmentation images and comparing various neural networks Acc: 0.98 Kaggle extra annotation
architectures
Avascular area Automatic quantification of retinal non-perfusion Average dice: Private 76 healthy and 104
Guo et al. [46] seementation area based on OCT angiography 6 x 6 mm? en 0.87 & ' DR OCTA scans y
& face angiograms in DR patients ’
Sarhan et al Microaneuryvsms Multi-scale segmentation of microaneurysms
’ Yy using selective sampling and embedding triplet Dice: 0.43 IDRiD
[47] segmentation loss
Wang & - CNN with multiple max-poolings and a GAP .
Yang [48] Weak localization layer to visualize class activation maps Kappa: 0.85 Kaggle
Weakly supervised learning to visualize lesions .
[ig?dal ctal. Weak localization using image-level classification information with gezré 211752 /I@ Kaggle, DiaretDB1
increased GAP size and batch normalization '

exudates, soft exudates and neovascularization. Most current
approaches for the segmentation of lesions in fundus images are
not holistic and partition the image into patches for processing.
These approaches incorporate high-resolution patches of the
image to classify each patch into the studied lesions [8], [15],
[42]. In such scenarios, the patches coming from healthy samples
are plenty compared to patches containing lesions which creates
an unbalanced dataset. This could be handled with selective sam-
pling [8] where a weighting scheme is applied to the selection of
negative (over-represented) class samples for training the next

epoch. This approach is combined with multi-scale segmenta-
tion and embedding triplet loss to preserve spatial and semantic
information on one hand and learn a robust representation on
the other [47]. In [15], the authors use a hybrid feature vector (a
combination of features from a deep neural network model and
features extracted in a handcrafted fashion) to detect red lesions
(microaneurysms and haemorrhages) in fundus images using
random forest classifier. Learning-based methods are also used
for the segmentation of lesions characterizing later stages of di-
abetic retinopathy such as neovascularization [43]. The authors
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TABLE IlI
DATASETS FOR AMD, RETINAL LAYERS AND FLUIDS SEGMENTATION

Reference Count Modality Task Notes

384: 115 no AMD, 269 e 100 B-scans per volume (1000 x 500).
Duke AMD OCT [55] intermediate AMD OCT volumes Classification Volumes are centered at the foveal pit

45: 15 normal, 15 AMD, 15 e . 31-97 B-scans per volume and 512-1024
Duke AMD-DME [56] Diabetic Macular Edema OCT volumes Classification A-scans per B-scan

. OCT B-scans acquired with Spectralis
Zhang Lab Data ég9§£55161;1\2011i(m81ﬁ4%7k CNV, OCT B-Scans Classification OCT, Heidelberg Engineering,
’ Germany
Retinal lavers Images of subjects with Diabetic

Duke SD-OCT DME . ay Macular Edema. B-scans are centered

110 B-scans from 10 patients OCT B-scans and fluid

around the fovea and annotated for

Dataset [57]

segmentation retinal layers and fluid regions

OPTIMA MICCAI 2015

Retinal layers Two manually annotated segmentation

Challeng [58] 30: 15 training, 15 testing OCT volumes and fluid - maps of retinal cyst areas are provided
segmentation
Retinal layers . .
. . . . 3 fluid types segmentation maps for
RETOUCH [59] 112: 70 training, 42 testing OCT volumes and fluid . OCT volumes from 3 different devices
segmentation

use Extreme Learning Machine (ELM) [48] for segmenting neo-
vascularization in color fundus images and report an accuracy of
89.2%. Ultra-widefield fundus images are used in [44] to detect
DR lesions automatically using a deep neural network. Detection
and segmentation of DR lesions are challenging tasks especially
in the case of small lesions such as microaneurysms. Models that
could handle high-resolution images or work in multiple scales
of the data are viable solutions to the problem.

[ll. AGE-RELATED MACULAR DEGENERATION

Age-related Macular Degeneration (AMD) is one of the ma-
jor causes of vision impairment for the elderly. The choroid
and outer layers of retina such as retinal pigment epithelium
(RPE) are particularly affected. Damages to the retinal layers
that contain photoreceptors could lead to vision loss. There
are multiple scales to grade AMD, one commonly used is the
Age-Related Eye Disease Study (AREDS) simplified scale [49].
This scale grades AMD into four stages (none, early, intermedi-
ate, and advanced/late AMD). Another fine-grained scale from
AREDS provides 9 increasing grades of nonadvanced AMD.
AMD could be dry or wet. In the wet form of AMD, choroidal
neovascularisations (CNV) could grow into the RPE. These
new vessels can leak which may cause sudden vision loss. The
dry AMD represents atrophy affecting the RPE layer of the
retina. In the following subsections, two tasks that have been
addressed by researchers will be presented: detection of AMD
and segmentation of AMD related structures. Table III lists the
publicly available datasets for AMD detection, retinal layers,
and retinal fluids segmentation.

A. Detection of Age-Related Macular Degeneration

The automatic detection of AMD is done either with fundus
imaging or with OCT volumes and scans. Burlina ez al. [50]
use fundus images around the macula to extract features using
a pre-trained neural network on ImageNet. The features are
extracted on multiple scales and concatenated to be used as
an input to a support vector machine (SVM). The model is

developed for detecting intermediate AMD (level 3 in a 4-level
grading scheme [49]) as it is the asymptomatic stage after which
vision loss is a serious risk. A 0.96 AUC of the ROC curve is
reported in the study. To have a more fine-grained grading of
AMD, an ensemble of deep neural networks is used in [51] to
detect 12 grades of AMD. These grades include 9 classes based
on the ARED [49] 9-step severity scale, 3 late-stage classes, and
1 additional class for ungradable images. The method achieves
a quadratic weighted kappa of 0.92. OCT scans of the eye
posterior segment show the anatomical structure of the retinal
layers and biomarkers related to AMD are clear in the scans
(e.g. drusen) making it possible to detect AMD through OCT.
Other approaches use OCT imaging to detect AMD. In [52],
transfer learning is used in 3-class classification task (normal,
AMD, DME). The authors used the Duke AMD-DME dataset
and a pre-trained version of the Google Inception network [53].
The OCT B-scans are pre-processed to have a similar spatial
resolution as the pre-trained network input with three channels
by replicating the grayscale image. The results show better
performance when using the pre-trained network rather than
a random initialization of the network. The achieved mean
accuracy for each class is 0.99, 0.89, and 0.86 for normal, AMD,
and DME respectively. To solve the problem of exhaustively
annotating each B-scan separately, Apostolopoulos et al. [20]
propose a model that works on the volume level first to infer
classification on the B-scan level. The model trained to classify
healthy vs. intermediate AMD patients using OCT volumes from
the Duke AMD dataset. This approach shows good performance
compared to multiple baselines with a 0.997 AUC or ROC
curve. For better detection of AMD, other approaches detect
the presence of AMD-related abnormalities rather than directly
detecting AMD. This could also contribute to the interpretability
of such models. This is done in [54] where the authors use a
dataset of 109 k OCT B-scans to detect the presence of CNV,
drusen, and DME. CNV and drusen are indicators of wet and
dry AMD respectively and the detection of their presence is
correlated with AMD. Transfer learning is used in this case with
a pre-trained model on ImageNet. The last layers are optimized
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TABLE IV

SUMMARY: AGE-RELATED MACULAR DEGENERATION AND MACULAR PATHOLOGIES. AUC Is THE AREA UNDER THE ROC CURVE. AcC IS THE ACCURACY

SCORE. IOU IS THE INTERSECTION OVER UNION SCORE

Reference Task Summary Results Dataset(s)
Apostolopoulos Full OCT volume classification for AMD screening using
P 1120 pou Classification CNNs and pre training on single B-scans with volume AUC: 0.99 Duke AMD
etal. [20] annotation
Distinguish between normal, dry AMD, and wet AMD Private 21
Deng et al. [65] | Classification OCT scans using Gabor filtering with multiple machine Acc: 0.94 atients
learning methods (random forests, SVM, and ANN) p
Classification & weak | U5¢ OCT scans and VGG network to classify AMD vs. Private: 48,312
Lee et al. [66] localization normal patients with occlusion tests to localize salient AUC: 0.93 normal, 52,690
areas AMD
Use visual bag of words dictionary and random forest
classifier to classify five severity levels of AMD using
Venhuizen e OCT scans. Levels are No AMD, Early AMD, . EUGENDA 3265
Classification . X . AUC: 0.97 OCT volumes,
et al. [67] Intermediate AMD, Advanced AMD with geographic Duke AMD-DME
atrophy, and Advanced AMD with choroidal
neovascularization
Detect AMD and DME with transfer learning and
Karri et al. [52] Classification multiple pre-processing steps for saturation, flattening, Acc: 0.89 Duke AMD-DME
resizing, and noise reduction
Burlina ef al A pre-trained network is used to extract features around AREDS >130,000
50 ’ Classification the macula in multiple scales of funuds images. Then, AUC: 0.96 color fundus
[50] these features are used as input to an SVM images
Crassmann An ensemble of deep neural networks is used to detect AREDS >120,000
tal. [51] Classification AMD fine-grained stages and image gradability using Kappa: 0.92 | color fundus
et at fundus images images
Kermany P Detection of CNV and drusen from OCT B-scans as an .
et al. [54] Classification indicator for AMD. Transfer learning is used for this task. AUC: 099 Zhang Lab Data
Treder et al. Classification Use transfer learning to detect wet AMD in OCT B-scans | Acc: 0.96 1,112 OCT
[68] B-scans
e Detect 10 retinal pathologies and referral scores of OCT AUC: 0.99 Moorfield
De Fauw et al. Classification & . . .
163] seementation volumes based on a segmentation step of 15 retinal urgent hospital 14,884
& structures referral OCT volumes
Schlegl et al. Seementation Segmentation model to quantify intraretinal cystoid fluid OA&CEI{_]CC Private 1200 OCT
[69] & (IRC) and subretinal fluid (SRF) in 3 different pathologies S"RFf 0.92 volumes
. Random forest model for pixel-wise segmentation of .
Feeny et al. [60] S:?ﬁgiﬁ;lizstrop hy geographic atrophy using handcrafted features extracted | Dice: 0.68 Ei:;laéi 11;35;1 s
& from colored fundus images &
Drusen segmentation using U-Net architecture. Ground Private >50k
Zedeh et al. [9] | Drusen segmentation | truth generation from OCT volumes of segmented retinal | IOU: 0.82 images
layers
Lee et al. [70] IRF segmentation Segmentation of intra-retinal fluids in OCT B-scans Dice: 0.91 gf:c]:;es 1,289 OCT
. . .. . Private 51 OCT
Ji etal. [62] Geograph{c atrophy Voting scheme for corpbmmg geographic atrophy 10U: 0.86 volumes, 54 OCT
segmentation segmentation of multiple models from OCT volumes volumes
Choroidal Unsupervised clustering-based segmentation of choroidal .
Xue et al. [71] neovascularization neovascularization based on OCT angiography 3 x 3mm? | 10U: 0.87 gé‘;zte 22 OCTA
segmentation scans

for the new task and a separate test set annotated by 6 experts
is used for evaluation. The proposed network reaches a 0.99
AUC of ROC curve for the task of urgent referral. Urgent
referral is defined in the study as the presence of CNV or DME.
Approaches for detecting AMD perform very well in later stages
but suffer in the earlier stages where abnormalities are not yet
prominent. Moreover, domain shift problems may occur since
many studies rely on data from AREDS. Table IV summarizes
AMD related works by stating the main task, the datasets used,
and the results of each work. Results are not directly comparable
because of utilizing different datasets and splits.

B. Segmentation for Age-Related Macular Degeneration

Segmentation of AMD related lesions is done on both fundus
images variants and OCT scans. Fundus imaging is used for

segmentation of AMD-related lesion as in [60] where a ran-
dom forest is utilized to segment Geographic Atrophy (GA)
in AMD patients. A hand-crafted feature vector is extracted
for each pixel neighborhood and a model is trained to predict
if a pixel belongs to a GA. The model is tested on the full
dataset and a subset that contains images with low ambiguity and
the achieved dice coefficients are 0.68 £ 0.25 and 0.70 £ 0.21,
respectively. OCT is becoming more accessible and OCT cross-
sections show information about retinal layers pathologies, OCT
is widely used in AMD lesion segmentation. In [9], the authors
use U-Net [61] architecture to segment drusen in OCT retinal
images. A drusen segmentation dataset is created by utilizing a
pre-existing dataset that contains segmentation maps for Bruch’s
membrane (BM) and the retinal pigment epithelium (RPE)
layers. It is also possible to segment GA from OCT volumes
without going through a retinal layer segmentation step [62]. A
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TABLE V
DATASETS FOR GLAUCOMA DETECTION AND OPTIC DISC/CUP SEGMENTATION
Reference Count Modality Task Notes
DRISHTI-GS [73] 50 Fundus Segmentation Annotation for optic disc and optic cup
DRIONS-DB [74] 110 Fundus Segmentation Annotation for optic disc
RIM-ONE [75] 159 Fundus Segmentation Annotation for optic disc
SIMES [76] 230 Fundus Segmentation Optic d1§c segmentation for subjects with
parapapillary atrophy

ORIGA [77] 650: 482 No glaucoma, 168 Fundus Classification Binary classification

with glaucoma
SCES [78] 16.76: 1630 No glaucoma, 46 Fundus Classification Binary classification

with glaucoma
MICCAI 2018 REFUGE | 1200: 1080 No glaucoma, 120 Classification Binary classification, optic disc and cup

. Fundus and . o
[79] with glaucoma . segmentation and fovea localization
segmentation

voting strategy is suggested to combine the segmentation from
multiple networks into the final segmentation result. The method
achieves an intersection over union (IoU) of 86.94% =+ 8.75%.
Most of the methods in the literature apply machine learning
techniques on a limited dataset where the comparison is between
normal and pathological cases. However, pathological cases can
interfere with each other and affect the robustness of neural
networks on unseen pathologies. This effect is not well studied
and investigated. To account for that, DeepMind’s work [63]
includes 10 different retinal pathologies to be detected. Some
of these pathologies are AMD-related such as CNV, GA and
drusen. A dataset from Moorfield eye hospital is utilized to
create a two-stage deep learning network for detecting 10 OCT
conditions and give a referral decision. The first stage model
is trained to segment 15 different structures and pathologies
in OCT volumes. The segmentation results are then used as
input to a classification network. The classification network is
trained for 1) referral suggestion (urgent, semi-urgent, routine,
observation), 2) diagnosis probability for multiple characteris-
tics (normal, CNV, macular retinal edema, full macula hole,
partial macula hole, central serous retinopathy, Vitreomacular
traction, GA), and 3) tissue volume of drusen and the epiretinal
membrane (ERM). The reported results are comparable with
expert results on these tasks with 0.99 AUC of ROC curve for the
Task of referring urgent cases. The intermediate segmentation
step enables easier adoption of the model in case it is needed
to change OCT vendors as the second model is independent of
the OCT source. Detecting lesions for AMD is an important
task for detecting early signs and tracking the progression of
the disease. However, there is high variability among experts
when it comes to pixel-level annotation. To partly overcome
this difficulty, approaches that model uncertainty are desired to
model this variability.

IV. GLAUCOMA

Glaucoma affects the optic nerve progressively and it is
detected commonly in three approaches [64] (1) detection of
increased intraocular pressure, (2) identifying the field of ab-
normal vision, or (3) assessing the damage of the optic nerve
by calculating the cup-to-disc ratio (CDR). Optic Disc (OD)
is the area where the optic nerve leaves the eye and it can be
divided into two parts, the optic cup which is in the center of

the Optic Disc as a bright circular area and the peripheral region
around the cup which is the neuroretinal rim. The Optic Disc
changes visually when the optic nerve fibers are damaged due
to glaucoma, this leads to enlargement of the cup region called
cupping and it is an indicator for glaucoma suspect detection.
Detection of glaucoma and segmentation of areas that character-
ize glaucoma are presented in the following subsections. Table V
lists the publicly available datasets for glaucoma detection, and
optic disk and cup segmentation.

A. Detection of Glaucoma

Multiple measurements are used for detecting glaucoma.
In [2], the authors used Visual Fields measurements to dif-
ferentiate open-angle glaucoma patients from healthy patients
using deep feedforward neural networks. Visual Fields using
Humphrey Field Analyzer from 171 pre-perimetric glaucoma
patients and 108 healthy cases are acquired for analysis. The
input to the neural network model is the 52 visual field values
generated by the measuring machine with Pattern Standard De-
viation (PSD) and Mean Deviation (MD) values. The neural net-
work consists of two hidden layers and classifies pre-perimetric
glaucoma from normal visual field. The method is compared
with several other machine learning models including SVM,
Random Forest, and K-Nearest Neighbors. It achieved the high-
est AUC of 0.926. To go beyond visual field measurements, some
works use anatomical features alongside the visual field data.
One work [1] selects the best features from various measure-
ments for 297 glaucoma eyes and 202 non-glaucoma eyes. The
measurements included ocular pressure and corneal thickness
measurement as general exams, OCT scan for retinal nerve fiber
layer (RNFL) thickness, and visual field (VF) exam. The model
achieves 0.979 AUC of ROC curve for detecting if a subject
has glaucoma or not. The RNFL thickness is the anatomical
information most used in the detection process. Other works
have attempted to utilize fundus imagery for detecting glaucoma.
Li et al. [72] have used fundus images for detecting referable
glaucomatous optic neuropathy. The images are annotated by
21 trained ophthalmologists into unlikely suspects of glaucoma
and certain glaucoma depending on the vertical CDR, rim width,
RNFL defect, and disc hemorrhage. The deep model registers a
0.98 AUC of ROC for referable glaucomatous optic neuropathy.
Detection of glaucoma is a challenging task because the early
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TABLE VI

SUMMARY OF WORKS ON GLAUCOMA DETECTION AND GLAUCOMA-RELATED ANATOMIES SEGMENTATION. AUC IS THE AREA UNDER THE ROC CURVE. 10U

IS INTERSECTION OVER UNION

Reference Task Summary Results Dataset(s)
Cheng et al. Classification CNN yvith overlapping pqoling layer.s for binary AUC: 0.83, ORIGA, SCES
[80] classification of glacuoma in fundus images 0.88
. e Use multiple eye measurements as input for decision . .
kim et al. [1] Classification trees, random forests, SVMs, and KNNs for comparison AUC: 0.97 Private 499 Cases
Asaoka et al. e Use Visual Field measurements for preperimetric . Private 279 Visual
[2] Classification glaucoma detection using feedforward neural networks AUC: 0.92 Fields
Li et al. [72] Classification Glaucoma suspect and glaucoma certain classification AUC: 0.98 Private 48,116
based on fundus imaging fundus images
Disk & cu Entropy based sampling for informative points IOU: disk 0.89, | DRISHTI-GS,
Zilly et al. [10] ment tip 0 selection with convolutional filters optimization using cup 0.80 on RIM-ONE,
segmentatio greedy boosting RIM-One Messidor
Maninis et al. Disk & vessels Fully convolutional approach with pre-trained VGG 0.95 precision DRIONS-DB,
[81] segmentation network and supervision on multiple internal layers @ 0.95 recall RIM-ONE
Tan et al. [82] Disc, foveg, vessels _7—1aye1_r CNN to classify central pixel of 33 x 33 patches 1OU: 0.62 DRIVE
segmentation into disc, fovea, vessel, or background
Pixel-wise classification of OD with distance and
Srivastava ef al. . . intensity handcrafted features and a 7-layer neural . .
[83] Disc segmentation network to test optic disc segmentation robustness IOU: 0.90 SIMES
against parapapillary atrophy

signs of the disease could be either functional or anatomical.
Approaches that aim for the early detection of glaucoma should
consider both factors. Table VI summarizes glaucoma-related
approaches and states the main task, the used datasets, and the
results of each approach. Results are not directly comparable
because of different datasets and splits utilization.

B. Segmentation for Glaucoma

The authors in [10] used an entropy-based sampling scheme
to select points of interest for classification. The idea behind
entropy based sampling is to pick the most informative patches
for the training process. The informative points are selected
to have the highest entropy values where the entropy of each
pixel is calculated fromits N x N neighborhood. A convex hull
transform is applied to the initial segmentation assuming that
the disk and cup shapes are convex. The method is compared
with state-of-the-art methods and achieves intersection over
union (IOU) values for optic disc and cup segmentation of 91.4,
85.0 on DRISHTI-GS dataset and 89.0, 80.2 on the RIM-ONE
dataset. To have more global information about the image, the
authors in [81] have used the full fundus image rather than image
patches to segment retinal vessels and optic disk simultaneously.
The authors used a pre-trained VGG network [84] and inspired
by GoogLeNet inception network [53], supervision to multiple
internal layers is added. The authors further added two sets of
specialized layers connected to the internal layers of the network.
One set is used to do full image segmentation and uses the
first four blocks of VGG to have higher spatial resolution. The
second set of added layers is used for optic disk segmentation
by connecting to the last four layers of VGG. This approach
is fully convolutional without any fully connected layers and
a probability map of the same size as the original image is
produced for each task. For optic disk segmentation, the evalu-
ation is done on DRIONS-DB and RIM-ONE datasets and the
model achieves dice coefficient values of 0.971 and 0.959 for

optic disk segmentation on the two datasets respectively. While
the segmentation of glaucoma related anatomies (such as optic
disc/cup) is achievable with good performance. It is important to
note that it is clinically challenging to decide for glaucoma based
on data acquired at one instance. It would be more beneficial to
utilize such quantifiable segmentation systems for the tracking
of glaucoma suspects to monitor any glaucoma progression
symptoms.

V. RETINAL VESSELS SEGMENTATION

Retinal vessel segmentation is widely researched in the lit-
erature. Retinal vessel networks contain rich information about
various retinal pathologies. Early signs of diabetic retinopathy
and vascular burden from hypertension could be detected. More-
over, vision threatening diseases such as Retinal Vein Occlu-
sion (RVO) and Retinal Artery Occlusion (RAO) are detected
from abnormalities in microvascular structure. The exclusion of
retinal vessels network is a preprocessing step used in various
automatic detection algorithms. Therefore, reliable methods for
automatic retinal vessel segmentation are needed. Retinal vessel
segmentation is a challenging task for multiple reasons. Retinal
vessels vary in thickness and could reach 1-pixel thickness
(depending on resolution and anatomical characteristics) and
vessels could have intersections and sometimes thicker vessels
have centerline reflex effect where it appears as two vessels.
Table VII lists the publicly available datasets for retinal vessels
segmentation.

Using Machine Learning to label central pixel of small ex-
tracted patches is one approach frequently used in the litera-
ture [85], [86], [87], [88]. Liskowski et al. [85] use patches
of size 27x27 and applied a preprocessing for global contrast
normalization on image level and zero-phase component anal-
ysis whitening on patch level. A deep convolutional network
is then trained to classify the center pixel of the pre-processed
patches. As for end-to-end direct image segmentation, holistic
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TABLE VI
PUBLICLY AVAILABLE DATASETS FOR RETINAL VESSELS SEGMENTATION
Reference Count Modality Notes
DRIVE [94] 40: 7 mild DR signs Fundus Mangal segmentation of the blood vessels is
provided
STARE [95] 20: 10 cases with pathologies that Fundus Two mar}ually annotated segmentation maps
overlap with blood vessels are provided
Children Fundus images. The images have
. worse contrast for blood vessels, nonuniform
CHASE_DB [96] 28 images Fundus background illumination and wide vessels that
have the central vessel reflex
TABLE VI
SUMMARY OF RETINAL VESSELS SEGMENTATION WORKS
Reference Summary Dataset(s)
Liskowski et al. | CNNs with and without max-pooling applied for central pixel classification of 27 x 27 DRIVE, STARE,
[85] patches CHASE_DB
Wang et dl. [87] Ensemble learning with random forests trained on feature maps extracted with a CNN DRIVE, STARE
(25 x 25 patches)
Maii et al. [88] Ensemble of multiple CNNs trained on binary classification of central pixel for 31 x 31 DRIVE
patches
Li 3] isaep artificial neural networks and denoising autoencoders to learn full patch segmentation DRIVE, STARE
Fu etal. [13] A CNN with sided output and conditional random field to capture non-local correlations BII-{IIX;é sgg RE,
Prentavsic etal. | OCT angiography microvasculature segmentation using a 3-layer CNN to classify center Private 80 OCTA
[91] pixel of 61 x 61 patches images
Leopold et al. Gabor filter preprocessing to train a CNN with batch normalization for central pixel
i DRIVE
[86] classification of 65 x 65 patches
Retinal vessels segmentation using generative adversarial networks where the generator
Son et al. [97] has an architecture similar to U-Net and the discriminator classifies human and DRIVE, STARE
non-human segmentation
Automatic generation of fundus images and vessels segmentation maps pairs to account .
Costa et al. [90] . . . . DRIVE, Messidor
for data scarcity problems using generative adversarial neural networks

view of the image structure is considered which allows for a
more context-aware segmentation. Moreover, a faster segmen-
tation is possible since there is no need for a sliding window
patch-wise classification. In [13] the vessel segmentation is
done on image level using a convolutional neural network with
sided output and a conditional random field. The sided output
is used as a classifier for shallow layers outputs. Each sided
output has its loss that is weighted and added to the final loss as
in [89]. A Conditional Random Field is used to capture non-local
correlations between pixels and takes the image and the sided
outputs from the convolution layers as input. The final loss of
the network is the weighted sum of the sided outputs and the
output of the Conditional Random Field. The time needed for
full segmentation of one image of size 565 x 584 is 1.3 seconds.
The emergence of generative adversarial neural networks is also
affecting research in ophthalmic image analysis. In order to
counter the problems of data scarcity and high cost of annota-
tions, Costa et al. [90] proposed a framework to synthesize fun-
dus images with their corresponding vessel map segmentation.
Two segmentation networks are trained on the real and generated
images. The performance of the two networks is close which
indicates good generation. However, the generated images are of
relatively low resolution (256 x 256). Hence, the segmentation
results of both models are much lower than state-of-the-art.
Machine learning is also used to segment microvasculature

in OCTA images [91]. This work includes 80 OCTA foveal
region images of 12 eyes from 6 volunteers with no sign of
pathologies. The network is composed of 3 convolutional layers
and 3 max-pooling layers. The input is 61 x 61 pixels patch of
the image and the network is trained to classify the central pixel
of each patch. The number of sampled patches with and without
vessels is equal to avoid bias towards the over-represented class.
The method achieves an accuracy of 0.83 and a dice score of
0.7 and it is compared with the human performance by asking a
second annotator to segment 10 of the images. Full segmentation
of OCT-A image microvasculature takes 2 minutes using the
proposed method. While various approaches perform well on
the retinal vessels segmentation task, it is still challenging to
detect smaller vessels with low contrast and to detect vessels
in cases of severe pathologies. Using OCTA is a good option
for monitoring microvascular abnormalities in limited areas.
Table VIII summarizes retinal vessels segmentation works by
stating the main task and the datasets used. The results of each
work on retinal vessels segmentation are shown in Table IX.

VI. RETINAL LAYERS SEGMENTATION IN OCT IMAGES

Retinal layers segmentation is valuable for analyzing OCT
scans to diagnose or monitor retinal diseases. This task can
be challenging due to pathologies such as cysts, subretinal
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TABLE IX
RETINAL VESSELS SEGMENTATION RESULTS IN TERMS OF SENSITIVITY (SEN), SPECIFICITY (SPE), ACCURACY (ACC), AND AREA
UNDER THE CURVE OF ROC (AUC)
Reference DRIVE dataset STARE dataset CHASE-DB dataset
Sen Spc Acc AUC | Sen Spc Acc AUC | Sen Spc Acc AUC
Li etal. [3] 75.69 9816 9527 9738 | 77.26 98.44 9628 98.79 | 75.07 9793 95.81 97.16
Fu etal. [13] 76.03 - 9523 - 7412 - 95.85 - 7130 - 9489 -
Liskowski et al. [85] 77.63 97.68 9495 9720 | 79.67 9754 95.66 9785 | - - - -
Wang et al. [87] 81.73 9733 97.67 9475 | 81.04 9791 9813 9751 | - - - -
Leopold et al. [86] 78.00 9727 9478 - - - - - - - - -
Maji et al. [88] - - 94.7 9283 | - - - - - - - -
Son et al. [97] - - - 98.03 | - - - 98.38 | - - - -
TABLE X

SUMMARY OF RETINAL LAYERS SEGMENTATION WORKS. ACC IS THE ACCURACY SCORE. AVERAGE DICE IS THE AVERAGE OF DICE OF MULTIPLE

STRUCTURES REPORTED IN THE PAPER

Reference Summary Results Dataset(s)
Schlegl ef al. gystO}d structures weak segmentation in OCT images using semantic . Private 157 OCT
escriptors extracted from clinical reports without pixel-wise labels for Acc: 0.81
[98] o Volumes
training
Venhuizen Retinal layers segmentation by using a generalized form of U-Net to have a Dice: 0.95 EUGENDA,
et al. [92] larger receptive field and deeper architecture T Duke_DME
Retinal layers segmentation by using U-Net like structure with batch Average dice:
Roy et al. [93] normalization to segment retinal layers and fluid using a tailored loss function & ’ Duke_DME
. . - S . 0.90
with a differentiable approximation of dice loss
Apostolopoulos | Retinal layers segmentation by using dilated convolution for bigger receptive Dice: 0.99 Private 20 OCT
etal. [99] field and residual connections with MSE loss on U-Net like architecture e volumes
Gopinath et al. Cystoid structures segmentation in OCT images using selective enhancement Dice: 0.71 OPTIMA,
[100] with generalized motion pattern on 3D OCT data T Duke_DME
Private 280
Schlegl et al. Using adversarial neural networks to mark biomarkers candidates such as Dice: 0.79 healthy volumes
[101] retinal fluids in OCT B-scans without the need for annotated data T + 10 volumes
with fluids
venhuizen ef Deep learning for segmentation and quantification of intraretinal cystoid fluid Dice: 0.75 EUGENDA 221
al. [102] in OCT volumes on B-scan level e b OCT volumes

fluids or drusen where the structure of the retinal layers varies
significantly.

In [92], the authors use a generalized form of U-Net [61]
to segment retinal layers in OCT images with AMD. AMD
introduces difficulties in capturing the structure of the retina. The
generalized U-Net used in this work is a deeper network than
original U-Net with more downsampling layers and more feature
maps per layer. The receptive field becomes 572 x 572 pixels
rather than 140 x 140 pixels in the original U-Net. This is
important for the network to be able to capture larger structures
in the image such as fluid-filled spaces. The model achieves a
central macular thickness estimation error of 14.0 + 22.1 pum.
It takes the system 5 seconds to segment a volume of 38 B-scans.
In [93], authors use an encoder-decoder architecture to segment
retinal layers and fluid into 10 classes (7 anatomical layers, 1
fluid, 2 above and under retina classes). The loss function uses
the weighted logistic regression loss where the weights are used
to balance imbalanced classes and to give higher importance
to segmentation of boundary pixels. Moreover, a differentiable
approximation of dice loss is added to the loss function making
the total loss as a weighted sum of the two losses. The network
employs convolutional kernels of size 7 x 3 to keep consis-
tency with OCT spatial resolution, this kernel size ensures the

receptive field of the network to cover the whole retinal layers.
The images are sliced with none overlapping width-wise stripes.
This allows training a larger batch size with GPU limitations. At
test time the whole B-Scan is given to the network as input and
it takes 10 milliseconds to segment one B-scan. The achieved
dice score for fluid segmentation which is the most challenging
part in the segmentation task is 0.77. Segmenting retinal layers
is a challenging task when retinal fluids and abnormalities
occur. For such cases, it could be beneficial to use certainty
aware approaches to model the inter-rater variability. Table III
lists the publicly available datasets for retinal layers and fluids
segmentation. Table X summarizes retinal layers segmentation
works by stating the main task, the datasets used, and the results
of each work. Results are not directly comparable because of
different datasets and splits utilization.

VII. LIMITATIONS AND FUTURE

Machine learning techniques are being widely researched for
their good performance on challenging tasks of fine-grained
grading and pixel-level segmentation. However, these tech-
niques are hindered by various limitations. Some important
limitations are the availability of data and the regulations for
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data usage. Unlike most computer vision applications, medical
applications require datasets annotated by medical experts. This
limits the amount of available annotated data because of the
high cost of annotation. One way to resolve this in the literature
is data augmentation which could be done more realistically
with generative models [103] that learn the data distribution
and possibly generate unseen examples [90]. Another way is
utilizing semi-supervised learning techniques [104] which allow
the incorporation of unlabeled data alongside labeled data into
the model to enhance the overall performance on the labeled
data. This is beneficial for medical applications where a large
amount of unlabeled data is not used in developing the models.
Another data-related limitation is the country-specific regula-
tions on data collection and patient consent which mostly results
in homogeneous datasets in terms of ethnicity and/or hardware
settings for development. Models developed on such datasets are
prone to generalization problems as one population data might
have different characteristics that introduce a bias in the model.
Hence, domain adaptation techniques should be kept in mind
while developing these models. One solution to the problem
is to decompose it into multiple parts as in first segment then
classify [63] to allow easier domain adaptation when needed.
An alternative solution is to separate shared content information
from attribute (domain-specific) information using image-to-
image translation via disentangled representations [105]. Al-
though deep models perform well on quantitative measures, trust
is still an issue for the adoption of these models into clinical
scenarios. A deep model is seen as a black box where results
are not interpretable and failure cases cannot be anticipated nor
explained. Approaches such as [14], [38] visualize heat maps
associated with the classification to show attention areas of the
model that lead the classification. Another possibility to explore
is disentangling image generative factors in image representa-
tion latent space. Disentangling allows a better understanding of
the image representation in high dimensional space where each
component of representation holds information about one trait
in the data [106], [107].

VIIl. SUMMARY

Machine learning and deep convolutional neural networks
have been the focus of most recent publications on ophthalmic
data analysis outperforming legacy algorithms on different ap-
plications from detection and grading diseases such as AMD,
DR, and glaucoma to the segmentation of anatomical structures
such as vessels and retinal layers or intraretinal fluids. In this
paper, we reviewed the recently published machine learning
methods in Ophthalmology and listed the datasets publicly avail-
able for research. Classification and segmentation are the two
most addressed problems in these publications. Detection and
grading of eye diseases through classification leads to more effi-
cient screening programs enabling the healthcare organizations
to cover a larger population. Segmentation of vessels and retinal
layer or lesions such as intra-retinal fluid, on the other hand, can
be used for improving the performance in detecting diseases or
as a crucial intermediate process of the clinical decision support
systems in the future. Together with the rise of these methods

came the concerns about patient privacy and the rights on the use
of data. Interpretability is one requirement in medical applica-
tions as more than sensitivity and specificity is needed to assess
the performance of machine learning methods. There is no doubt
that machine learning came along way fast and future researches
and developments will make it one of the most powerful tools
in the hands of experts to diagnose and treat eye diseases.
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