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Abstract—AD is the highly severe part of the dementia
spectrum and impairs cognitive abilities of individuals, bring-
ing economic, societal and psychological burdens beyond the
diseased. A promising approach in AD research is the analysis
of structural and functional brain connectomes, i.e. sNETs and
fNETs, respectively. We propose to use tensor representation
(B-tensor) of uni-modal and multi-modal brain connectomes
to define a low-dimensional space via tensor factorization. We
show on a cohort of 47 subjects, spanning the spectrum of
dementia, that diagnosis with an accuracy of 77% to 100% is
achievable in a 5D connectome space using different structural
and functional connectome constructions in a uni-modal and
multi-modal fashion. We further show that multi-modal tensor
factorization improves the results suggesting complementary
information in structure and function. A neurological assessment
of the connectivity patterns identified largely agrees with prior
knowledge, yet also suggests new associations that may play a
role in the disease progress.

Index Terms—Brain Connectomes, Structure and Function,
Tensor Factorization, Dementia, Alzheimer’s Disease, fMRI, DTI

I. INTRODUCTION

NUERODEGENERATIVE diseases draw increasing atten-
tion among both industrial and academic researchers due

to the increase in elderly population. As of 2019, there were
703 million people in the world aged 65 and over, which is
expected to double until 2050, reaching 16% of the world
population [1]. In parallel with this increase in the elderly
population, the incidence of age-related neurodegenerative
diseases, such as Alzheimer’s Disease (AD), increases [2]–[4].

Though the cause and the mechanisms of dementia, most
prominently the AD, have not been fully understood, an in-
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A. Kabakçıoğlu is with Dept. of Physics, Koc University, İstanbul, Turkey.
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creasingly promising approach is to describe it as a disconnec-
tivity syndrome where connectivity between (cortical) brain re-
gions are disrupted [5], [6]. Graph theory and graph-based data
analysis offer a suitable approach and the necessary tools to
study these disruptions. Brain connectome is a graph/network
representation of the structural and functional associations
between (cortical) brain regions [7]–[9]. The structural con-
nectomes (sNET) and the functional connectomes (fNET) are
constructed using co-registered T1-weighted MRI (T1w-MRI),
diffusion weighted MRI (DWI) and functional MRI (fMRI)
volumes.

Early graph theoretical efforts in brain connectome analysis
mostly focused on studying the differences in graph-level fea-
tures between groups [10]. Characteristic path length, small-
worldness, clustering coefficient and global connectivity are
among these features that are used to discriminate AD and
controls [11]. Despite their relatively high sensitivity, they had
low specificity and provided very limited insight about the
mechanisms that govern the onset and progress of diseases
[12]. Conflicting results were presented in literature [13]–[15].
Daianu et al. uses k-core measure with the other metrics men-
tioned above to highlight alterations as the disease progresses,
and distinguish AD vs MCI (Mild Cognitive Impaired), and
healthy controls [16]. Rather than using the whole brain graph,
they prefer to use a sub-graph by using the constraint k as a
threshold of nodal degree. In another study, k-core measure
is used with rich club to understand the effect of AD on
the highly connected graphs [17]. In a recent review article,
Dragomir et al. provides an overview of the graph based
approaches applied to AD [18].

A major challenge in deciphering the dementia spectrum
is in identifying the disrupted structural and/or functional
associations throughout the disease spectrum. This is equiv-
alent to identifying the subsets of structural and/or functional
associations (i.e. sNET and/or fNET subnetworks) that have
a discriminative power. Early work pursued a statistical ap-
proach. Network Based Statistics (NBS), proposed by Zalesky
et al., identifies statistically significantly different associations
and subnetworks between groups by means of hypothesis
testing [19]. Kim et al. used individual edge weights to
perform univariate general linear model in order to identify
group differences between AD and healthy controls [20].

More recently, network factorization approaches have been
applied to connectome analysis under different paradigms and
with different formulations. Network factorization aims at
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representing a network as a combination of subnetworks that
form a basis for the space of connectomes. The connectomes’
representations with respect to such a basis were exploited
to draw insights about neurodegenerative diseases. Eavani
et al. sought for such basis subnetworks, termed as Sparse
Connectivity Patterns (SCP), for resting state fNETs [21].
Using these basis networks, they have found functionally
(anti-)correlated regions as represented by the reconstruction
coefficients. Zille et al. studied the similarities and the dif-
ferences in resting state fNETs between children and young
adults [22]. They performed a coupled factorization on the
complete cohort by using a generalized fused Lasso penalty,
where SCPs were constrained to be common across the two
groups. Durusoy et al., proposed the 3rd order B-tensor (brain
tensor) representation, which is a group-wide unified tensor
representation of uni-modal brain connectomes, of a cohort
of sNETs that they decomposed onto a set of (anatomically)
predefined subnetworks and showed that among them the
salience network [23] turns out to be the most discriminative
one between controls and AD [24]. More recently, Zhang et al.
used the 3rd order tensors to represent the sNETs of a cohort of
healthy individuals selected from the HCP dataset1 [25]. They
decomposed it using tensor principal component analysis (T-
PCA) to show that several personal traits can be statistically
significantly regressed using the 30-D representation of in-
dividual sNETs. Zhang’s work improves over Durusoy’s who
had used a predefined basis subnetwork set, while imposing an
orthogonality constraint on the identified basis subnetworks.

Building upon our previous work [24], we seek to iden-
tify the discriminative subnetworks using uni-modal (sNET /
fNET) and multi-modal (sNET & fNET) B-tensor factoriza-
tions for the diagnosis of the different stages of dementia (SCI
- subjective cognitive impairment, MCI - mild cognitive im-
pairment, AD - Alzheimer’s Disease). These subnetworks’ dis-
criminative power is assessed using both multivariate ANOVA
and classification performance in the low-dimensional space of
subnetworks. The main contributions of this work are (i) the
first application of brain connectome tensor (B-tensor) fac-
torization to neurodegenerative disease (specifically dementia)
diagnostics, to the best of knowledge, (ii), demonstration of
the high discriminative power of the extracted low-dimensional
compact connectome spaces throughout the spectrum of de-
mentia, (iii) structure-function fusion by means of multi-modal
B-tensor factorization with parameter tying.

The rest of the paper is organized as follows: Section II
describes the uni-modal and multi-modal B-tensor factoriza-
tion, as well as the classifier training/testing scheme used
for dementia diagnostics performance assessment. Section III
provides a detailed description of the data cohort, the clinical
assessment and reports the experimental results. Section IV
discusses the results both from data science and neurology
perspectives. Section V presents the concluding remarks and
suggestions for future work.

1For each personal trait, two equal sized groups of individu-
als with maximal difference in their mean traits were selected.
http://www.humanconnectomeproject.org/data/

II. METHODS

A brain connectome is an undirected graph, G = (P, E),
where P (#(P) = P ) is the set of P nodes/vertices cor-
responding to cortical brain regions/parcels and E is the set
of undirected edges/associations between these regions. G is
conventionally represented as a P ×P symmetric matrix. The
3rd and 4th order B-tensors are group-wide unified tensor rep-
resentation of uni-modal and multi-modal brain connectomes,
respectively. Bf/s ∈ RP×P×N

+ is the 3rd order non-negative
uni-modal B-tensor of P -node connectomes for N cases. We
will use Bf and Bs for uni-modal functional (fNET) and
structural (sNET) connectome B-tensors, respectively. The 4th

order B-tensor (Ba ∈ RP×P×N×M
+ ) is the concatenation of

Bf and Bs (i.e. M = 2).

A. Connectome Construction
Each subject’s T1w-MRI, fMRI, DWI volumes are co-

registered and the T1w-MRI volumes are used to delineate
the cortical regions by means of 148-parcel Destrieux atlas
(P = 148) [26] registration, using a custom pre-processing
pipeline2 that utilizes the open source FreeSurfer, FSL and Tor-
toise toolboxes. Co-registered volumes are manually verified
by neurologists prior to connectome construction. Identical
parcellations (nodes) are used for all connectomes of an
individual. In the rest, we will use the terms node and parcel
interchangeably, as we do for connectivity and edge.

Diffusion tensor image (DTI) volumes are constructed from
DWI volumes. The 4th-order Runge-Kutta (RK4) determinis-
tic tractography algorithm is used with minimum fractional
anisotropy (FA) set to 0.15, stepsize set to 0.7mm (≈ half
the voxel size), minimum fiber length set to 20mm and the
maximum curvature set to 35◦. RK4 was initiated from 30
randomly selected seeds per voxels with FA > 0.15 [27]. In
order to construct the sNETs, each fiber ({fk}) computed by
RK4 is associated with the nodes in the vicinity of its end-
points through a normal weighting function. Let Wik represent
the association between ith parcel and kth fiber defined as,

Wik =
∑

rj ∈ Pi

|rj − ek| ≤ 2σ

1

(2π)3/2σ3
exp(

−|rj − ek|2

2σ2
) (1)

where rj is the jth voxel position in parcel Pi, ek is the
kth fiber’s end-point (the closest one to rj). The σ is pre-
determined, prior to connectome construction, as 0.155 fol-
lowing the methodology described in [28].

Three edge definitions are used for sNET construction,
leading to three different sNETs with common nodes. The
edge weights between nodes Pi and Pj are defined as,

eij =
2

Vi + Vj

∑
k

WikWjk (2)

emij =
2

Vi + Vj

∑
k

[
WikWjk min

s
(FA(fk(s)))

]
(3)

eaij =
2

Vi + Vj

∑
k

[
WikWjk avg

s
(FA(fk(s)))

]
(4)

2https://vavlab.boun.edu.tr/research
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where Vi and Vj are the volumes of corresponding parcels
in mm3, min

s
() and avg

s
() are the minimum and the average

operators over the arbitrarily parametrized (by s) fibers.
Two edge definitions are used for fNET construction, lead-

ing to two different fNETs with common nodes. More specif-
ically, we used the absolute Pearson correlation coefficient
(CC) and the absolute partial correlation coefficient (pCC)
between the BOLD signals associated with each parcel to
quantify functional associations [29]. The summary BOLD
signals for each parcel are computed using the principal left
singular vector of the singular value decomposition of the
matrix of BOLD signals of all voxels in a given parcel, as
described in [30].

B. Uni-modal B-Tensor Factorization
In order to find low dimensional connectome representa-

tions and orthogonal basis subnetworks, the following class
balanced optimization problem is solved for the 3rd order
uni-modal B-tensors, Bf and Bs, that represent fNETs and
sNETs, respectively.

min
dk,vk,uc

k


C∑

c=1

1

Nc

∥∥∥∥∥Bc
f/s −

K∑
k=1

dk(vk ◦ vk ◦ uck)

∥∥∥∥∥
2

2


s.t.

C∑
c=1

||uck||22 = 1; vTk vj = δjk

(5)

where C (=3, for SCI, MCI, AD) is the number of classes
in the dataset, Nc is the number of cases of class c, the free
parameter K is the number of subnetworks, i.e. the dimension-
ality of the connectome space. The subscripts referring to the
modality that the B-tensor factors (dk, vk, uck) are associated
with, are ignored to keep the notation simple. dk ∈ R is the
kth subnetwork’s scaling factor, Vk = vk ◦ vk ∈ RP×P is
the kth basis subnetwork and uck ∈ RNc is the corresponding
projection coefficient. Concatenating the K-dimensional repre-
sentations of all N cases, we get Uf/s = [u1

: u
2
: u

3
: ] ∈ RK×N .

Equation 5 is blind to class labels of the cases, but uses
individual B-tensors constructed for each class (Bc

f/s) with
appropriate normalization in the optimization problem to over-
come the class imbalance problem, rather than imposing equal
class sizes by selecting cases from the cohort as is done in
[25].

Following Allen, this single factor CP (canonical polyadic)
decomposition can be rewritten as [31] ,

max
vk,uc

k

C∑
c=1

1

Nc

(
Bc

f/s ×1 (Γk−1vk)×2 (Γk−1vk)×3 u
c
k

)
s.t.

C∑
c=1

||uck||22 = 1; vTk vj = δjk

(6)

where Γk−1 is the projection matrix onto the subspace or-
thogonal to the one spanned by {v1, · · · , vk−1}, ×n denotes
n-mode tensor product [32]. The class balanced 3rd order B-
tensor factorization algorithm is given in Algorithm 1, where
Emax() is the principal eigenvector operator. We randomly
initialized the B-tensor factorization 20 times and selected the
one with minimum reconstruction error.

Algorithm 1 3rd order B-tensor factorization algorithm
INPUT: Bc

f/s∀c ∈ {1, · · · , C}
OUTPUT: Uf/s = [u1

: u
2
: · · ·uC: ]

Vk,f/s = vk ◦ vk, ∀k ∈ {1, · · · ,K}

Let B̂c
f/s = Bc

f/s ∀c ∈ {1, · · · , C}
for k=1, · · · K do

Initialize : vk and uck ∀c ∈ {1, · · · , C} , iter = 1
if k=1 then

Γ0 = I ∈ RP×P identity matrix
else

Γk−1 = I −
∑k−1

s=1 vs ◦ vs
end if
Obj(1) =∑C

c=1
1
Nc

(
B̂c

f/s ×1 (Γk−1vk)×2 (Γk−1vk)×3 u
c
k

)
while err > 10−6 and iter < 1000 do
uck =

B̂c
f/s×1vk×2vk

Nc

√√√√∑C
c=1

∥∥∥∥∥ B̂c
f/s

×1vk×2vk

Nc

∥∥∥∥∥
2

2

vk = Emax(Γk−1(
∑C

c=1
1
Nc

B̂c
f/s ×3 u

c
k)Γk−1)

CP Scaling : dk =
∑C

c=1 B̂c
f/s ×1 vk ×2 vk ×3 u

c
k

iter = iter + 1
Obj(iter) =∑C

c=1
1
Nc

(
B̂c

f/s ×1 (Γk−1vk)×2 (Γk−1vk)×3 u
c
k

)
err = | (Obj(iter)−Obj(iter − 1)) /Obj(1)|

end while
Deflation : B̂c

f/s = B̂c
f/s − dk(vk ◦ vk ◦ uck)

end for

C. Multi-modal B-tensor Factorization

The 4th order multi-modal B-tensor (Ba) is the concate-
nation of Bf and Bs. Following an approach similar to the
uni-modal B-tensor factorization, as described in Section II-B,
the multi-modal Ba can be factorized, with the addition of a
fourth factor, as,

min
dk,vk,uc

k,wk


C∑

c=1

1

Nc

∥∥∥∥∥Bc
a −

K∑
k=1

dk(vk ◦ vk ◦ uck ◦ wk)

∥∥∥∥∥
2

2


s.t.

C∑
c=1

||uck||22 = 1; vTk vj = δjk; wT
k wk ≤ 1

(7)
where the additional factor wk ∈ R2 is a scaling across the
modalities (structure and function) for the kth subnetwork,
while all other factors and parameters are as described in
Section II-B. Due to the difference in the sparsity of sNET
and fNET connectivities, we have employed parameter tying
and set wk = [w∗

k;αw∗
k] = Θw∗

k, where α is a fixed density
factor, defined as α = density(fNET)/density(sNET), and
w∗

k is the tying parameter.

Following Allen again, the above minimization problem can
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Algorithm 2 4th order B-tensor factorization algorithm
INPUT: Bc

a ∀c ∈ {1, · · · , C},Θ
OUTPUT: Ua = [u1

: u
2
: · · ·uC: ]

Vk,a = vk ◦ vk,∀k ∈ {1, · · · ,K}

Let B̂c
a = Bc

a ∀c ∈ {1, · · · , C}
for k=1, · · · K do

Initialize : vk, wk and uck ∀c ∈ {1, · · · , C} , iter = 1
if k=1 then

Γ0 = I ∈ RP×P identity matrix
else

Γk−1 = I −
∑k−1

s=1 vs ◦ vs
end if
Obj(1) =∑C

c=1
1
Nc

(
B̂c

a ×1 (Γk−1vk)×2 (Γk−1vk)×3 u
c
k ×4 wk

)
while err > 10−6 and iter < 1000 do
uck =

(B̂c
a×1vk×2vk)wk

Nc

√∑C
c=1

∥∥∥∥ (B̂c
a×1vk×2vk)wk

Nc

∥∥∥∥2
2

w∗
k =

∑C
c=1

1
Nc

ΘT (B̂c
a×1vk×2vk)Tuc

k

||Θ∑C
c=1

1
Nc

ΘT (B̂c
a×1vk×2vk)Tuc

k||2
wk = Θw∗

k

vk = Emax(Γk−1(
∑C

c=1
1
Nc

B̂c
a ×3 u

c
k ×4 wk)Γk−1)

CP Scaling : dk =
∑C

c=1 B̂c
a×1 vk×2 vk×3 u

c
k×4 wk

iter = iter + 1
Obj(iter) =

∑C
c=1

1
Nc

(
B̂c

a ×1 (Γk−1vk)×2

(Γk−1vk)×3 u
c
k ×4 wk

)
err = | (Obj(iter)−Obj(iter − 1)) /Obj(1)|

end while
Deflation : B̂c

a = B̂c
a − dk(vk ◦ vk ◦ uck ◦ wk)

end for

be posed as a maximization problem [31],

max
vk,uc

k,wk

C∑
c=1

1

Nc
(Bc

a ×1 (Γk−1vk)×2 (Γk−1vk)×3 u
c
k ×4 wk)

s.t.
C∑

c=1

||uck||22 = 1; vTk vj = δjk; wT
k wk ≤ 1

(8)
where Γk−1 is the projection matrix as before. We get the
class balanced 4th order B-tensor factorization as in Algo-
rithm 2 where Emax() is the principal eigenvector operator,
Θ = [1 α]T with α being a fixed sparsity ratio between the
structural and functional connectomes. Derivations of uck, vk
and w∗

k are given in Appendix A. As before, we randomly
initialized the B-tensor factorization 20 times and selected the
one with minimum reconstruction error.

D. Classification in Low Dimensional Connectome Space

The B-tensor factorizations explained in Sections II-B and
II-C allow us to represent each individual connectome in a K-
D space with columns of Uf , Us and Ua, corresponding to
fNETs, sNETs and multi-modal structure-function representa-
tion. These K-dimensional spaces are spanned by basis subnet-
works denoted by Vk,f , Vk,s and Vk,a. Let uf/s/a(n) ∈ RK

denote the nth case’s K-D connectome representation. The
significance of class separation in K-D spaces is assessed by
multivariate ANOVA [33].

We adopted a leave-one-out cross-validation scheme to eval-
uate the performance of a 3-class (SCI/MCI/AD) linear SVM
classifier3 on K-D vectorial representations (u:) of cases. The
classification accuracies and confusion matrices are reported
in Tables II and III. The statistical significance of the observed
classification performances is assessed using the Fisher-Pitman
permutation test [34], [35] for which we randomly shuffled the
class labels of subjects 1000 times without altering the K-D
connectome representations and followed the same leave-one-
out cross-validation training/testing scheme.

III. EXPERIMENTS

A. Data and Clinical Assessment

88 volunteers were enrolled in the study with written
consent and under an ethics committee approval4. We used an
age and gender matched subset of 47 individuals (17 male, 30
female, age = 61.4±5.6). There were three diagnostic groups:
Early-stage AD dementia (AD) (N1 = 8), mild cognitive
impairment of the amnestic type (MCI) (N2 = 25), and
subjective cognitive impairment (SCI) (N3 = 14). Table I
summarizes the information about subjects with respect to
amnestic type. The participants underwent routine clinical ex-
amination at Istanbul University, Istanbul Faculty of Medicine,
Department of Neurology, Behavioral Neurology and Move-
ment Disorders Unit and their MR scans were acquired in a
single session using the Philips Achieva 3T MRI system (Best,
Netherlands) with a 32-channel head coil at Neuroimaging
Unit of Hulusi Behçet Life Sciences Research Laboratory,
Istanbul University. We used 3D FFE (Fast Field Echo) pulse
sequence with multi-shot TFE (Turbo Field Echo) imaging
mode for T1-weighted MRI. The acquisition parameters were
TE/TR = 3.8ms/8.3ms, flip-angle = 8◦, SENSE reduction 2
(Foot-Head), FOV = 220(RL)×240(AP ) mm2, voxel size =
1.0× 1.0× 1.0 mm3 and number of slices = 180. DWI were
acquired with a maximum gradient strength of 40 mT/m, and
200 mT/m/ms slew rate, using a single-shot, pulse-gradient
spin echo (PGSE), echo planar imaging (EPI) sequence. The
acquisition parameters were FOV= 200×236 mm2, 2.27 mm
isotropic voxel size, 112 × 112 reconstruction matrix, 71
slices and TE/TR = 92ms/9032ms. 120 diffusion weighting
gradient directions were used at various b-values between
0− 3000 s/mm2.

The diagnosis of amnestic type MCI was made based on
NIA-AA criteria [36]. An objective deficit in episodic memory
was defined by a total free recall score (TFR) of 27 or lower
and Cue Index (CI) of 0.67 or lower on the Free and Cued
Selective Reminding Test (FCSRT) [37]. Thus, all the non-
demented participants who scored above 27 in TFR-FCSRT
and above 0.67 in CI-FCSRT were automatically labeled as

3One-vs-one multiclass SVM classifier is trained and used. We used
MatlabTM’s multiclass model fitting function fitcecoc with its default param-
eters except Prior, which is set to Uniform.

4Istanbul University, Istanbul Faculty of Medicine, Ethics Committee Ap-
proval: 877/30.05.2014 ; Bogazici University, Ethics Committee Approval:
2014-1/17.02.2014
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TABLE I
SUMMARY OF AGE AND GENDER MATCHED DATASET.

Type AD MCI SCI
# of Female/Male 5/3 (62.5%F ) 16/9 (64%F ) 9/5 (64%F )
Age∈ [51, 70] 62.25± 6.61 61.28± 5.31 61.00± 5.99
CI-FCSRT 0.31± 0.21 0.66± 0.17 0.87± 0.12
TFR-FCSRT 7.25± 8.31 21.92± 4.54 34.5± 3.94

TABLE II
LEAVE-ONE-OUT CROSS-VALIDATED CLASSIFICATION ACCURACIES FOR

K-DIMENSIONAL BRAIN CONNECTOME REPRESENTATIONS. THE
P-VALUES OF THE MULTIVARIATE ANOVA TESTS FOR EACH

REPRESENTATION ARE ALL LESS THAN 1e− 09.

Number of Basis Subnetworks (K)
3 5 7 9 11 13 15

Functional Uni-modal (Uf )
CC 0.96 1.00 1.00 1.00 0.96 0.94 0.94
pCC 1.00 0.96 0.98 0.94 0.96 0.96 0.94

Structural Uni-modal (Us)
NW 0.85 0.91 0.87 0.85 0.85 0.83 0.83
mFA 0.87 0.81 0.79 0.77 0.79 0.85 0.85
aFA 0.81 0.79 0.81 0.79 0.81 0.87 0.87

Multi-modal (Ua)
NW+pCC 1.00 1.00 1.00 1.00 1.00 0.98 0.98
mFA+pCC 1.00 1.00 0.98 0.98 0.94 1.00 0.96
aFA+pCC 1.00 1.00 0.98 0.98 0.96 0.96 0.96
NW+CC 1.00 1.00 1.00 1.00 1.00 1.00 0.98
mFA+CC 0.96 1.00 1.00 1.00 0.96 0.94 0.96
aFA+CC 0.96 0.98 1.00 1.00 0.98 1.00 0.98

SCI. This score of 27 was chosen as a more liberal cut-
off, compared to the 24, which was shown to be a highly
sensitive measure of predicting future dementia in dementia-
free individuals [38]. AD participants, on the other hand, were
selected among those who fulfill NIA-AA criteria for probable
AD with an amnestic presentation [39]. SCI subjects were
volunteers responding to the calls of the project and they
scored at least 1 on either Cognitive Functions Instrument Sub-
ject form (CFI-S) or CFI Study Partner form (CFI-SP) [40].
After a comprehensive neurological and neuropsychological
examination and cranial magnetic resonance imaging (MRI),
the diagnoses of SCI, MCI, and AD were confirmed by a panel
of behavioral neurologists. The panel also ensured that all
AD participants had a Clinical Dementia Rating Scale (CDR)
score of 0.5 or 1, thus had a very mild or mild dementia.
All MCI subjects had a CDR score of 0.5 and CDR Sum-of-
Boxes (CDR-SOB) score of 0.5 or 1. All SCI subjects had
a CDR score of 0. Participants with a history of current or
past neurological or psychiatric disorders adversely affecting
cognition, alcohol or substance abuse, major head trauma with
loss of consciousness, white matter hyperintensities on MRI
with a Fazekas score of 2 and 3, as well as contraindications
for scanning at MRI were other exclusion criteria from our
study.

B. Results

We ran experiments with two types of fNETs constructed
using absolute Pearson correlation coefficient (CC) and ab-
solute partial correlation coefficient (pCC) as connectivity

definitions, and three types of sNETs constructed using the
structural connectivity definitions given in Equations 2, 3, 4,
namely the normalized weighted fiber count (NW), minimum
fractional anisotropy (mFA) and average fractional anisotropy
(aFA) based connectivity definitions, respectively. For all op-
tions, we used K ∈ {3, 5, 7, 9, 11, 13, 15}. All mean B-tensor
reconstruction errors among the 20 random initializations were
less than 1e− 4 for all experiments.

Table II shows the leave-one-out cross-validation classifica-
tion accuracies for uni-modal and multi-modal B-tensor factors
uf/s and ua, respectively, for all sNET and fNET definitions.
The statistical significance of the inter-group (SCI/MCI/AD)
separation for uni-modal and multi-modal B-tensor factors
is reasserted by the multivariate ANOVA tests for all cases.
The classification accuracies show that the uni-modal fNET
factorizations (uf ) generally perform better than the unimodal
sNET (us) factorizations. The added value of multi-modal
factorization is evident in all cases, though the differences
in classification accuracy are small when compared with
unimodal fNET factorizations. An overall assessment of Table
II suggests K = 5 as a reasonable choice in terms of classi-
fication accuracy and low dimensionality. The null hypothesis
(that all three classes have equal means) was rejected by the
multivariate ANOVA test with a p-value less that 1e − 09
in all cases, indicating that AD, MCI, and SCI subjects fall
into easily distinguishable clusters in the low-dimensional
connectome spaces. We assessed the statistical significance
of the reported classification performances of the trained
classifiers by means of the Fisher-Pitman permutation test. To
this end, we randomly shuffled the class labels of subjects
Nshf (= 1000) times without altering their K-D connectome
representations. We then followed the same leave-one-out
cross-validations training/testing scheme to get samples from
the null distribution of accuracies. All entries in Table II
were found to be extreme outliers, since none of the label
permutations returned a larger accuracy. Corresponding p-
values are therefore less than 1e− 03 (= 1/Nshf ), consistent
with the multivariate ANOVA test.

Table III shows the confusion matrices for the classifiers
trained on uni-modal B-tensor factorizations for K = 5 and
15. The majority of the misclassifications are observed with
structural connectomes and between AD-SCI groups. Among
all, the fractional anisotropy (FA) based sNETs perform worse,
which is parallel with previously reported results in literature
albeit for different tasks [25].

Figure 1 summarizes the distribution of projection coef-
ficients (uf/s/a) per subnetwork (K = 5) and per group
(SCI/MCI/AD). The CP scaling factors (dk’s) are measures
of variation expressed by the corresponding subnetwork and
are reported as percentages. An immediate observation is that
most of the fNET variation is confined to a single subnet-
work, which alone is highly discriminative of SCI/MCI/AD
groups, as is evident from the distribution of uf ’s for that
specific subnetwork. The sNET variation is more complex
and distributed relatively evenly across all 5 subnetworks.
The intra-group variation is relatively higher in AD group,
followed by the SCI group, which can partially explain the
higher confusion between AD and SCI reported in Table
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TABLE III
CONFUSION MATRICES FOR 3-CLASS CLASSIFICATION WITH K = 5 AND

K = 15 FACTORIZATIONS OF UNIMODAL B-TENSORS

K=5 K=15
Predicted

SCI MCI AD SCI MCI AD

C
C

SCI 14 0 0 14 0 0
MCI 0 25 0 0 25 0
AD 0 0 8 2 1 5

pC
C SCI 14 0 0 14 0 0

MCI 0 25 0 0 25 0
AD 2 0 6 3 0 5

N
W

SCI 12 1 1 11 2 1
MCI 1 24 0 3 22 0
AD 1 0 7 2 0 6

m
FA

SCI 11 2 1 12 0 2
MCI 2 23 0 1 24 0
AD 4 0 4 4 0 4

aF
A

SCI 9 4 1 11 2 1
MCI 3 22 0 2 23 0
AD 2 0 6 1 0 7

III. The multi-modal B-tensor factorization demonstrates a
dimensionality similar to sNETs’, while having a better group
separation than both uni-modal factorization in general. The
results suggest certain functional and structural subnetworks
to be highly discriminative.

The B-tensor factorization further offers an insight into the
structural and functional mechanism(s) that manifest dementia,
beyond offering a highly accurate diagnostics. The brain’s
subnetworks were already suggested as biomarkers of AD
[41]. Figure 2 depicts the basis subnetworks that we have
identified via uni-modal and multi-modal B-tensor factoriza-
tions. A preliminary neurological assessment of the structural
subnetworks reveals the precuneus, the angular gyrus, the
supramarginal gyrus, the superior parietal lobule, the precen-
tral gyrus and the postcentral gyrus as the most conspicuous
regions. The precuneus is probably the single most salient
structure within the neuropathological process of AD as the
first structure that is involved by the initial amyloid load
during the pre-clinical stages of the amyloid accumulation.
This accumulation disrupts both the intra and inter-network
connectivity even during the pre-clinical stage [42], [43].
Even the genetically susceptible individuals without amyloid
load were shown to exhibit disrupted precuneus connectivity
[44]. According to the Braak&Braak staging, the angular
gyrus, the supramarginal gyrus and the superior parietal lobule
are involved in stage V of neurofibrillary tangles spread,
reflecting the earliest phase of dementia [45]. The precentral
and postcentral gyri are the most unexpected findings. They
harbor primary motor and somatosensory cortices and are not
thought to be involved in the neuropathological spread, even
at the final stage VI of Braak&Braak [45]. Unlike sNETs,
the CP scaling factors of fNETs are rather uneven, indicating
the first subnetwork as, by far, the most significant one. The
precuneus and dorsal & ventral parts of posterior cingulate
cortex (PCC) are functionally the most conspicuous cortical
regions. They are connected to various bilateral hubs, with
distinct functional and structural properties, and their con-
tralateral mirror reflections. The left precuneus is specifically

strongly expressed in the most significant subnetwork, with
asymmetrical connections. As described above, the precuneus
is a key region for dementia. The dorsal & ventral parts of
PCC are specifically the components of the Papez circuit
and thus thought to be affected at the Braak&Braak stage
III-IV. Consequently, the preliminary neurological assessment
confirms that the identified structural and functional connec-
tivities agree with neurological literature, while suggesting
some unexpected connectivities which deserve further studies
with regard to their role in the disease spectrum. No direct
relation between the B-tensor basis subnetworks and the
seven functional subnetworks was observed [23]. These seven
subnetworks are depicted with color codes in Figure 2.

IV. DISCUSSION

Comparing the uni-modal and the multi-modal B-tensor
factorization results in Table II, the higher performance of
fNETs over sNETs is clearly observed. This is in agree-
ment with the previously reported results, which form the
bulk of the current literature on connectome analysis for
neurodegenerative disease [46]. However, we also observed
a rather high performance with sNETs, which is a strong
evidence that dementia manifests also on the structure of
the brain networks [47]. Further, the multi-modal B-tensor
factorization approach improves the accuracy beyond uni-
modal analysis. The multi-modal B-tensor factorization offers
a new perspective to brain connectomes where an underlying
fundamental network structure is suggested, of which fNETs
and sNETs are independent observations. This is in line with
recent findings which suggest that different MRI modalities
provide complementary information that helps to discriminate
AD groups [48]. The multi-modal B-tensor factorization offers
a novel and effective method to fuse functional and structural
information in connectome analysis.
β-amyloid (Aβ) peptide and p-tau concentrations in

cerebro-spinal fluid (CSF) were observed to be related to
different stages of Alzheimer’s disease (AD) [49], [50]. The
Aβ concentration decreases in pre-clinical stages and strongly
corresponds to the Aβ neuropathology and the diagnosis of
AD (continuum), while the p-tau concentration increases along
the pre-dementia and dementia stages of AD and correlates
with clinical disease severity. A subset of 35 subjects from
our cohort had their CSF tests available. Figure 3 depicts the
distribution of p-tau and Aβ for this subset and per group
(SCI/MCI/AD). While Aβ marks the AD group clearly, it
is incapable of discriminating clinically identifiable SCI and
MCI groups. On the other hand, p-tau concentration follows
the expected trend, yet falls short of clearly separating the
clinical groups. However, the proposed B-tensor factorization
showed high separability throughout the disease spectrum,
and is potentially a highly sensitive and non-invasive clinical
biomarker. These preliminary observations also suggest that
discriminative changes in brain connectomes exist even in the
absence of significant changes in Aβ and p-tau levels.

The dataset size is a major limitation for drawing conclusive
results with regard to clinical applicability. Our results justify
further studies with a larger and preferably multi-center dataset
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Fig. 1. The distribution of projection coefficients (left-to-right: us:NW, uf :pCC, ua:NW+pCC) per subnetwork (left-to-right: 1st − 5th) and per group
(SCI/MCI/AD). The CP scaling factors (dk’s) for each subnetwork is a measure of the variation explained by the corresponding subnetwork and is given as
a percentage for each subnetwork.

Fig. 2. The basis subnetworks, in order of significance (left-to-right), extracted by the unimodal structural (upper row), functional (middle row) and the
multi-modal (lower row) B-tensor factorization for K = 5. The 148 nodes of the Destrieux atlas [26] are color coded following the seven functional networks
(Red: Dorsal Attention, Green: Salience, Blue: Visual , Cyan: Frontoparietal, Purple: Limbic, Orange: Somatomotor & Auditory , Yellow: Default Mode,
Black: Multiple Overlapping Networks) described in literature [23]. The significantly strong connections (> µ+3.5σ) are displayed for presentation purposes.
The precuneus (L/R30), the angular gyrus (L/R25), the supramarginal gyrus (L/R26), the superior parietal lobule (L/R27), the precentral gyrus (L/R29), the
postcentral gyrus (L/R28), the dorsal & ventral parts of posterior cingulate cortex (L/R 9-10) are observed to be the most conspicuous regions.

which would not only increase the statistical power but also
shed light on the effect of data acquisition variations, which
will be important in a clinical setting. A study with follow-
up cases, over the course of full disease development, may
prove to be beneficial in identifying AD-susceptible SCI cases
which would have a much higher impact than diagnosis. An
important and novel contribution of B-tensor factorization is
the insight it offers towards understanding the disease devel-
opment. The current neurological assessment of the identified
subnetworks generally agree with current knowledge, however,
we have also made controversial observations such as the

involvement of the precentral and the postcentral gyri. Such
observations deserve further assessment. The B-tensor factor-
ization algorithm is based on the CP factorization recently
employed by Zhang et al. [25]. It is an intuitive approach to
project a connectome onto a minimum dimensional space, so
much as a PCA approach. Nevertheless, tensor factorization is
an optimization problem and an active research area in data
analytics [51]–[53]. A comparative assessment of different
tensor factorization methods applied to B-tensor factorization
would be a valuable contribution, which is beyond our scope
and is left for future research.
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Fig. 3. The Aβ and p-tau concentrations of 35 subjects that have undergone
CSF tests. Aβ decreases and p-tau increases for AD cases, while the MCI
and the SCI groups are not well-separated.

V. CONCLUSION

Multi-dimensional tensor factorization offers a unique and
powerful methodology to explore the underlying connectivity
patterns (subnetworks) in brain connectomes, as well as an
efficient way to fuse multi-modal data. The unimodal class
balanced B-tensor factorization suggests a low dimensional
highly discriminative structural connectome space with highly
and relatively equally significant basis subnetworks. In paral-
lel with literature, the micro-structure (fractional anisotropy)
dependent connectivity definitions did not perform better than
simpler weighted tract counts. The identified discriminative
structural basis subnetworks mostly agree with the neurolog-
ical knowledge, yet also suggest unexpected discriminative
connections, such as the pre- and post-central gyri. These
findings need to be further assessed from a neurological point
of view. Unlike the structural connectomes, a single functional
basis subnetwork singles out with high discriminative power
throughout the disease continuum. The multi-modal B-tensor
factorization, in general, had better classification performance,
with lower intra-class variation, suggesting the efficient fusion
of structure and function. For all cases, MCI group fell
further apart from SCIs and ADs, which could be attributed to
the expected higher variation, that the B-tensor factorization
captures, in MCI stage which is a transition stage. Further
studies are needed to assess the relation between these low
dimensional connectome representations and multiple clinical
findings, as well as the significance of the connections that
are unexpectedly observed to be part of discriminative subnet-
works. A blind study is also due to assess the discriminative
power of the projections of connectomes onto the basis sub-
networks identified in this study.

APPENDIX A
BALANCED MULTI-MODAL B-TENSOR FACTORIZATION

WITH PARAMETER TYING

Let Xc be the 4th order semi-symmetric tensor. Xc ∈
RP×P×Nc×M

+ of P × P connectomes of Nc cases of class
c (c ∈ {1, · · · , C}) for M modalities. The multi-modal B-

tensor factorization is posed as an optimization problem [31],

max
v,uc,w

C∑
c=1

1

Nc
(Xc ×1 v ×2 v ×3 u

c ×4 w)

s.t.
C∑

c=1

||uc||22 = 1; vT v = 1;wTw ≤ 1

(9)

where v ∈ RP , uc ∈ RNc and w ∈ RM . Using Lagrange
multipliers,

L(v, uc, w) =
C∑

c=1

1

Nc
Xc ×1 v ×2 v ×3 u

c ×4 w

− λ1(
C∑

c=1

(uc)T (uc)− 1)− λ2(vT v − 1)− λ3(wTw − 1)

(10)
Taking the partial derivative w.r.t. uc,

∂L

∂uc
=

1

Nc
((Xc ×1 v ×2 v)w)

T − 2λ1(uc)T = 0 (11)

⇒ uc =
(Xc ×1 v ×2 v)w

Nc2λ1
(12)

λ1

(
C∑

c=1

(uc)T (uc)− 1

)
= 0⇒

C∑
c=1

||uc||22 = 1

⇒
C∑

c=1

∣∣∣∣∣∣∣∣Xc ×1 v ×2 v

Nc2λ1

∣∣∣∣∣∣∣∣2
2

= 1

⇒ λ1 =
1

2

√√√√ C∑
c=1

∣∣∣∣∣∣∣∣ (Xc ×1 v ×2 v)w

Nc

∣∣∣∣∣∣∣∣2
2

(13)

Equations 12 and 13 give,

uc =
(Xc ×1 v ×2 v)w

Nc

√∑C
c=1

∣∣∣∣∣∣ (Xc×1v×2v)w
Nc

∣∣∣∣∣∣2
2

(14)

Taking the derivative of Equation 10 w.r.t. v,

∂L

∂v
= 2

C∑
c=1

1

Nc
vT (Xc ×3 u

c ×4 w)− 2λ2v
T = 0 (15)

⇒
C∑

c=1

1

Nc
(Xc ×3 u

c ×4 w)T v = λ2v (16)

we get an eigenvalue decomposition problem where (λ2, v)
is an eigenvalue-eigenvector pair. Maximum eigenvalue and
the corresponding eigenvector maximizes Equation 9 5. Let
Emax(.) denote the eigenvector corresponding to the maxi-
mum eigenvalue, then we get v as

v = Emax(
C∑

c=1

1

Nc
(Xc ×3 u

c ×4 w)T ) (17)

5Equation 9 can be rewritten as max
v,uc,w

∑C
c=1

1
Nc
vT (Xc×3 uc×4w)T v
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Finally, letting w =

[
1
α

]
w∗ = Θw∗, where α is the sparsity

ratio of the two connectome modalities, w∗ ∈ R2×1, and
taking the derivative of Equation 10 w.r.t. w∗,

∂L

∂w∗ =
C∑

c=1

1

Nc
(uc)T (Xc ×1 v ×2 v)Θ

−2λ3(w∗)T ΘT Θ = 0 (18)

w∗ =

∑C
c=1

1
Nc

ΘT (Xc ×1 v ×2 v)Tuc

2λ3ΘT Θ
(19)

and λ3 can be found as :

C∑
c=1

||Θw∗||22 =

∣∣∣∣∣
∣∣∣∣∣Θ
∑C

c=1
1
Nc

ΘT (Xc ×1 v ×2 v)Tuc

2λ3ΘT Θ

∣∣∣∣∣
∣∣∣∣∣
2

2

= 1

⇒ λ3 =
1

2

∣∣∣∣∣
∣∣∣∣∣Θ
∑C

c=1
1
Nc

ΘT (Xc ×1 v ×2 v)Tuc

ΘT Θ

∣∣∣∣∣
∣∣∣∣∣
2

(20)

Equations 19 and 20 give,

w∗ =

∑C
c=1

1
Nc

ΘT (Xc ×1 v ×2 v)Tuc∣∣∣∣∣∣Θ∑C
c=1

1
Nc

ΘT (Xc ×1 v ×2 v)Tuc
∣∣∣∣∣∣

2

(21)

from which we have w =

[
1
α

]
w∗
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