Modeling Texture in Deep 3D CNN for Survival Analysis | IEEE Journals & Magazine | IEEE Xplore

Modeling Texture in Deep 3D CNN for Survival Analysis


Abstract:

Radiomics has shown remarkable potential for predicting the survival outcome for various types of cancers such as pancreatic ductal adenocarcinoma (PDAC). However, to dat...Show More

Abstract:

Radiomics has shown remarkable potential for predicting the survival outcome for various types of cancers such as pancreatic ductal adenocarcinoma (PDAC). However, to date, there has been limited research using convolutional neural networks (CNN) with radiomic methods for this task, due to their requirement for large training sets. To overcome this issue, we propose a new type of radiomic descriptor modeling the distribution of learned features with a Gaussian mixture model (GMM). These parametric features (GMM-CNN) are computed from gross tumor volumes of PDAC patients defined semi-automatically in pre-operative computed tomography (CT) scans. We use the proposed GMM-CNN features as input to a robust classifier based on random forests (RF) to predict the survival outcome of patients with PDAC. Our experiments assess the advantage of GMM-CNN compared to employing the same 3D CNN model directly, standard radiomic (i.e., histogram, texture and shape), conditional entropy (CENT) based on 3DCNN, and clinical features (i.e., serum carbohydrate antigen 19-9 and chemotherapy neoadjuvant). Using the RF model (100 samples for training; 59 samples for validation), GMM-CNN features provided the highest area under the ROC curve (AUC) of 72.0% (p = 6.4×10-5) compared to 64.0% (p = 0.01) for the 3D CNN model output, 66.8% (p = 0.01) for standard radiomic features, 64.2% (p = 0.003) for CENT, and 57.6% (p = 0.3) for clinical variables. Our results suggest that the proposed GMM-CNN features used with a RF classifier can significantly improve the capacity to prognosticate PDAC patients prior to surgery via routinely-acquired imaging data.
Published in: IEEE Journal of Biomedical and Health Informatics ( Volume: 25, Issue: 7, July 2021)
Page(s): 2454 - 2462
Date of Publication: 22 September 2020

ISSN Information:

PubMed ID: 32960772

References

References is not available for this document.