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Classification of Severe and Critical Covid-19
Using Deep Learning and Radiomics
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and Jie Tian

Abstract—Objective: The coronavirus disease 2019
(COVID-19) is rapidly spreading inside China and interna-
tionally. We aimed to construct a model integrating infor-
mation from radiomics and deep learning (DL) features to
discriminate critical cases from severe cases of COVID-19
using computed tomography (CT) images. Methods: We
retrospectively enrolled 217 patients from three centers in
China, including 82 patients with severe disease and 135
with critical disease. Patients were randomly divided into a
training cohort (n = 174) and a test cohort (n = 43). We ex-
tracted 102 3-dimensional radiomic features from automat-
ically segmented lung volume and selected the significant
features. We also developed a 3-dimensional DL network
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based on center-cropped slices. Using multivariable logis-
tic regression, we then created a merged model based on
significant radiomic features and DL scores. We employed
the area under the receiver operating characteristic curve
(AUC) to evaluate the model’s performance. We then con-
ducted cross validation, stratified analysis, survival analy-
sis, and decision curve analysis to evaluate the robustness
of our method. Results: The merged model can distinguish
critical patients with AUCs of 0.909 (95% confidence inter-
val [CI]: 0.859-0.952) and 0.861 (95% CI: 0.753-0.968) in the
training and test cohorts, respectively. Stratified analysis
indicated that our model was not affected by sex, age, or
chronic disease. Moreover, the results of the merged model
showed a strong correlation with patient outcomes. Signifi-
cance: A model combining radiomic and DL features of the
lung could help distinguish critical cases from severe cases
of COVID-19.

Index Terms—COVID-19, radiomics, deep learning,
computed tomography (CT).
I. INTRODUCTION

N DECEMBER 2019, a novel coronavirus broke out and
I rapidly spread globally [1]. On 12 February, 2020, the World
Health Organization (WHO) announced the official name of
the pneumonia caused by this virus: coronavirus disease 2019
(COVID-19) [2]. COVID-19 manifests as acute respiratory
distress syndrome and is highly infectious [3]. On September
1, 2020, more than 84,000 patients in China, and more than
27 million globally had a confirmed case of COVID-19 [4].
Thus, healthcare systems have been severely burdened by this
emergent virus. Patients with COVID-19 are classified into mild,
moderate, severe, and critical ill subgroups according to disease
severity, which is estimated using chest imaging and clinical
performance [5]. Initially, the research [6] reported that among
72314 cases from Chinese, approximately 14% are severe pa-
tients and 5% are critical patients. However, the incidence of
comorbidities was significantly higher in the critical group than
in the severe group among 476 patients recruited from three
hospitals in Wuhan, Shanghai, and Anhui cities [7]. Importantly,
patients with a critical case of COVID-19 have a higher mortality
rate than severe and moderate COVID-19 patients among 710
COVID-19 cases in Wuhan city and 90 cases in Chongqing city
[8], [9]. Therefore, early diagnosis and improved treatment of
critical COVID-19 patients are key to reducing mortality.

Radiomics can improve the diagnostic and prognostic per-
formance of medical systems via high-throughput mining of
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quantitative features from medical images [10], [11]. Deep
learning (DL) has also been successfully applied in disease
screening and diagnosis [12], [13]. Several researchers have
suggested that radiomics and DL may be valuable in screening
COVID-19 [14], [15]. Computed tomography (CT) is a great
supplement to real-time reverse-transcription polymerase chain
reaction (RT-PCR) testing in the diagnosis and assessment of
COVID-19 severity. Some typical features found on chest CT
in severe COVID-19 cases are ground-glass opacities (GGOs),
consolidation, and bilateral patchy shadowing in the lung [16],
[17]. However, the CT characteristics are somewhat similar
between severe and critical cases [9]. Especially, most severe,
and critical patients showed involvement of multiple lung lobes
in the CT scans. Furthermore, patients from severe and critical
groups presented with similar higher MuLBSTA (multilobular
infiltrates, lymphocyte, bacterial coinfection, smoking, hyper-
tension, and age) scores than the moderate group [7]. In addition,
severe and critical patients are associated with the same clinical
symptoms, including fever, dry cough, shortness of breath, and
so on [17]. Therefore, it is crucial to extract high—throughput
information to identify disease severity. To our knowledge, no
studies have differentiated critical cases from severe cases based
on medical imaging.

In this study, we seek to combine different level information
between both machine learning and deep learning algorithms
to identify COVID-19 disease severity grade based on CT
images. This paper makes the following major contributions.
Firstly, we implemented an automatic segmentation algorithm to
segment the lung region for hand-crafted feature extraction and
deep learning model construction. Secondly, we determined the
optimal hand-crafted feature subset from 102 features for clas-
sifying severe and critical cases. We implemented a variety of
feature selection algorithms to filter significant features. Thirdly,
we constructed one 3D convolutional network which could
capture high-level semantic information and further identify
the disease severity. Finally, we utilized four machine learning
algorithms to combine hand-crafted and deep learning features
and obtained higher precision. Extensive experiments were
implemented and results demonstrated the superiority of our
proposed methods.

The remainder of this paper is organized as follows. In
Section II, we introduce the theory of methods. In Section III,
we present the results of the experiments. Finally, we conclude
in Section V.

Il. MATERIALS AND METHODS
A. Patients

Our institutional review board approved this retrospective
study, waiving the requirement for informed consent. A total of
217 patients diagnosed with severe or critical COVID-19 from
three centers were enrolled in the study (Renmin Hospital of
Wuhan University [number of patients [n] = 199 from a total
of 321 patients with COVID-19], Henan Provincial People’s
Hospital [n = 9 from a total of 64 patients], and First Affiliated
Hospital of Anhui Medical University [n = 9 from a total of 61
patients]). All patients were diagnosed between 6 January and

26 February, 2020, and all were confirmed to have COVID-19
via nucleic acid testing. The inclusion criteria were as follows:
(1) availability of transverse non-contrast enhanced chest CT
images, (2) severe or critical COVID-19, and (3) less than 1 week
between CT scan and COVID-19 diagnosis. The CT acquisition
protocols were detailed in Supplementary 1.

The diagnosis of severe and critical illness was based on
the Diagnosis and Treatment of Novel Coronavirus Pneumonia
of China [5]. Patients who met any of the following criteria
were diagnosed as critically ill: respiratory failure requiring
mechanical ventilation, shock, organ failure requiring intensive
care.

After the CT examination, 137 patients were followed up for
at least 12 days. The endpoints were poor outcomes, includ-
ing death, mechanical ventilation, or ICU admission before 26
March, 2020.

We randomly selected 80% of the patients as a training cohort
and the rest as a test cohort. Fig. 1 depicts the flowchart of
our study, which included automated CT image segmentation,
radiomic feature extraction, feature selection, DL network con-
struction, merged model construction, and model analysis.

B. Automated CT Image Segmentation

In the implementation phase, we developed an automated
segmentation algorithm to extract whole lung volume [18].
The preliminary lung region was first isolated by applying a
threshold of value for air in the human body (Hounsfield Units
= -300) to binary CT images. Next, given the initial seed nodes
[coordinates = (0,0,0)] in the preliminary non-body region, a
flood-fill algorithm detected nodes that were connected to the
initial seeds in three dimensions and generated the connected
domains of the body. Note that, flood fill algorithm determines
the area connected to a given node in a multi-dimensional
array. After that, we subtracted the binarized CT from the
body connectivity map to obtain the lung area. Then a closing
operation, the basic workhorse of morphological noise removal,
was applied to remove small holes. Finally, we selected slices
that contained connected domains of the lung. The automated
segmentation process is depicted in Fig. 2. All CT images were
then resized to 40 x 243 x 243. Next, we utilized lung volume
corresponding binary volume masks to extract radiomic features,
then center-cropped the lung volume to a size of 20 x 243 x 243
to focus on the central slice of lung volume [19]. The cropped
lung volume was then inputted into our 3D DL model.

C. Radiomic Feature Extraction and Selection

To reduce the impact of differences in equipment and scanning
parameters, we resampled CT images into 1 x 1 x 5 mm voxel
spacing using tri-linear interpolation [20]. We then extracted 102
radiomic features from the 3-dimensional (3D) lung volume,
comprising three types: (1) shape features (number of features
[m] = 14), which quantified the size and shape of the lung
volume, (2) first-order features (m = 18), which described the
distribution of voxel intensities within the lung volume, and (3)
texture features (m = 70), which quantified the relationships be-
tween neighboring voxels. Feature extraction was implemented
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using Python language (https://www.python.org) and based on
Pyradiomics [21].

Feature selection was conducted to select the optimal feature
subset [22]. Specifically, the Mann—Whitney U test was applied
to evaluate the correlation between features and severity grade
(severe or critical), as well as to screen out the significant features
(P < 0.05). Next, the minimum redundancy maximum relevancy
(mRMR) algorithm was used to rank features according to their
relevance to severity grade and their redundancy with other
features. The top-ranked 20 features remained. Finally, the most
representative features were selected using a backward stepwise
approach, according to the Akaike information criterion (AIC)
[23]. The details of key algorithms as follows:

1) Minimum-Redundancy Maximum-Relevancy (mRMR):

The purpose of mRMR algorithm is to find an optimal feature
set .5, with m features based on mutual information which is
defined as:

_ e g L&Y L
I )= [[ o tos 2 a1

where x, y are two given random variables, p(x), p(y), p(z,y)
are their probability density functions.

The algorithm contains two parts: “Maximum-Relevancy” to
find features that having a maximum dependency on prediction
label. “Minimum-Redundancy” to eliminate redundant features
and result in a more compact feature set without any sensible
performance degradation. Suppose we have selected m-1 fea-
tures from feature set X . The m*" feature will be selected from
{X — S;,-1} by maximization of the following criterion:

 max
rIeX—Sm-1

. 1 o
I(xj;c)—m Z I(xj;x) 2)
€S 1
where c is the prediction label, 2% and 27 are different features.

2) Backward Stepwise: We implemented backward step-
wise to select features according to the Akaike information
criterion. AIC is a standard to measure the goodness of model
fitting and tends to prefer a most fitted model with the simplest
parameters. Backward stepwise algorithm starts with all the
variables in the model, and at each step, a variable may be
removed according to AIC, finally the model with the minimal
AIC can be found. AIC was defined as follows:

AIC = 2k —In(L) 3

where £ is the number of model parameters and L is the likeli-
hood function.

In this way, we screened out the optimal feature set for further
analysis. Meanwhile, we compared differences in the distribu-
tion of discriminative features between severe and critical cases
using a violin plot.

D. Deep-Learning Network Construction

Considering the relatively small amount of data and the huge
amount of 3D convolution model parameters, in order to prevent
overfitting and facilitate training, we built a DL network based
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Fig. 3.

on 3D-Resnet-10 [24], [25]. The detailed structure is shown
in Fig. 3. The center-cropped lung volume was fed into this
network, which was stacked witha 7 x 7 x 7 convolution layer, a
max-pooling layer, and four residual blocks. Convolution layers
utilize various kernels to convolve feature maps to capture the
high-level semantic information. Pooling layers were used to
reduce the dimensions of feature maps. Each residual block
contained two 3 X 3 x 3 convolution layers and a shortcut
connection. The residual blocks make the network easy to opti-
mize. Importantly, all the convolution layers were followed by a
batch normalization layer which enables faster and more stable
training of the network. After a global average pooling layer,
we obtained a 512-length, 1-dimensional vector that reflected
the phenotype of lung volume. Finally, the vector was fed into
the fully connected layer and the non-linear activation layer to
predict illness severity.

We implemented the DL network using Pytorch (version =
1.1.0) framework and Python 3.6 (https://www.python.org/).
We randomly selected one-fifth of training cohort samples as
a validation set for hyperparameter optimization. Afterward,
the learning rate and weight decay were set to le-5 and 1,
respectively. For alleviating the issue of the class balance, we
adopted a weighted random sampler method in each batch.
All the parameters were initialized randomly and trained from
scratch. The Adam optimizer, together with binary cross-entropy
loss, was applied to update the parameters of 3D-Resnet-10. We
trained the network on the training cohort for 60 epochs. All
the operations of the deep learning model were implemented on
a workstation equipped with 64 Intel (R) Xeon (R) Gold 6130
CPU @ 2.10GHz and one GPU of Titan RTX Graphics Card
with 12GB of memory.

E. Merged Model Construction and Analysis

Four machine learning classifiers, including logistic regres-
sion, support vector machine (SVM), decision tree, and random
forest, were constructed based on the optimal radiomic features
subset and the results obtained from the DL network for compar-
ison. Note that, all the variables were normalized with z-score
normalization in the training and test cohorts using the corre-
sponding mean and standard deviation. All the hyper-parameters
are tuned using 10-fold cross-validation and the GridSearchCV
function in the Scikit-learn library on the training cohort. The
discrimination performance of the classifier was evaluated by
100 iterations 10-fold cross-validation on the entire dataset.
Meanwhile, we calculated the relative standard deviation (RSD)
to quantify the stability of different classifiers. RSD is defined
as follows:
gAUC
ravc
where 0 47 and Aoy were the standard deviation and mean of
the AUC values respectively. It should be mentioned that higher
stability of classifiers corresponds to lower RSD.

All the classifiers were constructed based on open-sourced
scikit learn package using python language. Furthermore, the
best-performing classifier logistic regression was termed as the
merged model which combines the information of radiomics
and DL. Note that, we removed insignificant features during the
process of model construction. Thus, we got the final merged
model that could predict the illness severity of patients. For
further comparison, we constructed four machine learning clas-
sifiers solely based on the optimal radiomic feature subset, and
the best-performing classifier logistic regression was termed the
Rad model. In addition, the 3D DL network was termed the
DL model, with the results called the DL-score. For logistic
regression, based on linear regression, the formula is as follows:

1
h’B (.’17) - 1+ e~ (Bo+22 Biwi) ©)

RSD = x 100% “)

where h is the results of logistic regression representing the
probability, 3; is the coefficient corresponding to feature x;,
¢ = 1--- N is the number of features, and [ is the intercept
of linear regression.

The area under the receiver operating characteristic (ROC)
curve (AUC), the area under the precision-recall curve (PR-
AUC), accuracy, sensitivity, and specificity were calculated to
quantify the prediction performance of our model. Accuracy,
sensitivity, and specificity were calculated in terms of the thresh-
old determined by maximizing Youden index of the training
cohort. Accuracy, sensitivity, specificity, and Youden index were
defined as follows:

TP+TN

A = 6

curay = TP I FPYTN + FN ©®)
TP

S itivity = ————— 7

ensitivity TP+ PP @)
. TN

SpeC'LfZCZty = m (8)

Youden index = Sensitiity + Specificity —1 (9)
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TABLE |
CLINICAL CHARACTERISTICS OF PATIENTS
Training cohort (174) Test cohort (43)
Severe (108) Critical (66) P-Value Severe (27) Critical (16) P-Value
Age 56.56+14.70 68.85+14.80 <0.001* 51.81+14.23 64.88+17.21 0.024*
Sex 0.906 0.663
Male 53 (49%) 33 (50%) 17 (63%) 9 (56%)
Female 55 (51%) 33 (50%) 10 (37%) 7 (44%)
Chronic disease 0.003* 0.228
With chronic disease 29 (27%) 32 (48%) 7 (26%) 7 (44%)
Without chronic disease 79 (73%) 34 (52%) 20 (74%) 9 (56%)
0.519 0.522
GE CT scanner 101 (94%) 64 (97%) 25 (93%) 16 (100%)
Other CT scanner 7 (6%) 2 (3%) 2 (7%) 0 (0%)
Slice Thickness 0.086 0.283
> 1 mm 10 (9%) 1 (2%) 4 (15%) 0 (0%)
<1 mm 98 (91%) 65 (98%) 13 (85%) 16 (100%)

Note: Categorical data are shown as numbers (%) and continuous data as mean + SD; the Mann—Whitney U test and chi-square test were used to identify

significant differences. SD, standard deviation.

where TP is the number of true positive samples, TN is the true
negative samples, FP is the false positive samples and FN is the
false negative samples.

To evaluate the robustness of our model, we performed a
stratified analysis that took into account age, sex, and chronic
disease. Meanwhile, the predictive abilities of different ROCs
were compared using the Delong test. A violin plot was used to
compare the distribution of severe and critical cases according
to the predictions of the model. The net reclassification index
(NRI) was used to compare performance between the Rad
model, DL model, and merged model, as well as to quantify the
improvement in predictive performance [26]. Decision curve
analysis (DCA) was performed to estimate the clinical utility
of our model. Finally, we investigated the prognostic value of
the merged model in patients who had follow-up information.
It should be mentioned that the optimal cutoff point was deter-
mined by X-tile software (version 3.6.1; Yale University School
of Medicine, New Haven, CT, USA) [27].

F. Cross Validation

In order to evaluate the robustness of the proposed method, we
performed 5-fold cross-validation on the entire dataset. Specifi-
cally, the whole dataset was randomly split into five-folds, with
four folds used for model training, while the remaining one for
testing. The above training-testing procedures were repeated five
times with a mean AUC computed accordingly.

G. Statistical Analysis

The Mann—Whitney U test and chi-squared test were used
to assess the correlations between clinical factors and illness
severity. Two-sided P-values < 0.05 indicated statistical sig-
nificance. The 95% confidence interval [CI] was estimated by
1000-time bootstrap in the training and test cohorts. Statisti-
cal analysis was conducted using R software (version 3.3.4;
http://www.Rproject.org).

Ill. RESULTS
A. Patient Characteristics

Patients were divided into a training cohort (86 males, 88
females; average age, 61.22 £ 15.86 years) and a test cohort
(26 males, 17 females; average age, 56.67 £+ 16.49 years).
Table I describes the clinical characteristics of the training
and test cohorts. The univariate analysis showed that age and
chronic disease had significant correlations with illness severity
(P < 0.05), indicating that old patients with chronic disease
(such as diabetes, hypertension, and other diseases) tend to be
diagnosed with a critical illness. In contrast, we found that sex,
manufacturer, and slice sickness were not associated with illness
severity.

B. Selection and Validation of Radiomic Features

During feature extraction, 66 significant features were
screened out after the Mann—Whitney U test. The top 20 features
were then selected according to the mRMR algorithm. Finally,
six features were selected after backward stepwise selection.
The physical details of the features are shown in Supplemen-
tary 2. The detailed performance of four machine learning
classifiers is shown in Supplementary 3. Results showed that
the performance of models based on handcrafted features is
inferior to those of models based on both deep learning and
handcrafted features. The formula Y 8;x; + o of the Rad
model was as follows: 5.819 x firstorder_RootMeanSquared +
1.932 x glecm_ClusterShade - 1.888 x firstorder_10Percentile -
4.607 x glem_DifferenceVariance - 3.418 x glem_Correlation
- 1.404 x gldm_SmallDependenceHighGrayLevelEmphasis -
0.657. More details are shown in Table II. The Rad model
exhibited good performance for discriminating critical illness
in the training cohort (AUC: 0.824, [CI]: 0.742-0.892) and
test cohort (AUC: 0.838, 95% CI: 0.688-0.958). Fig. 4 shows
the ROC curves of the Rad model in the training and test
cohorts.
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TABLE Il
Risk FACTORS OF THE RAD AND MERGED MODEL

Rad model Merged model
Variable
§ Adjusted OR (95% CI) P-value B Adjusted OR (95% CI) P-value
Intercept -0.657 <0.001* -0.778 <0.001*
firstorder 10Percentile -1.888 0.151 (0.057-0.354) <0.001* -1.491 0.459 (0.284-0.715) <0.001*
firstorder RootMeanSquared 5.819 3.4e+2 (48.948-3.2¢+3) <0.001* \
glem_ClusterShade 1.932 6.901 (2.538-22.726) <0.001* \
glem_DifferenceVariance -4.607 0.010 (0.001-0.066) <0.001* -1.009 0.364 (0.155-0.806) 0.015%
glem_Correlation -3.418 0.033 (0.006-0.137) <0.001* -0.946 0.388 (0.198-0.715) 0.003*
gldm_SmallDependenceHighGra 40, 0.246 (0.079-0.554) 0.004* -1.198 0.302 (0.117-0.623) 0.005*
yLevelEmphasis
DL-score 3.684 39.810 (14.597 —134.978) <0.001*

Note: *denotes P-values < 0.05. Abbreviations: OR, odds ratio; CI, confidence interval; DL, deep learning.

A Receiver operating characteristic curves (Training cohort)
1.

0.8
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Z
2
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0.0 —— DL model (AUC = 0.812; 0.738-0.871)
0.0 0.2 0.4 0.6 0.8 1.0
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~—— Rad model (AUC = 0.838; 0.706-0.960)
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0.0 0.2 0.4 0.6 0.8 1.0
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Fig. 4. Receiver operating characteristic curves of the merged model,
Rad model, and DL model in the training (A) and test (B) cohorts. AUC,
area under the receiver operating characteristic curve.

C. Deep Learning Model and Merged Model
Construction

We trained a 3D-Resnet-10 network based on lung volume
to generate the DL model. The whole training process takes
roughly one hour and the inference for each CT data takes
about one second. ROC curves of the DL model are shown in

TABLE IlI
PERFORMANCE AND HYPER-PARAMETERS OF FOUR CLASSIFIERS BASED
ON HANDCRAFTED FEATURES AND DL SCORE

Classifiers Hyper-parameters RSD  Training AUC Test AUC
(%) (mean = SD) (mean = SD)
Logistics C =1000
Regression Penalty = ‘L1’ 8.092  0.854£0.010  0.848+0.097
C=0.125
SVM Gamma = "10.0 8.203  0.806£0.010  0.804*0.093
Kernel = ‘rbf’
Decision Cn'terion = ‘gini’
Min samples leaf=19  9.541  0.900+0.011  0.805+0.092
Tree . .
Min samples split = 2
Criterion = ‘gini’
Random M‘in samples leaf =5
Forest Min samples split =2 1020  0.981%£0.004  0.839+0.085

Max features = ‘auto’

N estimators = 10
Note. Abbreviations: SVM, support vector machine; RSD, relative standard
deviation; AUC, area under curve; SD, standard deviation.

Fig. 4, demonstrating that DL can distinguish critical cases from
severe cases. The yield AUCs of the DL model were 0.812 (CI:
0.743-0.874) and 0.787 (CI: 0.627-0.929) in the training and
test cohorts, respectively.

To combine the information from the radiomic features (Rad
model) with that from the high-level features (DL model), we
constructed four machine learning classifiers based on the opti-
mal radiomic features set and the DL score. Hyper-parameters
of classifiers and average performance of 100 times 10-fold
cross-validation are depicted in Table III. According to the
table, SVM has the lowest performance among the four clas-
sifiers. Although the decision tree and random forest show
higher performance on the training cohort, the performance
on the test cohort is low, which indicates that classifiers are
overfitting to a certain extent. Interestingly, logistic regression
shows good performance on both the training and test cohort
and has the lowest RSD which demonstrates the stability of
this classifier. Afterward, we utilized logistic regression to
construct our merged model. We also removed the insignifi-
cant features in this process. Finally, we obtained the merged
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TABLE IV

PERFORMANCE EVALUATION OF MODELS

Index Training Cohort Test Cohort
(95% CI) Rad model DL model Merged model Rad model DL model Merged model
Thre 0.458 0.426 0.346 0.458 0.426 0.346
Acc 0.799 (0.733-0.855) 0.764 (0.709-0.824) 0.874 (0.809-0.909) 0.744 (0.670-0.825) 0.767 (0.685-0.850) 0.814 (0.710-0.875)
Sen 0.712 (0.606-0.823)  0.742 (0.661-0.848)  0.879 (0.787-0.952)  0.750 (0.653-0.882) 0.750 (0.650-0.870) 0.875 (0.750-1.000)
Spe 0.852 (0.773-0.917) 0.778 (0.704-0.854) 0.870 (0.791-0.922) 0.741 (0.639-0.852) 0.778 (0.687-0.880) 0.778 (0.655-0.852)
PR-AUC 0.761 (0.647-0.849) 0.738 (0.650-0.841) 0.854 (0.750-0.932) 0.718 (0.615-0.807) 0.694 (0.560-0.848) 0.798 (0.675-0.907)
AUC 0.824 (0.753-0.898)  0.812 (0.738-0.871)  0.909 (0.860-0.954)  0.838 (0.706-0.960) 0.787 (0.637-0.922) 0.861 (0.733-0.963)

Note. Abbreviations: Thre, threshold; Acc, accuracy; Sen, sensitivity; Spe, specificity; PR-AUC, area under the precision recall curve; AUC, area under curve; CI,

confidence interval, generated by 1000-time bootstrap.

Violin plot comparing the distribution of the models

1.0
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=
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A e\ el
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Fig. 5. Violin plot comparing the distribution of the models’ prediction

of severe and critical COVID-19 cases. This plot also includes an error
bar. The distributions of the features were compared using the Mann—
Whitney U test.

model and the corresponding > 8;x; + (o formula was as fol-
lows: 3.684 x DL-score — 0.946 x glcm_Correlation — 1.198
x gldm_SmallDependenceHighGrayLevelEmphasis — 1.491 x
firstorder_10Percentile — 1.009 x glem_DifferenceVariance —
3.684.More details are shown in Table II. The merged model
showed encouraging performance in the training cohort (AUC:
0.909, 95% CI: 0.859-0.952) and test cohort (AUC: 0.861, 95%
CI: 0.753-0.968). More detailed performance parameters are
listed in Table IV. The corresponding ROC curves are shown
in blue lines in Fig. 4. In the test cohort, the merged model had
significant better performance than the Rad model (Delong test:
P =0.009; NRI: 0.156, P = 0.008) and DL model (Delong test:
P < 0.001; NRI: 0.184, P = 0.002). Additionally, the violin plot
revealed significant differences in the distribution of the models’
prediction between severe and critical cases, as shown in Fig. 5.

D. Cross Validation

In the 5-fold cross-validation experiments, the mean AUC of
the merged model was found to be 0.855 (range: 0.827-0.917)
and RSD = 3.81 in the test cohort, indicating satisfactory method
robustness. Meanwhile, the Rad model and DL model also show
stable performance. The performance of the merged model is

0.95 4
Category
Training

Test I |

0.90 H
0.854

I3) 0.80 4

AU

0.75

0.70

0.65

0.60 - T 1
DL model Merged model

Model

I
Rad model

Fig. 6. Performance of the developed models in the training and test
cohorts using five-fold cross-validation. For each iteration, 80% of pa-
tients were used as the training cohort and the remaining patients as
the test cohort.

significantly better than the other models (P < 0.05). A bar plot
of the cross-validation result is shown in Fig. 6 and detailed
performance of each fold is shown in Supplementary 4.

E. Stratified Analysis

As shown in Fig. 7, we performed three stratified analyses
on all patients: age, sex, and chronic diseases. In terms of age
stratification, we set the cutoff as the median age of all patients
(61 years). Chronic diseases included diabetes, hypertension,
and chronic pulmonary disease. The results showed that the
merged model worked well, regardless of the situation, and that it
was not affected by age (P = 0.95 by Delong test), sex (P = 0.63
by Delong test), or chronic diseases (P = 0.13 by Delong test). In
addition, the accuracy of our merged model in the subgroup with
slice thicknesses greater than Imm is 0.933 and in the subgroup
with slice thickness less than 1 mm is 0.856.

F. Decision Curve Analysis

To evaluate the clinical utility of the merged model, we
conducted a decision curve analysis. As shown in Fig. 8, if the
threshold probability of the clinical decision was between 7%
and 85%, then using the merged model to predict the severity of
patients adds more benefit than treating either all or no patients
as critical cases.
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Fig. 8. Decision curve analysis of the merged model. The red, blue,
and black lines represent the merged model, the hypothesis that all
patients diagnosed as critical cases, and the hypothesis that all patients
diagnosed as severe cases, respectively. The y-axis represents the net
benefit. The x-axis represents the threshold probability. The threshold
probability is where the expected benefit of further treatment is equal to
the expected benefit of avoiding further treatment. For example, if the
possibility that patient is critical case over the threshold probability, then
further treatment for a critical cases should be adopted.

G. Follow-Up Analysis

Furthermore, we successfully followed up with 137 patients.
The Kaplan—Meier survival curve based on merged model is
depicted in Fig. 9, stratified by severity grade, and compared
using two-sided log-rank tests. In addition, the Kaplan—Meier
survival curves of Rad and DL models are shown in Supplemen-
tary 5. Results show that merged model has better stratification
performance than Rad and DL models. Notably, we found that
the outcome of the merged model was significantly different
between the severe and critical illness severities (P < 0.001).

IV. DISCUSSION

In the present study, based on a multi-center dataset, we
constructed a merged model that integrates radiomic and DL
features to distinguish critical from severe COVID-19 cases.

1 - Specificity

1 - Specificity

Stratified analysis of merged model based on (A) age, (B) sex, and (C) chronic disease. AUC, area under the receiver operating

e
[10]
@
©
=
2 ©
a ©
ks
z
el
g 3
<4
o
o~
[}
— Severe illness
o — Critical illness
o | Logrank P =22E417
I I | | I | |
0 10 20 30 40 50 60
Time (days)
No. At Risk
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Critically illness 67 32 22 13 5 1 0

Fig.9. Kaplan—Meier curves of severe and critical cases, based on the
predictions of the merged model.

The study found that both DL score and handcrafted features
can be independent predictors of a severity grade. The merged
model showed encouraging discriminative ability to screen out
critical cases, as well as a strong correlation with the prognosis
of patients. Furthermore, the stratified analysis demonstrated the
robustness of our model, indicating that our study findings may
play an important role in the detection of critical COVID-19
cases.

COVID-19 causes critical illness, and poor outcomes have
drawn social attention. Several studies have focused on the
clinical characteristics and imaging features of critical cases.
For example, Li et al. [9] pointed out that severe and critical
cases have similar features on CT images, namely consolida-
tion, linear opacities, bronchial wall thickening, lymph node
enlargement, pericardial effusion, and pleural effusion that are
more pronounced than in moderate cases. Based on CT imaging
and clinical features, those authors constructed a model to screen
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out severe and critical patients from mild and moderate patients;
the model showed good performance. Patients with critical
COVID-19 have a high mortality rate, which should be studied
more in future investigations [8], [28]. However, it is difficult
for radiologists to distinguish critical cases from severe cases
based on chest CT alone. In the present study, the proposed
merged model could discriminate critical cases from severe
cases. As such, the model could be used to provide supplemental
information for medical staff during treatment. In addition, the
results of the merged model show a strong correlation with the
outcome, as the critical cohort showed a high probability of a
poor outcome.

The present study utilized an automated algorithm to segment
the whole lung volume and extract radiomic features. We set
a CT Hounsfield Unit value of -300 as a threshold for lung
volume segmentation. Therefore, the 3D region of interest (ROI)
could represent the whole information of the lung volume and
may have been less influenced by manual delineation. As such,
the robustness and repeatability of the model may have been
improved than models based on manual delineation. In addition,
the DL model was built on slices that contained the ROI and
center cropped in three dimensions before being fed into the
DL network. In this way, most other organs and tissues were
blocked, irrelevant noise information was eliminated from the
picture, and the convergence of the network was accelerated.

Radiomic features can be wused to quantify the
lung volume. After feature selection, six significant
features were obtained. Among the selected features,

firstorder_RootMeanSquared, firstorder_10Percentile, and
glecm_ClusterShade depicted the distribution of the voxel
intensity, while glem_Correlation, glcm_DifferenceVariance,
and gldm_SmallDependenceHighGrayLevelEmphasis depicted
the correlation between neighboring voxels. For instance,
firstorder_10Percentile indicated the 10" percentile of intensity
in the 3D-ROI. To our knowledge, the area of the CT lesion in-
creases with disease severity. Therefore, firstorder_10Percentile
was intrinsically related to the severity of illness. Furthermore,
these features might contain texture information about lung
volume, allowing the Rad model to distinguish critical cases.

DL model was conducted to extract the high-level of the lung
areas for making the final decision. In order to demonstrate the
good interpretability of our DL model, we exploited Gradient
Weighted Activation Mapping (Grad-CAM) to visualize the
region which plays an important role during the inference [29].
Fig. 10 shows one slice of the CT images from the test cohort,
and with the Grad-CAM overlaid on it. It reveals our DL model is
able to detect the suspected lesions and make the corresponding
diagnosis.

Several studies have demonstrated complementarity between
handcraft features and DL features [30]-[33]. In the present
study, we integrated the information from radiomic and DL
features using multivariable logistic regression. Consequently,
the merged model utilized low-level and high-level information
to achieve better performance in both the training and test
cohorts. Results of the 5-fold cross-validation experiment on
the entire dataset also demonstrate the feasibility of the proposed
method.

Fig. 10.  Visualization map of one slice of the CT images from the test
cohort and corresponding Grad-CAM.

The stratified analysis demonstrated the robustness of the
merged model. We performed three stratified analyses, taking
into account sex, age, and chronic diseases. The results showed
that our model was not affected by these factors. Interestingly,
we found that our merged model has better performance on
the CT images with a slice thickness greater than lmm. Maybe
because our dataset is relatively small, and the influence of slice
thickness on our merged model needs further research. Some
studies have pointed out that older age and chronic diseases
such as hypertension and diabetes should be considered as risk
factors for poor prognosis of COVID-19 [34], [35]. Notably, age
and chronic disease differed significantly between the severe and
critical cases in our training cohort. However, the performance
of the merged model showed no significant difference between
the younger group (AUC = 0.884) and the elderly group (AUC
= 0.887) or between patients with chronic diseases (AUC =
0.896) and those without chronic diseases (AUC = 0.896).
Interestingly, the results of the merged model showed a strong
correlation with poor COVID-19 outcome.

The clinical application of our merged model contains the
following steps. 1) Exclude the mild and moderate COVID-19
patients based on clinical manifestations. 2) Collect CT images.
3) Segment lung area using an automatic segmentation algo-
rithm. 4) Extract significant hand-crafted features and calculate
DL-score by utilizing the trained 3D-ResNet-10 network. 5)
Merge hand-crafted features and DL-score. Finally, we obtained
the possibility that the patient is a critical case. All the steps
take about half a minute for one patient. In our study, patients
with outcome of merged model greater than 0.346 were termed
as potential critical cases. Consequently, additional treatment
such as respiratory support, convalescent plasma treatment, im-
munotherapy and so on could be adopted to reduce the mortality.

The present study had several limitations. Firstly, the sample
size of the dataset was relatively small. A larger, multi-centered
dataset is necessary for further studies. Secondly, more com-
plete clinical information needs to be collected; clinical char-
acteristics also have predictive ability, which could be used to
further improve the performance of the merged model. Finally,
the 3D-Resnet-10 network that we used was not pretrained.
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Pretraining the model on a large public dataset might improve
the performance of our model.

V. CONCLUSION

In conclusion, we constructed a merged model integrating the
information of radiomic features and DL features. The model
could distinguish critical cases of COVID-19 from severe cases.
The results of the model showed a strong correlation with patient
outcomes. The key of our proposed method is to combine two
types of features to get a better model, so it is also suitable for
other different classification tasks.
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