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Abstract—Coronavirus disease 2019 (COVID-19) is an on-
going global pandemic that has spread rapidly since De-
cember 2019. Real-time reverse transcription polymerase
chain reaction (rRT-PCR) and chest computed tomography
(CT) imaging both play an important role in COVID-19 diag-
nosis. Chest CT imaging offers the benefits of quick report-
ing, a low cost, and high sensitivity for the detection of pul-
monary infection. Recently, deep-learning-based computer
vision methods have demonstrated great promise for use in
medical imaging applications, including X-rays, magnetic
resonance imaging, and CT imaging. However, training a
deep-learning model requires large volumes of data, and
medical staff faces a high risk when collecting COVID-19 CT
data due to the high infectivity of the disease. Another issue
is the lack of experts available for data labeling. In order to
meet the data requirements for COVID-19 CT imaging, we
propose a CT image synthesis approach based on a con-
ditional generative adversarial network that can effectively
generate high-quality and realistic COVID-19 CT images for
use in deep-learning-based medical imaging tasks. Experi-
mental results show that the proposed method outperforms
other state-of-the-art image synthesis methods with the
generated COVID-19 CT images and indicates promising for
various machine learning applications including semantic
segmentation and classification.

Index Terms—COVID-19, computed topography, image
synthesis, conditional generative adversarial network.

I. INTRODUCTION

CORONAVIRUS disease 2019 (COVID-19) [1], which was
first identified in Wuhan, China, in December 2019, was

declared a pandemic in March 2020 by the World Health Or-
ganization (WHO). As of 21 July, there had been more than
14 million confirmed cases and 609,198 deaths across 188
countries and territories [2]. COVID-19 is the result of severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and
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its most common symptoms include fever, dry cough, a loss
of appetite, and fatigue, with common complications including
pneumonia, liver injury, and septic shock [3], [4].

There are two main diagnostic approaches for COVID-19:
rRT-PCR and chest computed tomography (CT) imaging [4]. In
rRT-PCR, an RNA template is first converted by reverse tran-
scriptase into complementary DNA (cDNA), which is then used
as a template for exponential amplification using polymerase
chain reaction (PCR). However, the sensitivity of rRT-PCR is
relative low for COVID-19 testing [5], [6]. As an alternative,
chest CT scans can be used to take tomographic images from
the chest area at different angles with post-computed X-ray mea-
surements. This approach has a higher sensitivity to COVID-19
and is less resource-intensive than traditional rRT-PCR [5], [6].

Over time, artificial intelligence (AI) has come to play an
important role in medical imaging tasks, including CT imaging
[7], [8], magnetic resonance imaging (MRI) [9] and X-ray imag-
ing [10]. Deep learning is a particularly powerful AI approach
that has been successfully employed in a wide range of medical
imaging tasks due to the massive volumes of data that are now
available. These large datasets allow deep-learning networks
to be well-trained, extending their generalizability for use in
various applications. However, the collection of COVID-19
data for use in deep-learning models is far more difficult than
normal data collection. Because COVID-19 is highly contagious
[4], medical staff require full-length protection for CT scans,
and the CT scanner and other equipment need to be carefully
disinfected after an operation. In addition, certain tasks, such
as CT image segmentation, require well-labeled data, which is
labor-intensive. These problems mean that the COVID-19 CT
data collection process can be difficult and time-consuming.

In order to speed up the COVID-19 CT data collection process
for deep-learning-based CT imaging and to protect medical
personnel from possible infection when coming into contact
with COVID-19 patients, we propose a novel cGAN structure
which contains a global-local generator and a multi-resolution
discriminator. Both the above generator and discriminator are
dual network design so that they can learn global and local
information of CT images individually. Also, the dual structure
has a communication mechanism for information exchange so
that it helps to generate a realistic CT image with both stable
global structure and diverse local details. The main contributions
of the proposed method are as follows:

1) We presented a dual generator structure (global-local
generator). This dual global-local generator contains two
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individual generators that address and reflect different-
level of information from CT data.

2) We proposed a dual discriminator (multi-resolution dis-
criminator) that contains two sub-discriminators. These
two discriminators learn to distinguish input from real or
fake. They are specially designed for learning from full-
resolution CT data and half-resolution ones, respectively.

3) A dynamic communication mechanism is proposed for
both generator and discriminator. In the case of the gen-
erator, a dynamic element-wise sum process (DESUM)
helps generators balance the information of the lung area
and small lesion area by dynamically weighting two terms
during the element-wise sum process. It also prevents the
generator from overweighting details like a traditional
cGAN model does for wild scene dataset. For the dis-
criminator, a dynamic feature matching process (DFM)
is proposed for dynamically weighting the loss terms
from two inputs with different resolutions. In particular,
it allows the half-resolution discriminator to receive more
information with lung structure or large lesion area. It also
offers more features of small lesion area to full-resolution
discriminator. This dual multi-resolution discriminator
helps to stabilize the training process and improves the
image quality of the synthetic data.

4) The proposed method outperforms other state-of-the-art
image synthesizers in several image-quality metrics and
demonstrates its potential for use in image synthesis for
computer vision tasks such as semantic segmentation for
COVID-19 chest CT imaging.

5) A safe COVID-19 chest CT data collection method based
on image synthesis is presented. The potential applica-
tions of proposed method are summarized as follows:
(a) COVID-19 CT synthesis method can be applied to
the data augmentation task for the deep learning based
COVID-19 diagnosis approaches; (b) COVID-19 CT syn-
thesis method can also be utilized to train the intern radi-
ologists who may need abundant snapshots of COVID-19
CT scans for training purposes; (c) The proposed COVID-
19 CT synthesis method can be easily transferred from CT
imaging domain to another medical imaging area (e.g.
X-ray, MRI).

II. RELATED WORKS

Generative Adversarial Networks: Generative adversarial
networks (GANs) were first reported in 2014 [11], and they
have since been widely applied to many practical applications,
including image synthesis [12]–[15], image enhancement [16],
[17], human pose estimation [18], [19], and video generation
[20], [21]. A GAN structure generally consists of a generator
and a discriminator, where the goal of the generator is to fool
the discriminator by generating a synthetic sample that cannot
be distinguished from real samples. A common GAN extension
is the conditional generative adversarial network (cGAN) [22],
which generates images that are conditional on class labels.
cGAN always produces more realistic results than traditional
GANs due to the extra information from these conditional labels.

Conditional Image-to-Image Translation: Conditional image-
to-image translation methods can be divided into three categories
based on the input conditions. Class-conditional methods take
class-wise labels as input to synthesize images [22]–[25] while,
more recently, text-conditional methods have been introduced
[26], [27]. cGAN-based methods [12]–[15], [26]–[32] have been
widely used for various image-to-image translation methods,
including unsupervised [30], high-quality [13], multi-modal
[14], [15], [28], and semantic layout conditional image-to-image
translation [12]–[15]. In semantic layout conditional methods,
realistic images are synthesized under the navigation of the
semantic layout, meaning that it is easier to control a particular
region of the image.

AI-based Diagnosis using COVID-19 CT Imaging: Since
the outbreak of COVID-19, many researchers have turned to
CT imaging technology in order to diagnose and investigate
this disease. COVID-19 diagnosis methods based on chest CT
imaging have been introduced in order to improve test efficiency
[33]–[36]. Rather than using CT imaging for rapid COVID-19
diagnosis, semantic segmentation approaches have been em-
ployed to clearly label the focus position in order to make it
easier for medical personnel to identify infected regions in a CT
image [37]–[41]. As an alternative to working at the pixel-level,
high-level classification or detection approaches have been pro-
posed [42]–[44], which can allow medical imaging experts to
rapidly locate areas of infection, thus speeding up the diagnosis
process. Though two CT image synthesis methods have been
previously reported [45], [46], they did not focus on COVID-19
or lung CT imaging. cGAN was introduced to COVID-19 CT
image synthesis task firstly by [47], which transforms a normal
3D CT slice to an abnormally synthetic slice under the condition
of 3D noise.

III. COVID-19 CT IMAGE SYNTHESIS WITH A CONDITIONAL

GENERATIVE ADVERSARIAL NETWORK

In this paper, we propose a cGAN-based COVID-19 CT
image synthesis method. Here, COVID-19 CT image synthesis
is formulated as a semantic-layout-conditional image-to-image
translation task. The structure consisting of two main compo-
nents: a global-local generator and a multi-resolution discrim-
inator. During the training stage, the semantic segmentation
map of a corresponding CT image is passed to the global-local
generator, where the label information from the segmentation
map is extracted via down-sampling and re-rendered to gen-
erate a synthesized image via up-sampling. The segmentation
map is then concatenated with the corresponding CT image or
synthesized CT image to form the input for the multi-resolution
discriminator, which is used to distinguish the input as either
real or synthesized. The decisions from the discriminator are
used to calculate the loss and update the parameters for both the
generator and discriminator. During the testing stage, only the
generator is involved. A data augmented segmentation map is
used as input for the generator, from which a realistic synthesized
image can be obtained after extraction and re-rendering. This
synthesized lung CT image is then combined with the non-lung
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Fig. 1. Example CT images from three COVID-19 patients. The first
column shows CT images of the entire chest, the second column con-
tains CT images of the lungs only, and the third column shows the
corresponding segmentation map, with the lung region colored red,
ground-glass opacity colored blue, and areas of consolidation colored
green.

area to form a completely synthesized CT image as the final
result. Fig. 2 presents an overview of the proposed method.

A. Global-Local Generator

The global-local generator G is a dual network which has two
sub-components: global-information generator G1 and local-
detail generator G2. These generators work together by moving
in a coarse-to-fine direction. G1 takes charge of learning and
re-rendering global information, which always contains high-
level knowledge (e.g., semantic segmentation labels and image
structure information). G2 is then used for detail enhancement
(e.g., image texture and fine structures).

We train the global-local generator using a three-step process:
1) Individual Training for the Global Information Generator:

The training process for G starts with the training of the global
information generator G1. As shown in Fig. 3, G1 takes a
half-resolution (256× 256) segmentation map as input, which
is then sent for down-sampling to reduce the feature dimensions
to 32× 32. Nine residual blocks that maintain the dimensions
at 32× 32 are used to reduce the computational complex-
ity and generate a large reception field. Finally, the features
are up-sampled and reconstructed back into a half-resolution
(256× 256) synthesized image.

2) Individual Training for the Local Details Generator: The
structure of the local detail generator G2, which is similar to the
structure of G1, is shown in Fig. 4. Rather than taking a low-
resolution segmentation map as input, the local detail generator

begins the synthesis process with a full-resolution segmentation
map (512× 512) and maintains this size throughout. That allows
the local detail generator to fully learn the fine texture and
structure and focus on low-level information within the input
image. G2 has a similar encoding-decoding training procedure
as G1, though the output synthesized image is 512× 512.

3) Joint Training for the Global-Local Generator: After train-
ing G1 and G2 separately, a joint training process is conducted.
This is shown in the global-local generator region of Fig. 2. In the
joint training stage, both G1 andG2 take the same input but with
different resolutions (half- and full-resolution, respectively).
The two networks run a forward process that differs from the
individual training stage in which the residual blocks in G2

takes the dynamic element-wise sum from the output feature
maps from the up-sampling process in G1 and the output feature
maps from down-sampling inG2, meaning thatG2 receives both
global and local information to reconstruct the output.

This training strategy enables the global-local generator G to
effectively learn both global information and local details while
also stabilizing the training process by simplifying it into three
relatively simple procedures.

B. Multi-Resolution Discriminator

A multi-resolution discriminator D is proposed in this paper.
This dual network structure consists of two sub-components: the
full-resolution discriminatorD1 and the half-resolution discrim-
inator D2. We design above two discriminators by following the
PatchGAN discriminator [12], therefore, proposed discrimina-
tor contains two PatchGAN discriminators. Two discriminators
make patch-wise decisions rather than making a decision for
the whole image. D1 takes the full-resolution input and learns
the local information from CT image, on the other hand, D2

takes half-resolution image as input and focuses on the global
information from CT image. In addition, we proposed a dynamic
feature matching process (DFM) for improving the communi-
cation quality between D1 and D2 during the training process.
As shown in Fig. 5, we first down-sample the segmentation map
and real image into half-resolution form, then the synthesized
and real images are randomly chosen to be concatenated with the
segmentation map to form two inputs (full- and half-resolution)
for D. The target discriminator takes corresponding input and
makes decision through a 70× 70 receptive field, and the de-
cision is represented as a decision matrix, which represents the
patch-wise decisions for corresponding inputs. Then, patch-wise
decisions are used to update D with the DFM in order to adap-
tively share multiple resolution intermediate features between
two discriminators.

The dual-discriminator design and dynamic feature matching
process enable the multi-resolution discriminator D to effec-
tively learn local details, which can significantly improve the
quality of the synthesized image. By assigning local and global
discrimination to individual discriminators D1 and D2, and
dynamically weighting the feature matching losses fromD1 and
D2, the global structure can be maintained while also enhancing
the details of the synthesized images.
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Fig. 2. Overview of the proposed method. The upper section containing the training process of the global-local generator and multi-resolution
discriminator, while the lower right section shows the testing process. Within the global-local generator blocks, two types of generator are present: a
global information generator and local detail generator. Two individual training processes and single-joint training process are depicted in three
different colorized arrows. DESUM block represents the dynamic element-wise sum process which is shown in purple. The multi-resolution
discriminator is depicted in blue. And the dynamic feature matching process (DFM) is also shown as a blue block. The synthesized images are
transferred from the generator to the discriminator, and this process is shown as the dashed arrow. The yellow arrow shows the completion step for
the process in which the non-lung region for the synthesized lung image is added.

C. Dynamic Communication Mechanism

1) Dynamic Element-Wise Sum Process: The dynamic
element-wise sum (DESUM) process is utilized in the joint
training step of global-local generator. As shown in Fig. 2,
DESUM process takes two feature maps (Fglobal, Flocal) from
G1 and G2, respectively. We trained a weighting network that

contains three convolutional layers and 2 fully-connected layers
to dynamically compute the weight of two input terms from G2.
The DESUM process can be formulated as follow:

Fout = αFlocal ⊕ (1− α)Fglobal (1)

where α is learned by the weighting network. This weighting
network is updated during the joint training step. The DESUM
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Fig. 3. The network structure of the global information generator G1.
The parameters of each layer are separated by the notation ‘-’, e.g. for
the first layer, 7× 7 means the kernel size is 7, 256× 256 is the size of
the feature, Conv denotes the category of the layer, 64 is the channel
number, and Relu is the activation function.

Fig. 4. Network structure of local details generator G2.

process effectively helps to dynamically adjust the generator to
specific input and balance the attention from global information
to local details. To be specific, the DESUM process can dynami-
cally weight more toFlocal when receiving an input that contains
complex lesion area. On the other hand, the DESUM process is
able to avoid the generator from overweight on tiny lesions but
ignore global lung structure.

Fig. 5. Network structure of the multi-resolution discriminator D. 2× ↓
denotes down-sampling with a factor of 2.

2) Dynamic Feature Matching Process: As shown in Fig. 2,
the dynamic feature matching process (DFM) computes weight
parameter β for the dynamic feature matching loss (LDFM )
which will be discussed in sub-section D. Similar to DESUM,
DFM uses a CNN structure to calculate the weight parameter
by observing an intermediate feature from D1. However, DFM
works on loss level rather than the feature level. By applying the
DFM process to DFM loss, multi-resolution discriminator D is
able to balance between two resolution inputs and communicate
with each other. Since the weight parameter β is decided by in-
termediate featureDi

1, which is the intermediate feature from ith

layer of full-resolution discriminator D1, the DFM network can
obtain enough information of full-resolution input and weight
LDFM correctly.

D. Learning Objective

The overall learning objective of proposed approach can be
represented by equation (2):

min
G

[
max
D1,D2

2∑
i=1

LcGAN{G(m), Di(m,x), Di(m,G(m))}

+ λ

2∑
i=1

LDFM{G(m), Di(m,x), Di(m,G(m))}
]

(2)

There are two main loss terms in the overall learning objective
function (2): the loss for the cGAN LcGAN and the loss for
dynamic feature matching LDFM . The variable x is the real
input image and m is the corresponding segmentation map.
G represents global-local generator while Di represents the
full-resolution discriminatorD1 or half-resolution discriminator
D2.G(m) denotes the synthesized image produced by generator
G with input segmentation map s, Di(m,x) and Di(m,G(m))
are the patch-wise decisions made by multi-resolution discrim-
inator D with the real image or synthesized image as input,
respectively. λ is the weight factor of feature matching loss term.
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We designed the cGAN loss function based on pix2pix [12],
as shown in (3)

LcGAN = Em,x[logD(m,x)] + Em,x[log(1−D(m,G(m)))]
(3)

This loss term allows cGAN to generate a realistic synthesized
image that can fool discriminator under the condition of the input
segmentation map.

In order to help to improve the communication efficiency
between multi-resolution discriminatorD1 andD2, we proposed
a dynamic feature matching loss (Eq. (4)) which is inspired by
the feature matching loss from ref [48]:

LDFM = Em,x

3∑
i=1

{
β

Ni
[||Di

2(m,x)−Di
2(m,G(m))||1

+
1− β

Ni
[||Di

1(m,x)−Di
1(m,G(m))||1]

}
(4)

where i represents the ith layer of D and Ni is the total number
of elements in the ith layer. β is a weight parameter which is
computed by dynamic feature matching process (described in
sub-section C). Original feature matching loss only considers
to manage the feature map difference between different layers
within a single discriminator. In order to overcome the commu-
nication problem between two discriminators, the dynamic fea-
ture matching loss (DFM loss) dynamically weights the feature
matching losses from the full- and half-resolution discriminators
through observing an intermediate feature Di

1. By applying
DFM loss, it allows us to train D1 and D2 synchronously, and
to learn the details from the inputs with different resolutions
effectively.

E. Testing Process

Rather than using both global-local generator G and multi-
resolution discriminator D as in the training stage, we only
utilize the pre-trained G in the testing process. The input for G
in this stage is a data augmented segmentation map from the real
data. During the practical deployment, the segmentation maps
can be obtained by augmenting the segmentation maps which are
made by experienced radiologists using standard image editing
software. After passing it through G, a synthesized CT image of
the lung area is generated. The final step in the process combines
the synthesized lung image with the corresponding non-lung
area from the real image to produce a complete synthesized
image.

IV. EXPERIMENTS

A. Experimental Settings

Dataset: In order to evaluate the proposed method and com-
pare its performance to other state-of-the-art methods, we use
829 lung CT slices from nine COVID-19 patients, which were
made public on 13 April 2020, by Radiopaedia [49]. This dataset
includes the original CT images, lung masks, and COVID-19 in-
fection masks. The infection masks contain ground-glass opacity

TABLE I
ORGANIZATION OF THE COVID-19 CT IMAGE DATASET

and consolidation labels, which are the two most common char-
acteristics used for COVID-19 diagnosis in lung CT imaging
[50]. In this experiment, we select 446 slices that contained the
areas of infection. We divide the selected dataset into three parts:
a training set for image synthesis task (300), a test set for image
synthesis task (73), a test set for semantic segmentation task (73).
To fully train the deep-learning-based model, data augmentation
pre-processing is applied (Table I). The training set for the
semantic segmentation tasks consists of real data and synthetic
data: the real data comes from the test set of image synthesis task
and the synthetic data is generated from the segmentation maps
from the test set of image synthesis task.The data augmentation
methods include random resizing and cropping, random rotation,
Gaussian noise, and elastic transform.

Evaluation Metrics: To accurately assess model performance,
we utilize both image quality metrics and medical imaging
semantic segmentation metrics:

Four image quality metrics are considered in this study:
Fréchet inception distance (FID) [51], peak-signal-to-noise ratio
(PSNR) [52], structural similarity index measure (SSIM) [52],
and root mean square error (RMSE) [15]. FID measures the
similarity of the distributions of real and synthesized images
using a deep-learning model. PSNR and SSIM are the most
widely used metrics when evaluating the performance of image
restoration and reconstruction methods. The former represents
the ratio between the maximum possible intensity of a signal
and the intensity of corrupting noise, while the latter reflects the
structural similarity between two images.

Three semantic segmentation metrics for medical imaging
are used in this experiment: the dice score (Dice), sensitivity
(Sen), and specificity (Spec) [53], [54]. The dice score evaluates
the area of overlap between a prediction and the ground truth,
while sensitivity and specificity are two statistical metrics
for the performance of binary medical image segmentation
tasks. The former measures the percentage of actual positive
pixels that are correctly predicted to be positive, while the
latter measures the proportion of actual negative pixels that
are correctly predicted to be negative. These three metrics are
employed for semantic segmentation based on the assumption
that, if the quality of the synthesized images is high enough,
excellent segmentation performance can be achieved when
using the synthesized images as input.

Implementation Details: We transform all of the CT slices
into gray-scale images on a Hounsfield unit (HU) scale
[-600,1500]. The sizes of the images and segmentation maps
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TABLE II
IMAGE QUALITY EVALUATION RESULTS OF SYNTHETIC CT IMAGES (THE BEST EVALUATION SCORE IS MARKED IN BOLD. ↑ MEANS HIGHER NUMBER IS

BETTER, AND ↓ INDICATES LOWER NUMBER IS BETTER.)

are then rescaled from 630× 630 to 512× 512. All of the
image synthesis methods are trained with 20 epochs, with a
learning rate that is maintained at 0.0002 for the first 10 epochs
before linearly decaying to zero over the following ten epochs.
Global-local generator G and multi-resolution discriminator D
are trained using an Adam optimizer with parameters β1 = 0.5
and β2 = 0.999. The feature matching loss weight λ is set at 10.
The batch size used to train the proposed method is 16. All of
the experiments are run in an Ubuntu 18.04 environment using
an Intel i7 9700k CPU and two GeForce RTX Titan graphics
cards (48 GB VRAM).

B. Quantitative Results

The performance of the proposed method is assessed ac-
cording to both image quality and medical imaging semantic
segmentation.

1) Image Quality Evaluation: In this study, common image
quality metrics are employed to assess the synthesis performance
of the proposed method and four other state-of-the-art image
synthesis methods: SEAN [15], SPADE [14], Pix2pixHD [13],
and Pix2pix [12]. We evaluate image quality for two synthetic
image categories: complete and lung-only images. The complete
images are those CT images generated by merging a synthesized
lung CT image with its corresponding non-lung CT image. The
evaluation results are presented in Table II.

The proposed method outperforms other state-of-the-art
methods based on the four image quality metrics for both the
complete and lung-only images. Due to the design of the global-
local generator and multi-resolution discriminator, the proposed
model can generate realistic lung CT images for COVID-19 with
a complete global structure and fine local details and maintain a
relatively high signal-to-noise ratio. Thus, the proposed method
can achieve state-of-the-art image synthesis results based on
image quality.

2) Medical Imaging Semantic Segmentation Evaluation: To
evaluate the reconstruction capability of the proposed method,
we utilize Unet, a common medical imaging semantic segmen-
tation approach [55]. We first train the Unet model on a mix
of synthetic and real CT images. The training set of this task
consists of real and synthetic data from the test set of the image
synthesis tasks, and the test set here we use the training set of
the image synthesis task.

This evaluation consists of two independent experiments: (1)
keeping the total number of images the same while replacing
the real data with synthesized data from a proportion of 0%
to 50% in steps of 10% and (2) keeping the number of real

images the same and adding a certain proportion of synthetic
images from 0% to 50% in steps of 10%. The first experiment
evaluates how similar the synthetic and real data are and the
second evaluates the image synthesis potential of the synthetic
data. We consider three categories in the assessment: ground-
glass opacity, consolidation, and infection (which considers both
ground-glass opacity and consolidation). The evaluation results
for the two experiments are presented in Table III and Table IV,
respectively. The pre-trained Unet model is then tested with a
fixed real CT image dataset. 10,220 images from the test set are
divide equally into 10 folds, the evaluation results are reported
with the format as MEAN ± 95% CONFIDENCE INTERVAL
among above folds.

In Table III, we describe the experimental results of differ-
ent replacing ratios of synthetic data. We can obtain the best
performance when using pure real data as a training set. By
replacing the real data with a ratio of synthetic data, the semantic
segmentation performance of Unet does not decrease and stay
at a stable level. By replacing real data with 30% synthetic data,
the Unet obtains the best performance on the Spec metric for
ground-glass opacity focus, also it gets the best performance on
Dice and Sen metrics for consolidation focus. The experimental
results from Table III show that synthetic CT images are similar
to real CT images. They are realistic enough even replacing
the real data with a large ratio of synthetic data, the semantic
segmentation performance of Unet still seems promising. Be-
sides, we also demonstrate the performance comparison with
other state-of-the-art image synthesizers in Table III. Under
the condition of replacing real data with 50% synthetic data
which is generated by four different competitors, the proposed
method shows the competitive performance on the semantic
segmentation tasks.

Table III presents the experimental results for different re-
placement ratios for the synthetic data. We obtain the best
performance when using pure real data as the training set. By
replacing the real data with a proportion of synthetic data, the
semantic segmentation performance of Unet does not decrease,
but rather remains stable. By replacing real data with 30%
synthetic data, Unet obtains the best performance for the Spec
metric for ground-glass opacity and for the Dice and Sen metrics
for consolidation. The experimental results thus indicate that
the synthetic CT images are similar to real CT images. They
are sufficiently realistic for semantic segmentation with Unet
to be successful even when real data is replaced with a large
proportion of synthetic data.

Table IV presents the semantic segmentation results when a
certain proportion of extra synthetic data is added to the real data.
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TABLE III
EXPERIMENTAL RESULTS FOR CT IMAGES USING SEMANTIC SEGMENTATION METHODS (REPLACING REAL DATA WITH DIFFERENT PROPORTIONS OF
SYNTHETIC DATA) (THE BEST EVALUATION SCORE IS MARKED IN BOLD. ↑ MEANS HIGHER NUMBER IS BETTER, AND ↓ INDICATES LOWER NUMBER IS

BETTER. RATIO MEANS REPLACING CERTAIN PROPORTION OF SYNTHETIC DATA. ε REPRESENTS A SMALL POSITIVE QUANTITY WHICH IS SMALLER THAN
1e−5. 50%(1), 50%(2), 50%(3), 50%(4) REPRESENT THE SYNTHETIC DATA ARE FROM SEAN [15], SPADE [14],

PIX2PIXHD [13] AND PIX2PIX [12], RESPECTIVELY

TABLE IV
EXPERIMENTAL RESULTS FOR CT IMAGES USING SEMANTIC SEGMENTATION METHODS (ADDING SYNTHETIC DATA WITH DIFFERENT PROPORTIONS) (THE

BEST EVALUATION SCORE IS MARKED IN BOLD. ↑ MEANS HIGHER NUMBER IS BETTER, AND ↓ INDICATES LOWER NUMBER IS BETTER. RATIO MEANS
ADDING CERTAIN PROPORTION OF SYNTHETIC DATA. ε REPRESENTS A SMALL POSITIVE QUANTITY WHICH IS SMALLER THAN 1e−5.)

The best performance is obtained when adding 40% synthetic
data. Overall, the results indicate that the synthetic CT images
are sufficiently diverse and realistic, meaning that they have the
potential to be utilized in image synthesis to improve the dataset
quality for deep-learning-based COVID-19 diagnosis.

C. Qualitative Results

To intuitively demonstrate synthetic results and easily com-
pare them with the results from other state-of-the-art image
synthesis methods, we show the synthetic examples in both Fig. 6
and Fig. 7 in this subsection.

The synthetic images from three individual cases are com-
pared in Fig. 6. The first case shows that a consolidation infection
area locates on the lower left of CT image. By comparing the
synthetic results from the proposed method, SEAN [15] and
SPADE [14], the infection area remains the original structure and
texture in the result which is generated by the proposed method,
however, we found that in the results of SEAN and SPADE, there
some unnatural artifacts (holes) are generated in the position
that yellow arrow points out. For the second case, a large area
of ground-glass infection is detected, the results of SPADE and
SEAN ignore some small lung area in the middle of the infection
area, but the proposed method can still reflect above small lung
area correctly. In the final case, it contains both two categories of
infection area: consolidation and ground-glass opacity, and the
ground-glass opacity is surrounded by the consolidation area.
If we focus on the surrounded area, we can found out that the
boundary of two infection area is not clear in the synthetic image
of SEAN, and the ground-glass area are mistakenly generated

as lung area in the synthesized image of SPADE. The result of
the proposed method in case 3 shows that it has the ability to
handle this complex situation and produce realistic synthetic CT
images with high image quality.

We present some synthetic examples that are generated by
the proposed method in Fig. 7. We select one example for each
patient (8 samples from 9 patients; patient #3 is skipped because
the segmentation maps were miss-labeled). For Patient #0, the
consolidation area is located at the bottom of the lung area; the
synthetic image shows a sharp and high-contrast consolidation
area that can be easily distinguished from the surrounding non-
lung region. The slides for Patients #1 and #4 have a similarity
in that the lung area contains widespread ground-glass opacity.
Consolidation is sporadically located within this ground-glass
opacity. The small consolidation area can be easily identified due
to the clear boundary between the two infection areas. Patient #6
shows ground-glass opacity and consolidation that are distant
from each other. The results thus illustrate that the proposed
method can handle the two types of infection areas together in a
single lung CT image. The CT slides of Patients #5, #7, and #8
show the simplest cases, with only a single category of infection
(ground- glass opacity). The experimental results thus indicate
that realistic ground-glass opacity can be obtained using the
proposed method.

D. Discussion

In order to further discuss the efficiency of DESUM process
and DFM process, and justify an optimal structure of cGAN, we
follow the experimental settings of the image quality evaluation
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Fig. 6. Synthetic lung CT images generated by the proposed method and the other two competitive state-of-the-art image synthesis approaches.
The first column shows the segmentation map including the lung (red), ground-glass opacity (blue), and consolidation (green) areas. The second
column shows the original CT image. The third, fourth, fifth columns show the synthetic samples which are generated by the proposed method,
SEAN [15] and SPADE [14] in order. Each case is presented with zoom in order to show more details, and the yellow arrows point out the special
area which is described in the main text.
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Fig. 7. Synthetic lung CT images generated by the proposed method. Eight samples are selected, each from an individual patient. The first column
shows the segmentation map including the lung (red), ground-glass opacity (blue), and consolidation (green) areas. The second and third columns
show the original and synthetic CT images, respectively. The synthetic CT images here merge the synthetic lung CT image and the corresponding
real non-lung area. The fourth and fifth columns depict CT images for the original lung and synthesized CT images, respectively.
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TABLE V
ABLATION STUDY OF VARIOUS PROPOSED MODEL STRUCTURE

and medical imaging semantic segmentation evaluation in sub-
section B. Experimental results are shown in Table V.

1) Dynamic Element-Wise Sum Process (DESUM): In the
second part of Table V, we evaluate the performance of three
variations that are related to DESUM. Without DESUM, us-
ing Fglobal, one fixed α number. The performance shows that
DESUM can effectively improve the image quality and segmen-
tation performance. The intermediate feature Fglobal offers less
information than Fglobal does, which influences the efficiency
of DESUM. Using a fixed number of α can not help to boost the
performance, sometimes it may reduce the performance since a
fixed weight is not suitable for diverse COVID-19 CT data.

2) Dynamic Feature Matching Process (DFM): In this sub-
section, we discuss the evaluation of DFM. As shown in the third
part of Table V, we compared the performance of the various
(a) without DFM, (b) using the intermediate feature from D1,
(c) using a fixed β number. The evaluation results show that
DFM can help to train discriminator stably and improve the
performance with multiple metrics. Moreover, the intermediate
feature from D1 contains many more details that can help the
DFM process to weight correctly. The results also tell that a
dynamic weight of β is critical for training our multi-resolution
discriminator.

3) Fine-Tuning Level Optimization: We also investigated
some potential fine-tuning optimizations which are the number
of generators and the number of discriminators. In the last two
parts of Table V, we found that the number of generators and
discriminators is the important hyper-parameters of COVID-19
CT image synthesis task. A proper number of generator and
discriminator can not only avoid the model from overfitting
with details from multiple resolution sources but also improve
the training efficiency and stability. Experimental results show
that the performance can benefit from the dual structure of both
generator and discriminator the most, because this dual structure
can trade-off well between performance and efficiency.

V. CONCLUSION AND FUTURE STUDY

In this paper, we proposed a cGAN-based COVID-19 CT
image synthesis method that can generate realistic CT images
that included two main infection types; ground-glass opacity
and consolidation. The proposed method takes the semantic

segmentation map of a corresponding lung CT image, and the
cGAN structure learns the characteristics and information of
the CT image. A global-local generator and a multi-resolution
discriminator are employed to effectively balance global infor-
mation with local details in the CT image. The experimental re-
sults have shown that the proposed method was able to generate
realistic synthetic CT images and achieve state-of-the-art perfor-
mance in terms of image quality when compared with common
image synthesis approaches. In addition, the evaluation results
for semantic segmentation performance demonstrated that the
high image quality and fidelity of the synthetic CT images enable
their use in image synthesis for COVID-19 diagnosis using AI
models. For future research, the authors plan to fully utilize
high-quality synthetic COVID-19 CT images to improve specific
computer vision approaches that can help in the fight against
COVID-19, such as lung CT image semantic segmentation and
rapid lung CT image-based COVID-19 diagnosis.
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