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Detailed Assessment of Sleep Architecture With
Deep Learning and Shorter Epoch-to-Epoch

Duration Reveals Sleep Fragmentation of
Patients With Obstructive Sleep Apnea

Henri Korkalainen , Timo Leppänen , Brett Duce , Samu Kainulainen , Juhani Aakko ,
Akseli Leino , Laura Kalevo , Isaac O. Afara , Sami Myllymaa , and Juha Töyräs

Abstract—Traditional sleep staging with non-overlapping
30-second epochs overlooks multiple sleep-wake transi-
tions. We aimed to overcome this by analyzing the sleep
architecture in more detail with deep learning methods and
hypothesized that the traditional sleep staging underes-
timates the sleep fragmentation of obstructive sleep ap-
nea (OSA) patients. To test this hypothesis, we applied
deep learning-based sleep staging to identify sleep stages
with the traditional approach and by using overlapping
30-second epochs with 15-, 5-, 1-, or 0.5-second epoch-
to-epoch duration. A dataset of 446 patients referred for
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polysomnography due to OSA suspicion was used to as-
sess differences in the sleep architecture between OSA
severity groups. The amount of wakefulness increased
while REM and N3 decreased in severe OSA with shorter
epoch-to-epoch duration. In other OSA severity groups, the
amount of wake and N1 decreased while N3 increased.
With the traditional 30-second epoch-to-epoch duration,
only small differences in sleep continuity were observed
between the OSA severity groups. With 1-second epoch-
to-epoch duration, the hazard ratio illustrating the risk of
fragmented sleep was 1.14 (p = 0.39) for mild OSA, 1.59
(p < 0.01) for moderate OSA, and 4.13 (p < 0.01) for severe
OSA. With shorter epoch-to-epoch durations, total sleep
time and sleep efficiency increased in the non-OSA group
and decreased in severe OSA. In conclusion, more detailed
sleep analysis emphasizes the highly fragmented sleep ar-
chitecture in severe OSA patients which can be underesti-
mated with traditional sleep staging. The results highlight
the need for a more detailed analysis of sleep architecture
when assessing sleep disorders.

Index Terms—Deep learning, electroencephalography,
obstructive sleep apnea, sleep fragmentation, sleep
staging.

I. INTRODUCTION

S LEEP is a restorative state with a multitude of functions
such as memory consolidation and clearance of metabolic

waste products from the brain [1], [2]. Sleep can be objectively
assessed using electroencephalography (EEG), electrooculog-
raphy (EOG), and electromyography (EMG) recorded during
overnight polysomnography (PSG) and subjectively categorized
into stages according to defined criteria [3]. The current practice
of sleep staging utilizes a segmentation method of assigning a
nominal sleep stage to each non-overlapping 30-second epoch
from the onset of the recording [3]. This 30-second division
is an arbitrary system that is a historical remnant of when
EEG recordings were printed on paper and is not wholly based
on physiological factors [4]–[8]. The 30-second epoch-based
scoring was optimized for convenience and less labor rather
than producing a more accurate representation of sleep [5]–[7].

A defining characteristic of the 30-second epoch staging sys-
tem is that multiple sleep stages may be present in a single epoch
but only a single stage can be assigned for each epoch. Therefore,
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many transitions between sleep stages and between sleep and
wakefulness remain overlooked and, for example, wake periods
with a duration up to 30-seconds may be completely overlooked
when divided over two consecutive epochs. This can cause
overestimation of sleep quality and underestimation of sleep
fragmentation and can also significantly affect the determination
of sleep onset or the onset of REM sleep. Furthermore, the 30-
second epoch-based sleep staging can cause large uncertainties
in tests objectively assessing daytime sleepiness, for example
Multiple Sleep Latency Test and Maintenance of Wakefulness
Test, where the accurate identification of sleep onset would
be paramount. Additionally, missing transitions from sleep to
wakefulness can affect the estimation of the duration of contin-
uous sleep periods and also affect the values of various clinical
parameters used to illustrate the sleep architecture, for example,
the total sleep time (TST), sleep efficiency (SE), and duration
of wake after sleep onset (WASO). The current sleep staging
practice with non-overlapping 30-second epochs is problematic
especially when the sleep architecture is disturbed due to sleep
disorders [5].

Obstructive sleep apnea (OSA) is one of the most common
sleep disorders affecting over 900 million individuals [9]. OSA is
characterized by recurrent obstructions of upper airways which
often lead to arousals from sleep causing sleep fragmentation
and multiple transitions between sleep stages and wakefulness
[10], [11]. However, due to the current convention of sleep
staging based on non-overlapping 30-second epochs, many of
these transitions can be easily missed. Therefore, we hypothesize
that the current sleep staging with non-overlapping 30-second
epochs heavily underestimates the extent of sleep fragmentation
in patients suffering from OSA. As deep learning-based meth-
ods have demonstrated remarkable accuracy in automatic sleep
staging [12]–[17], we hypothesize that deep learning offers a
unique possibility for providing a more feasible and accurate
representation of sleep architecture beyond the non-overlapping
30-second epochs.

We have recently introduced a deep learning-based automatic
sleep staging method [16] that surpassed previous state-of-the-
art methods on a publicly available research dataset (Physionet
Sleep-EDF [18], [19]). In a clinical dataset of patients with
suspected OSA, the developed method reached at least similar
inter-rater reliability (83.8% accuracy,κ= 0.78) [16] as between
two manual scorers [20]–[22]. The deep learning-based sleep
staging also succeeded in accurately identifying sleep stages
from a single EEG channel [16] or even from a photoplethys-
mography signal [17]. However, the main advantage of the
automatic sleep staging over manual scoring is the ability to
always score the sleep stages consistently. Therefore, we aim
to utilize this previously developed automatic method to assess
sleep architecture in a more detailed manner. Furthermore, we
aim to study how the sleep architecture of patients with varying
degrees of OSA differs with more detailed sleep staging

II. METHODS

A. Dataset

We have previously presented a deep learning-based auto-
matic sleep staging model utilizing a clinical dataset of Type

TABLE I
DEMOGRAPHIC INFORMATION OF THE STUDIED POPULATION OF SUSPECTED

OBSTRUCTIVE SLEEP APNEA (OSA) PATIENTS (n = 446)

1 polysomnographies (PSGs) [16]. The PSGs were conducted
at the Princess Alexandra Hospital (Brisbane, Australia) for
the clinical suspicion of OSA and recorded with the Com-
pumedics Grael acquisition system (Compumedics, Abbotsford,
Australia) between 2015 and 2017. The dataset comprised of 891
recordings out of which 717 were used to train the final model. In
the present study, we retrained the model using half of the same
population (n = 445). The remaining 446 recordings were left
outside the retraining process and were included in the analyses
conducted in the present study (Table I). The data collection was
approved by the Institutional Human Research Ethics Commit-
tee of the Princess Alexandra Hospital (HREC/16/QPAH/021
and LNR/2019/QMS/54313).

B. Sleep Staging

The deep learning model comprised of a combined convolu-
tional (CNN) and recurrent neural network (RNN) conducting
the sleep staging in a sequence-to-sequence manner from se-
quences of hundred 30-second epochs (Python 3.6 with Keras
API 2.24 and TensorFlow 1.13 backend). The CNN architecture
consisted of six 1D convolutions each followed by batch normal-
ization and a ReLU activation. A max-pooling layer was located
after the first two and the two following convolutions. The final
layer comprised a global average pooling layer. The complete
network architecture consisted of a time distributed layer of the
CNN described above followed by a gaussian dropout layer, a
bidirectional long short-term memory (LSTM) layer, and a time
distributed dense layer with softmax activation. An EEG channel
(derivation F4-M1) and an EOG channel (derivation E1-M2)
were used for the automatic sleep staging. No preprocessing
was conducted on the signals aside from downsampling to 64
Hz from the original sampling frequency of 1024 Hz. The
architecture of the model and the workflow for training the model
is presented with more details in Korkalainen et al. [16].

In the present study, the model architecture presented pre-
viously in [16] was trained using only half (n = 445) of the
complete population of 891 recordings. This was further split
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Fig. 1. Illustration of the sleep staging procedure with traditional sleep staging and when using overlap between the 30-second epochs. When
using overlap, a sleep stage is identified for each epoch and the identified sleep stages are ordered according to the starting point of the epoch. In
the figure, Xi illustrates an identified sleep stage (wake, N1, N2, N3, or REM) in an epoch i. Only the overlap with an epoch-to-epoch duration of 15
seconds is illustrated for clarity. The shorter epoch-to-epoch durations are treated similarly.

into a training set (n = 400) and a validation set (n = 45). The
validation set was used in selecting the best performing model
during training, i.e., the model with the lowest validation loss
was selected. The remaining 446 recordings were not used in
the training of the model and were included only in the further
analyses. The retraining of the previously presented model was
conducted to allow for a larger dataset to be used in the present
study without having to rely on recordings that have been used
during the training of the model.

After retraining the model, the study population not included
in the training was reanalyzed with the deep learning-based
sleep staging method. In addition to the traditional sleep staging
with non-overlapping 30-second epochs, the sleep staging was
conducted by allowing consecutive 30-second epochs to overlap
with four different epoch-to-epoch durations: a new 30-second
epoch taken every 15 seconds (50% overlap), every 5 seconds
(83.3% overlap), every 1 second (96.7% overlap), or every 0.5
seconds (98.3% overlap). Each scoring then formed a time series
of sleep stages (Fig. 1). The sleep architecture of the different
OSA severity groups (non-OSA, mild OSA, moderate OSA, and
severe OSA) were compared using three different approaches: 1)
calculating the sleep stage percentages in each severity group, 2)
calculating commonly used sleep parameters (total sleep time,
sleep efficiency, and wake after sleep onset) for each individual
in the groups, and 3) evaluating the continuity of sleep in each
group based on survival analysis.

Three commonly used sleep parameters, total sleep time
(TST), sleep efficiency (SE), and amount of wake after sleep
onset (WASO), were calculated for each patient and mean
and standard deviations were calculated for each OSA severity
group. The statistical significance was evaluated using the Mann-
Whitney U test when comparing the OSA groups to the non-OSA
group and with Wilcoxon signed-rank test when comparing
the sleep parameters between the more detailed sleep staging
to the traditional sleep staging within the same OSA severity
group.

Sleep continuity was evaluated based on survival analysis
methodology. The rationale behind evaluating the continuity
of sleep with survival analysis was previously presented by
Norman et al. [23]. A continuous sleep period was defined
as the interval between the transition to any sleep stage from
wakefulness until the next epoch was scored as wake. The mean
duration of sleep periods was calculated for each individual in the
study population and was used as the time to event (transition
to wake) in the survival analyses. The sleep continuity of the
OSA groups and the non-OSA group were compared using Cox
proportional hazards model with the hazard ratio illustrating the
risk for fragmented sleep (i.e., short continuous sleep periods
during the night). Furthermore, sleep continuity was studied
with Kaplan-Meier survival curves. All statistical analyses were
conducted with Matlab 2018b using the Statistics and Machine
Learning Toolbox (The MathWorks, Natick, MA, USA).
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TABLE II
PERCENTAGE OF SLEEP STAGES WITH DIFFERENT EPOCH-TO-EPOCH
DURATIONS IN OBSTRUCTIVE SLEEP APNEA (OSA) SEVERITY GROUPS

III. RESULTS

A. Sleep Stages

The deep learning model reached a training accuracy (Cohen’s
kappaκ) of 89.2% (κ= 0.85) and a validation accuracy of 81.9%
(κ= 0.76) during the retraining. In the current study population,
the deep learning model had a sleep staging accuracy of 83.2%
(κ = 0.77) when compared to the original manual analysis.
This corresponded to accuracies of 91.7% for identifying wake,
41.4% for N1, 84.0% for N2, 83.4% for N3, and 90.9% for REM.

When comparing the deep learning-based sleep staging with
traditional 30-second epochs and with varying overlap, the more
detailed sleep staging decreased the amount of scored wake,
N1, and REM and increased the amount of N2 and N3 in the
non-OSA, mild OSA, and moderate OSA groups (Table II).
In the mild OSA and moderate OSA groups, the amount of
wake first decreased to the same level as with manual scoring
with decreasing epoch-to-epoch durations but decreased even
further with the shortest durations. In contrast, the amount of
wake increased and the amount of N3 and REM decreased
in patients with severe OSA with decreasing epoch-to-epoch
duration. Examples of scored sleep stages with the traditional
sleep staging and when decreasing the epoch-to-epoch duration
are shown in Fig. 2.

B. Sleep Parameters

With the deep learning-based sleep staging, the TST and SE
increased while WASO decreased in the non-OSA, mild OSA,

TABLE III
MEAN (STANDARD DEVIATION) OF SLEEP PARAMETERS WITH DIFFERENT
EPOCH-TO-EPOCH DURATIONS IN OBSTRUCTIVE SLEEP APNEA (OSA)

SEVERITY GROUPS

TST = total sleep time, SE = sleep efficiency, WASO = wake after sleep onset.
A statistically significant (p < 0.05) difference between an OSA severity group and
the non-OSA group is denoted with an asterisk (∗). A statistically significant (p <

0.05) difference between different epoch-to-epoch durations compared to automatic
sleep staging with traditional 30-second epoch-to-epoch duration is denoted with a
dagger (†).

and moderate OSA groups with decreasing epoch-to-epoch
duration (Table III). In contrast, the TST and SE decreased
while WASO increased in the severe OSA group with shorter
epoch-to-epoch durations thus increasing the differences in the
parameter values between severe OSA group and other groups.

C. Sleep Continuity

With 30-second epoch-to-epoch duration in the deep learning-
based sleep staging, the differences in the sleep fragmentation
between the groups were small based on the Cox proportional
hazards model or Kaplan-Meier survival curves (Table IV,
Fig. 3). When the sleep staging was conducted in more detail
with shorter epoch-to-epoch durations, differences between the
non-OSA and the OSA severity groups began to increase. The
hazard ratios illustrating the risk of fragmented sleep with 1-
second epoch-to-epoch duration were 1.14 (p = 0.39), 1.59 (p
< 0.01), and 4.13 (p < 0.01) in mild, moderate and severe OSA
groups, respectively. The obtained hazard ratio for the severe
OSA group even surpassed the value obtained with the manual
sleep staging indicating that the deep learning-based sleep stag-
ing with short epoch-to-epoch duration reveals larger differences
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Fig. 2. Examples of an hour of scored sleep stages for a patient with no obstructive sleep apnea (OSA, left, a 64-year-old female with an
apnea-hypopnea index of 2.2) and with severe OSA (right, a 65-year-old male with an apnea-hypopnea index of 36.1) with the automatic sleep
staging based on different epoch-to-epoch durations.

between the non-OSA and severe OSA group. Similar differ-
ences between groups with decreasing epoch-to-epoch duration
can be seen in the Kaplan-Meier survival curves (Fig. 3).

IV. DISCUSSION

In this study, we introduced a novel method to analyze sleep
in a more detailed manner using deep learning-based automatic
sleep staging. Our results reveal that reducing the epoch-to-
epoch duration between consecutive 30-second epochs consid-
erably affects the evaluated sleep architecture and can provide
greater insights into the sleep architecture beyond the traditional
30-second epoch-to-epoch duration. The results further reveal
the highly fragmented sleep architecture of patients suffering
from severe OSA. Overall, the results suggest that based on more
detailed sleep analysis, severe OSA patients have considerably
less REM sleep and slightly less N3 sleep than estimated via tra-
ditional epochs while the amount of N2 and wakefulness during
the night is higher. Similarly, total sleep time and sleep efficiency
decreased with shorter epoch-to-epoch durations. Finally, the
results with our detailed sleep staging approach expose larger
differences in the sleep continuity between individuals without
OSA and individuals in different OSA severity categories.

In the non-OSA group, the amount of wakefulness, N1 sleep
and REM decreased with shorter epoch-to-epoch durations. At
the same time, the amount of N2 and N3 increased. Similar
behavior was observed in the population with mild or moderate
OSA. Conversely, the severe OSA group differed from the other
groups: the amount of wakefulness and N1 increased while the

TABLE IV
HAZARD RATIOS, CONFIDENCE INTERVALS (95% CI), AND p-VALUES OF

FRAGMENTED SLEEP IN OBSTRUCTIVE SLEEP APNEA (OSA)
SEVERITY GROUPS

amount of REM and N3 decreased along decreasing epoch-
to-epoch duration. This illustrates that the sleep architecture
of severe OSA patients is more disrupted than estimated with
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the traditional 30-second epoch-to-epoch duration, with more
wakefulness and N1 sleep present during the night. A similar
effect can be observed in the total sleep time and sleep efficiency,
which decreased in the severe OSA group along with decreasing
epoch-to-epoch durations.

Based on these results, the traditional approach based on
30-second epoch-to-epoch duration may be suitable for a healthy
population but does not provide the necessary detail for assessing
the sleep of patients suffering from sleep disorders. Our more
detailed sleep staging approach would appear to provide a more
realistic representation of the highly disrupted sleep architecture
which is easily overlooked when using the traditional non-
overlapping 30-second epochs. This could ultimately lead to
a more informed diagnosis of various sleep disorders and their
effects on sleep architecture. Moreover, further studies linking
detailed sleep architecture to daytime symptoms, cardiovascular
risks, therapeutic outcomes, and perceived sleep quality are
warranted.

In our sleep continuity analyses, only small differences be-
tween the healthy population and different OSA groups were
seen using the traditional non-overlapping 30-second epoch
approach. In contrast, the more detailed sleep staging approach
revealed larger differences in the sleep continuity between the
OSA groups and the healthy population, even surpassing manual
scoring. For example, with 1-second epoch-to-epoch duration,
the hazard ratio illustrating the risk of fragmented sleep was
1.14 (p = 0.39) for mild OSA, 1.59 (p < 0.01) for moderate
OSA, and 4.13 (p < 0.01) for severe OSA. This shows that
the risk of fragmented sleep increases with increasing OSA
severity. Similarly, the Kaplan-Meier survival curves (Fig. 3)
show that differences between all OSA groups become more
apparent with more detailed sleep staging. However, it must be
noted that with decreasing epoch-to-epoch duration, the mean
duration of continuous sleep decreased in all the groups, as can
be seen from the Kaplan-Meier curves. This is expected as the
overlapping epochs provide a way to assess sleep architecture in
a more detailed manner capturing more transitions to wakeful-
ness during the night. Moreover, decreasing the epoch-to-epoch
duration even further to 0.5 seconds produced slightly smaller
differences between the OSA severity groups. This may be due
to too small differences between adjoining epochs or due to the
small uncertainty always related to sleep staging; that is, epochs
on the verge of being scored to wake may falsely be scored
as such with short epoch-to-epoch durations. Investigating this
effect and finding the optimal epoch-to-epoch duration warrants
further studies.

We hypothesized that the current sleep staging procedure un-
derestimates the degree of sleep fragmentation caused by OSA.
These results support our hypothesis in severe OSA patients and
only to some extent in mild and moderate OSA patients. The
percentage of sleep stages, total sleep time, sleep efficiency,
and wake after onset were similar in non-OSA patients and
patients with mild or moderate OSA. However, the survival
analysis-based assessment of sleep continuity also revealed
differences between non-OSA patients and patients with mild
or moderate OSA. This can be seen both in the Kaplan-Meier
survival curves (Fig. 3), and the Cox regression (Table IV). A

similar effect was also seen by Norman et al. who reported
that no significant differences exist between the normal and
mild OSA groups in traditional sleep parameters and differences
only emerge when considering the sleep continuity with survival
analysis [23]. However, it has to be noted that the division into
OSA severity groups is highly artificial and simplistic and the
severity assessment with AHI might not sufficiently reflect the
physiological effects of OSA [24]–[26]. Therefore, it could be
beneficial to study how sleep fragmentation varies when defining
the OSA severity differently or even attempt to define the severity
of OSA by using sleep fragmentation as a metric. Regardless,
a more detailed analysis of sleep provides more insight into the
sleep architecture and could be highly useful when assessing the
sleep of OSA patients, and could supplement the evaluation of
disease severity.

Our approach for detailed sleep analysis was based on over-
lapping 30-second epochs, which is both a strength and a limita-
tion in the present study. The developed approach benefits from
decades of clinical practice of sleep staging, is easily applicable
to daily work, and the results can be interpreted similarly as with
traditional manual sleep staging. However, the detailed analysis
was still based on identifying a sleep stage for each epoch and
does not provide a continuous scale of sleep depth in that sense.
However, this approach allows comparison with the traditional
30-second epoch-based sleep staging and eases the interpretation
of results over an arbitrary, continuous scale of sleep depth
which has been previously attempted based on EEG frequency
content [4], [6]. The main advantage of the developed method
over traditional sleep staging is the capability to observe the
transitions between the discrete stages with better temporal reso-
lution. However, further studies are warranted to conduct similar
approaches using shorter epoch durations without overlap to gain
a deeper understanding of sleep microstructure. Furthermore,
we only investigated the transitions between sleep stages and
did not consider arousals from sleep. Arousals were discarded
as the reliability of arousal scoring can be relatively low [27]
and to focus solely on the sleep staging process and on how it
could be improved. Therefore, future studies investigating the
effect of arousals alongside the more detailed sleep staging are
warranted.

The deep learning-based automatic sleep staging method
was trained using manual sleep stage scoring. This manual
scoring material can understandably suffer from human error
and differences between scoring traditions of different scorers.
However, all the manual scorers involved in scoring the study
material participate regularly in intra- and inter-laboratory
scoring concordance activities. Furthermore, in a previous
study on inter-rater reliability at the sleep laboratory, the mean
Cohen’s kappa (standard error of the mean) of sleep staging was
0.74 (0.02) [28] illustrating high reliability between the scorers.
Furthermore, the use of the deep learning approach can be con-
sidered as one of the biggest strengths of our study. In contrast to
manual scoring, the deep learning-based sleep staging is always
conducted consistently and all the scorings are highly compa-
rable. This is also the rationale behind why the comparison
between traditional and detailed sleep staging was possible. The
scoring of the same recordings with different approaches would
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Fig. 3. Kaplan-Meier survival curves of mean continuous sleep durations for each obstructive sleep apnea (OSA) severity group with manual
scoring and automatic scoring using different epoch-to-epoch durations.

have been highly biased and laborious with manual scoring.
Furthermore, our method can alleviate the biggest limitations
of the manual sleep staging with a fast, and easily applicable
method requiring no increase in working hours spent currently
in clinical practice. Automatic sleep staging could reduce the
workload and simultaneously produce the traditional sleep stag-
ing alongside the more detailed representation with overlapping
epochs in a timely manner, generally in less than a minute.

V. CONCLUSION

More detailed sleep staging using a deep learning-based au-
tomatic method is a highly promising approach to gain further
insight into the characteristics of the fragmented sleep archi-
tecture of patients suffering from sleep disorders. The detailed
sleep staging emphasized the highly disrupted sleep architecture
of patients with severe OSA which can be vastly underestimated

with traditional sleep staging. These results highlight the need
for a more detailed analysis of sleep architecture in daily clinical
practice.
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