arXiv:1911.10477v4 [eess.V] 4 Jan 2021

1O () GENERIC COLORIZED JOURNAL, VOL. XX, NO. XX, XXXX 2017

Reinventing 2D Convolutions for 3D Images

Jiancheng Yang, Xiaoyang Huang, Yi He, Jingwei Xu, Cangian Yang, Guozheng Xu, and Bingbing Ni

Abstract—There have been considerable debates over
2D and 3D representation learning on 3D medical
images. 2D approaches could benefit from large-scale 2D
pretraining, whereas they are generally weak in capturing
large 3D contexts. 3D approaches are natively strong in
3D contexts, however few publicly available 3D medical
dataset is large and diverse enough for universal 3D
pretraining. Even for hybrid (2D + 3D) approaches, the
intrinsic disadvantages within the 2D / 3D parts still
exist. In this study, we bridge the gap between 2D
and 3D convolutions by reinventing the 2D convolutions.
We propose ACS (axial-coronal-sagittal) convolutions
to perform natively 3D representation learning, while
utilizing the pretrained weights on 2D datasets. In ACS
convolutions, 2D convolution kernels are split by channel
into three parts, and convoluted separately on the three
views (axial, coronal and sagittal) of 3D representations.
Theoretically, ANY 2D CNN (ResNet, DenseNet, or DeepLab)
is able to be converted into a 3D ACS CNN, with pretrained
weight of a same parameter size. Extensive experiments
on several medical benchmarks (including classification,
segmentation and detection tasks) validate the consistent
superiority of the pretrained ACS CNNs, over the 2D / 3D
CNN counterparts with / without pretraining. Even without
pretraining, the ACS convolution can be used as a plug-
and-play replacement of standard 3D convolution, with
smaller model size and less computation.

Index Terms—3D medical images, ACS convolutions,
deep learning, 2D-to-3D transfer learning.

[. INTRODUCTION

MERGING deep learning technology has been
dominating the medical image analysis research
[1], in a wide range of data modalities (e.g., ultrasound [2],
CT [3], MRI [4], X-Ray [5]) and tasks (e.g., classification
[6], segmentation [7], detection [8], registration [9]). Thanks
to contributions from dedicated researchers from academia

This work was supported by National Science Foundation of China
(U20B2072, 61976137, U1611461). Authors would like to appreciate the
Student Innovation Center of SJTU for providing GPUs.

J. Yang is with Shanghai Jiao Tong University, Shanghai, China, with
MoE Key Lab of Articial Intelligence, Al Institute, Shanghai Jiao Tong
University, Shanghai, China, and also with Dianei Technology, Shanghai,
China (e-mail: jekyll4168@sjtu.edu.cn).

X. Huang is with Shanghai Jiao Tong University, Shanghai, China, and
also with MoE Key Lab of Articial Intelligence, Al Institute, Shanghai Jiao
Tong University, Shanghai, China (e-mail: huangxiaoyang@sijtu.edu.cn).

Yi He is with Dianei Technology, Shanghai, China.

J. Xu, C. Yang, G. Xu are with Shanghai Jiao Tong University,
Shanghai, China.

B. Ni is with Shanghai Jiao Tong University, Shanghai, China, with
MoE Key Lab of Articial Intelligence, Al Institute, Shanghai Jiao Tong
University, Shanghai, China, and also with Huawei Hisilicon, Shanghai,
China (e-mail: nibingbing@{sjtu.edu.cn,hisilicon.com}).

J. Yang and X. Huang contributed equally to this article.

Corresponding author: B. Ni

Pros Cons

2D Convolutions

s

3D Convolutions

Hybrid (2D +3D)

H 5

2D pretrained weights
on large 2D datasets

Natively 2D
representations

Lack of 3D
pretrained weights
on large datasets

Natively 3D

| £&
\ -
| representations

a. 2D representation
within 2D parts

b. Lack of 3D
pretrained weights
. Redundant
multi-stage / multi-
stream models

2D + 3D
representations

ACS Convolutions

a. Natively 3D representations

b. 3D pretrained weights on large 2D datasets
¢. Converting ANY 2D model into a 3D model
seamlessly without extra computation costs

Fig. 1. A comparison between the proposed ACS convolutions and prior
art on modeling the 3D medical images: pure 2D / 2.5D approaches
with 2D convolution kernels, pure 3D approaches with 3D convolution
kernels, and hybrid approaches with both 2D and 3D convolution
kernels. The ACS convolutions run multiple 2D convolution kernels
among the three views (axial, coronal and sagittal).

and industry, there have been much larger medical image
datasets than ever before. With large-scale datasets, strong
infrastructures and powerful algorithms, numerous challenging
problems in medical images seem solvable. However, the
data-hungry nature of deep learning limits its applicability
in various real-world scenarios with limited annotations.
Compared to millions (or even billions) of annotations in
natural image datasets, the medical image datasets are not
large enough. Especially for 3D medical images, datasets
with thousands of supervised training annotations [10],
[11] are “large” due to imperfect medical annotations
[12]: hardly-accessible and high dimensional medical data,
expensive expert annotators (radiologists / clinicians), and
severe class-imbalance issues [13].

Transfer learning, with pretrained weights from large-scale
datasets (e.g., ImageNet [14], MS-COCO [15]), is one of
the most important solutions for annotation-efficient deep
learning with insufficient data [12]. Unfortunately, widely-
used pretrained CNNs are developed on 2D datasets, which
are non-trivial to transfer to 3D medical images. Prior art
on 3D medical images follows either 2D-based approaches
or 3D-based approaches (compared in Fig. [I). 2D-based
approaches [16]-[18] benefit from large-scale pretraining on
2D natural images, while the 2D representation learning
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are fundamentally weak in large 3D contexts. 3D-based
approaches [19]-[21] learn natively 3D representations.
However, few publicly available 3D medical dataset is large
and diverse enough for universal 3D pretraining. Therefore,
compact network design and sufficient training data are
essential for training the 3D networks from scratch. Hybrid
(2D + 3D) approaches [22]-[24] seem to combine the best of
both worlds, nevertheless these ensemble-like approaches do
not fundamentally overcome the intrinsic issues of 2D-based
and 3D-based approaches. Please refer to Sec. [[] for in-depth
discussion on these related methods.

There has been considerable debates over 2D and 3D
representation learning on 3D medical images: prior studies
choose either large-scale 2D pretraining or natively 3D
representation learning. This paper presents an alternative to
bridge the gap between the 2D and 3D approaches. To solve
the intrinsic disadvantages from the 2D convolutions and 3D
convolutions in modeling 3D images, we argue that an ideal
method should adhere to the following principles:

1) Natively 3D representation;

2) 2D weight transferable: it benefits from 2D pretraining;

3) ANY model convertible: it enables any 2D model,
including classification, detection and segmentation
backbones, to be converted into a 3D one.

These principles cannot be achieved simultaneously with
standard 2D convolutions or standard 3D convolutions, which
directs us to develop a novel convolution operator. Inspired
from the widely-used tri-planar representations of 3D medical
images [16], we propose ACS convolutions satisfying these
principles. Instead of explicitly treating the input 3D volumes
as three orthogonal 2D planar images [16] (axial, coronal and
sagittal), we operate on the convolution kernels to perform
view-based 3D convolutions, via splitting the 2D convolution
kernels into three parts by channel. Notably, no additional 3D
fusion layer is required to fuse the three-view representations
from the 3D convolutions, since they will be seamlessly fused
by the subsequent ACS convolution layers (Sec. [[TI).

The ACS convolution aims at a generic and plug-and-
play replacement of standard 3D convolutions for 3D medical
images. Even without pretraining, the ACS convolution
is comparable to 3D convolution with a smaller model
size and less computation. When pretrained on large 2D
datasets, it consistently outperforms 2D / 3D convolution
by a large margin. To improve research reproducibility, a
PyTorch [25] implementation of ACS convolution is open-
source[ﬂ Using the provided functions, standard 2D CNNs
(e.g., those from PyTorch torchvison package) could be
converted into ACS CNNs for 3D images with a single line of
code, where 2D pretrained weights could be directly loaded.
Compared with 2D models, it introduces no extra computation
costs, in terms of FLOPs, memory and model size. The
proposed ACS convolutions could be used in various neural
networks for diverse tasks; Extensive experiments on several
medical benchmarks (including classification, segmentation
and detection tasks) validate the consistent effectiveness of
the proposed method.

ICode is open-source at: [https://github.com/M3DV/ACSConv/.

[1. RELATED WORK

In this section, we first review 2D / 2.5D, 3D and
hybrid approaches for 3D medical images, including their
advantages and disadvantages. We then discuss the pretraining
for 3D medical images by transfer learning and self-supervised
learning techniques. Compared with existing 2D / 2.5D /
3D / hybrid approaches, ACS convolution focuses on how
to use the existing pretrained 2D networks in a 3D way.
Note that the contribution of this study is also orthogonal to
pretraining methods. It is possible to pretrain ACS CNNs on
2D images, videos and 3D medical images with supervised
or self-supervised learning. This paper uses ACS convolutions
with supervised pretraining on 2D natural images.

A. 2D /2.5D Approaches

Transfer learning from 2D CNNs, trained on large-scale
datasets (e.g., ImageNet [14]), is a widely-used approach in
3D medical image analysis. To mimic the 3-channel image
representation (i.e., RGB), prior studies follow either multi-
planar or multi-slice representation of 3D images as 2D inputs.
In these studies, pretrained 2D CNNs are usually fine-tuned
on the target medical dataset.

Early study [16], [26] proposes tri-planar representation of
3D medical images, where three views (axial, coronal and
sagittal) from a voxel are regarded as the three channels of 2D
input. Although this method is empirically effective, there is
a fundamental flaw that the channels are not spatially aligned.
More studies follow tri-slice representations [17], [18], [27],
where a center slice together with its two neighbor slices
are treated as the three channels. In these representations,
the channels are spatially aligned, which conforms to the
inductive biases in convolution. There are also studies [17],
[28] combining both multi-slice and multi-planar approaches,
using multi-slice 2D representations in multiple views. The
multi-view representations are averaged [17] or fused by
additional networks [28]. Recent work [29] extracts multi-view
information by applying 2D CNNs on rotated and permuted
data. Song et al. [30] projects the 3D object boundary surface
into a 2D matrix to allow 2D CNN for segmentation.

Even though these approaches benefit from large-scale 2D
pretraining, which is empirically effective in numerous studies
[31]-[34], both multi-slice and multi-planar representation
with 2D convolutions are fundamentally weak in capturing
large 3D contexts.

B. 3D Approaches

Instead of regarding the 3D spatial information as input
channels in 2D approaches, there are numbers of studies using
pure 3D convolutions for 3D medical image analysis [19]—
[21], [35], [36]. Compared to limited 3D contexts along certain
axis in 2D approaches, the 3D approaches are theoretically
capable of capturing arbitrarily large 3D contexts in any axis.
Therefore, the 3D approaches are generally better at tasks
requiring large 3D contexts, e.g., distinguishing small organs,
vessels, and lesions.

However, there are also drawbacks for pure 3D approaches.
One of the most important is the lack of large-scale universal
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3D pretraining. For this reason, efficient training of 3D
networks is a pain point for 3D approaches. Several techniques
are introduced to (partially) solve this issue, e.g., deep
supervision [36], compact network design [21], [37], [38].
Nevertheless, these techniques are not directly targeting the
issue of 3D pretraining.

A related study of our method is Parallel Separable
Convolution (PSC) [39] and Long-Range Asymmetric Branch
(LRAB) [40], which extend pseudo 3D convolution (P3D)
[41] in multiple parallel streams of various directions. Both
introduce additional layers apart from 2D convolutions,
thereby not all weights could be pretrained. As a comparison,
our approach focusing on the use of pretrained 2D weights,
converts whole pretrained networks seamlessly, while keeping
same computation as the 2D variants, in terms of FLOPs,
memory and parameters (Table [[TI). In video analysis, there is
work [42] similar to the proposed Soft-ACS variant.

C. Hybrid Approaches

Hybrid approaches are proposed to combine the advantages
of both 2D and 3D approaches [22]-[24], [28]. In these
studies, 2D pretrained networks with multi-slice inputs, and
3D randomly-initialized networks with volumetric inputs are
(jointly or separately) trained for the target tasks.

The hybrid approaches could be mainly categorized into
multi-stream and multi-stage approaches. In multi-stream
approaches [22], [24], 2D networks and 3D networks are
designed to perform a same task (e.g., segmentation) in
parallel. In multi-stage (i.e., cascade) approaches [23], [24],
[28], several 2D networks (and 3D networks) are developed to
extract representations from multiple views, and a 3D fusion
network is then used to fuse the multi-view representations
into 3D representations to peform the target tasks.

Although empirically effective, the hybrid approaches do
not solve the intrinsic disadvantages of 2D and 3D approaches:
the 2D parts are still not able to capture large 3D contexts, and
the 3D parts still lacks large-scale pretraining. Besides, these
ensemble-like methods are generally redundant to deploy.

D. Transfer Learning and Self-Supervised Learning

Medical annotations require expertise in medicine and
radiology, which are thereby expensive to be scalable. For
certain rare diseases or novel applications (e.g., predicting
response for novel treatment [43]), the data scale is naturally
very small. Transfer learning from large-scale datasets to
small-scale datasets is a de-facto paradigm in this case.

Human without any radiological experience could recognize
basic anatomy and lesions on 2D and 3D images with limited
demonstration. Based on this observation, we believe that
transfer learning from universal vision datasets (e.g., ImageNet
[14], MS-COCO [15]) should be beneficial for 3D medical
image analysis. Although there is literature reporting that
universal pretraining is useless for target tasks [44], [45],
this phenomenon is usually observed when target datasets
are large enough. Apart from boosting task performance, the
universal pretraining is expected to improve model robustness
and uncertainty quantification [46].

TABLE |
A COMPARISON OF TRANSFER LEARNING FOR 3D MEDICAL IMAGES
FROM VARIOUS SOURCES.

Source Data Scale Data Diversity Supervised Medical
2D Image Very Large Very Diverse Y N
Video [49] Large Diverse Y N
Med3D [50] Moderate Moderate Y Y
MG [51] Large Moderate N Y

Unfortunately, 2D-to-3D transfer learning has not been
adequately studied. Research efforts [35], [47] have been paid
to pretrain natively 3D CNNs on 3D datasets, however few
publicly available 3D medical dataset is large and diverse
enough for universal pretraining. Prior research explores the
transfer learning of 3D CNNs trained on spatio-temporal video
datasets [48]. However, there are two kinds of domain shift
between video and 3D medical images: 1) natural images
vs. medical images, and 2) spatio-temporal data vs. 3D
spatial data. The domain shift makes video pretraining [49]
less applicable for 3D medical images. To reduce domain
shift, there is research (Med3D [50]) building pretrained 3D
models on numbers of 3D medical image datasets. Despite the
tremendous effort on collecting data from multiple sources,
the data scale of involved 1,000+ training samples is still
too much small compared to 1,000,000+ training samples in
natural image datasets.

In addition to supervised pretraining, Models Genesis [51]
explores unsupervised (self-supervised) learning to obtain the
pretrained 3D models. Though very impressive, the model
performance of up-to-date unsupervised learning is generally
not comparable to that of fully supervised learning; even state-
of-the-art unsupervised / semi-supervised learning techniques
[52], [53] could not reproduce the model performance using
fully supervised training data.

Table [I] compares the sources of transfer learning for 3D
medical images. Compared to transfer learning from video
[49] / Med3D [50] / Models Genesis [51], the key advantage
of 2D image pretraining is the overwhelming data scale and
diversity of datasets. With the ACS convolutions proposed in
this study, we are able to develop natively 3D CNNs using 2D
pretrained weights. We compare these pretraining approaches
in our experiments, and empirically prove the superiority of
the proposed ACS convolutions.

I11. ACS CONVOLUTIONAL NEURAL NETWORKS
A. ACS Convolutions

Convolution layers capture spatial correlation. Intuitively,
the formal difference between 2D and 3D convolutions
is the kernel size: the 2D convolutions use 2D kernels
(C, x C; x K x K) for 2D inputs (C; x H; x W;), whereas
the 3D convolutions use 3D kernels (C, x C; x K x K x K)
for 3D inputs (C; x D; x H; x W;), where C;, C, denote the
channels of inputs and outputs, K denotes the kernel size,
and (D;x)H; x W; denotes the input size. To transfer the 2D
kernels to 3D kernels, there are basically two prior approaches:
1) “inflate” the pretrained 2D kernels into 3D kernels size
(K x K = K x K x K), ie., Inflated 3D (I3D [56]), where
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lllustration of ACS convolutions and 2D-to-ACS model conversion. With a kernel-splitting design, a 2D convolution kernel could be

seamlessly transferred into ACS convolution kernels to perform natively 3D representation learning. The ACS convolutions enable ANY 2D model
(ResNet [54], DenseNet [55], or DeeplLab [34]) to be converted into a 3D model.

the 2D kernels are repeated along an axis and then normalized;
2) unsqueeze the 2D kernels into pseudo 3D kernels on an axis
(K x K - 1x K x K), i.e., AH-Net-like [57], which could
not effectively capture 3D contexts. Note that in both cases,
the existing methods assume a specific axis to transfer the 2D
kernels. It is meaningful to assign a special axis for spatio-
temporal videos, while controversial for 3D medical images.
Even for anisotropic medical images, any view of a 3D image
is still a 2D spatial image.

Based on this observation, we develop ACS (axial-coronal-
sagittal) convolutions to learn spatial representations from the
axial, coronal and sagittal views. Instead of treating channels
of 2D kernels identically [56], [57], we split the kernels into
three parts for extracting 3D spatial information from the axial,
coronal and sagittal views. The detailed algorithm of ACS
convolutions is shown in the supplementary materials. For
simplicity, we introduce ACS convolutions with same padding
as follows (Fig. [2).

Given a 3D input X; € RE*DPixHixWi e would like to
obtain a 3D output X, € RCxPoxHoxWo = yith pretrained
/ non-pretrained 2D kernels W € RCXCixKxK Here, C,
and C, denote the input and output channels, D; x H; x W;
and D, x H, x W, denote the input and output sizes, K
denotes the kernel size. Instead of presenting 3D images into
tri-planar 2D images [16], we split and reshape the kernels
into three parts (named ACS kernels) by the output channel,
to obtain the view-based 3D representations for each volume:
Wa c RCé”')xCixKxle’ c RCén)xCixlexK’ WS c
RCs"xCix1xKxK  where C(Sac) 1+ 4+l =, s
theoretically possible to assign an “optimal axis” for a 2D
kernel; However, considering the feature redundancy in CNNs
[58], in practice we simply set C\* ~ {9 ~ CS) ~ |C,/3).
We then compute the axial, coronal and sagittal view-based 3D
features via 3D convolutions:

X(® = Conv3D(X;, W,) € RO xDoxHoxWo (1)

X () = Conv3D(X;, W) € RO xDoxHoxWo (9

TABLE Il
MAIN OPERATOR CONVERSION FROM 2D CNNs INTO ACS CNNs.
({1,K}) X K X K AND (1X)1 X 1 DENOTE THE KERNEL SIZES.

2D CNNs ACS CNNs
Conv2D K x K ACSConv K x K
Conv2D 1 x 1 ConvaiD 1 x 1 x1
{Batch,Group }Norm2D {Batch,Group }Norm3D

{Max,Avg}Pool2D K x K  {Max,Avg}Pool3D {1, K} x K x K

X(®) = Conv3D(X;, W) € RO xDoxHoxWo (3)

The output feature X, is obtained by concatenating Xc(,“),
ch) and X és) by the channel axis. It is noteworthy that, no
3D fusion layer is required additionally. The view-based
output features will be automatically fused by subsequent
convolution layers, without any additional operation, since the
convolution kernels are mnot split by input channel. Thanks
to linearity of convolutions, expectation of features from
converted ACS convolutions keeps the same as that of 2D
ones, thereby no weight rescaling [56] is needed. It is also
the prerequisite for the usefulness of 2D pretraining in the
converted ACS convolutions. The ACS convolution could be
regarded as a special case of 3D convolutions, whose kernels
are block sparse.

The parameter size of ACS convolutions is exactly same as
that of 2D convolutions, as the ACS kernels: W,, W, and
W are directly split and reshaped from the 2D kernels W,
therefore the proposed method enables ANY 2D model to be
converted into a 3D model. Table [ lists how operators in 2D
CNNs are converted to those in ACS CNNs. Note that the
converted models could load the 2D weights directly.

B. Counterparts and Related Methods

1) 2D Convolutions: We include a simple AH-Net-like [57]
2D counterpart, by replacing all ACS convolutions in ACS
CNNs with Conv3D 1 x K x K. We name this pseudo 3D
counterpart as “2.5D” in our experiments, which enables 2D
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TABLE Il
SPACE AND TIME COMPLEXITY ANALYSIS, FOR 2D (2.5D), 3D, ACS,
MEAN-ACS, AND SOFT-ACS CONVOLUTIONS. D X H X W DENOTES
SPATIAL SIZE OF A 3D INPUT, K DENOTES KERNEL SIZE (IDENTICAL
KERNEL FOR SIMPLICITY), AND C;, C, DENOTE THE INPUT AND
OUTPUT CHANNELS. BIAS TERMS ARE NOT COUNTED IN PARAMETERS.

Kernels FLOPs Memory Parameters
Conv2D O(DHWC,C; K?) DHWGC, CoC; K?
Conv3D O(DHWC,C; K3) DHWGC, CoCi K3
ACSConv O(DHWC,C;K?) DHWGC, CoC;K?
M-ACSConv ~ O(BDHWC,C;K?) 3DHWGC, CoC; K?
S-ACSConv ~ O(BDHWC,C;K?) 3DHWC, Co(C;K?+3)

pretrained weight transferring with ease. The 3D pooling and
normalization layers enable 3D context fusion in this case;
although insufficient in 3D, we would rather call this variant
as “2.5D”.

2) 3D Convolutions: For the 3D counterparts, we replace
all convolutions in ACS CNNs with standard 3D convolutions.
Various pretraining sources (I3D [56] with 2D images, Med3D
[50], Video [49]) are included for fair comparison. If there
is any difference between the converted 3D models and the
pretrained 3D models, we keep the pretrained 3D network
architectures to load the pretrained weights. Models Genesis
[51] uses 3D UNet-based [19], [20] network architecture. We
train the same network from scratch / with its self-supervised
pretraining to compare with our models. Moreover, we
implement P3SC; to compare Parallel Separable Convolutions
[39] with ACS convolutions. The P3;SC; models are trained
from scratch due to the lack of pretraining with this method.

Table [II] compares the time and space complexity of
2D (2.5D), 3D and ACS convolutions. The proposed ACS
convolution could be used as a generic and plug-and-
play replacement of 3D convolution, with less computation
and smaller size. Besides, the ACS convolution enables
2D pretraining. We demonstrate its superiority over the
counterparts with extensive experiments (Sec. [[V).

C. ACS Convolution Variants

Apart from the kernel splitting approach used in the
proposed ACS convolutions, there are possible variants to
implement the 2D-transferable ACS convolutions.

1) Mean-ACS convolutions: Instead of splitting the 2D
convolution kernels, we replicate and reshape W into
W c RC xC ><K><K><1 W c RC xC ><K><1><K W c
RC XCixIxKxK = and obtam the 3D features X ‘(@) =
Conv3D(Xi,W(;), XO(C) = Conv3D(X1,Wc), XO(S)
Conv3D(X;, W,). The output features is

XM= (X + X9+ X[[9)/3. @)

Note that the replication and reshaping operations for W are
conducted on the fly, thereby only one copy of the W are
required to be stored for the model.

2) Soft-ACS convolutions: Note that the Mean-ACS
convolution uses a symmetric aggregation, thereby it could
not distinguish any view-based information. To this regard,

Foreground Foreground

Fig. 3. Examples of features from ACS r. and p. on the 3D dataset
without any training on it. ACS p. is pretrained on the 2D dataset.

we introduce weighted sum of Mean-ACS, i.e., Soft-ACS,
Xf = a(“)X;(a) + a(C)X;(C) + a(S)X;(S), 5)

where o, a(?), a(®) € R are learnable weights.

In Table [T we compare the time and space complexity.
The two variants are more computationally intensive in terms
of FLOPs and memory. Unfortunately, they do not provide
significant performance boost empirically. Therefore, we only
report the model performance of ACS convolutions in Sec. [[V]
and analyze these variants in the supplementary materials.

V. EXPERIMENTS

We experiment with the proposed method on a proof-
of-concept dataset and medical benchmarks. To fairly
compare model performance, we include several counterparts
(2.5D/3D/ACS {Network} r./p.) with the same experiment
setting, where r. denotes random initialization, and p. denotes
pretraining on various sources. We use separate network
architectures in different experiments to demonstrate the
flexibility and versatility of the proposed method.

A. Proof of Concept: How Does the Pretraining Work?

1) Motivation: We would like to intuitively understand
whether the 2D pretraining could be useful for the converted
ACS models. For this reason, we design a proof-of-concept
experiments with a synthetic dataset, where the “knowledge”
from the 2D space is guaranteed to be useful in the 3D space.
UNet-based models [19], [59] segment the foregrounds, on
the dataset consisting of sufficient 2D samples (foreground:
circle and square) for pretraining the 2D networks and limited
3D samples (foreground: sphere, cube, cylinder, cone and
pyramid) for evaluating the converted ACS networks. Note
that the shapes of 2D dataset are exactly the projected single
views of 3D volumes (except for triangle), thereby the 2D
pretraining is expected to be useful in the 3D segmentation.
We quantitatively analyze feature discriminative ability on the
3D dataset without training on it, using a mAUC metric based
on Receiver Operating Characteristic (ROC) analysis of final
layer features to discriminate the foreground. We then train the
UNets and compare the ACS, 2.5D and 3D counterparts. Dice
and mloU averaged on the 5 foreground classes are reported
on the 3D dataset. Details of the synthetic dataset, network,
training and mAUC metric are provided in the supplementary
materials.

2) Result Analysis: We first illustrate two examples of
feature maps from ACS r. and ACS p. on the 3D dataset
in Fig. 3] Even without any training on the target dataset, the
features from ACS p. are well aligned with the foreground. As
shown in Table[[V] the mAUC metric of ACS p. is significantly
higher than ACS r., which empirically proves the usefulness
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TABLE IV
SEGMENTATION PERFORMANCE ON THE PROOF-OF-CONCEPT DATASET.
Models Feature mAUC w/o training  Dice = mloU Size
2.5D UNet r. 69.0 82.2 725 1.6 Mb
2.5D UNet p. 85.1 82.7 73.3 1.6 Mb
3D UNet r. 72.1 94.6 90.8 4.7 Mb
ACS UNet r. 68.7 94.7 90.7 1.6 Mb
ACS UNet p. 88.1 95.4 92.0 1.6 Mb

TABLE V

LIDC-IDRI [60] LUNG NODULE SEGMENTATION (DICE GLOBAL) AND
CLASSIFICATION (AUC) PERFORMANCE.

Models Segmentation (Dice)  Classification (AUC)
Models Genesis [51] r. 75.5 94.3
Models Genesis [S1] p. 75.9 94.1
P3SC; [39] r. 74.3 90.9
2.5D ResNet-18 r. 68.8 89.4
2.5D ResNet-18 p. 69.8 92.0
3D ResNet-18 r. 74.7 90.3
3D ResNet-18 p. 13D [56] 75.7 91.5
3D ResNet-18 p. Med3D [50] 74.9 90.6
3D ResNet-18 p. Video [49] 75.7 91.0
ACS ResNet-18 r. 75.1 92.5
ACS ResNet-18 p. 76.5 94.9

of pretraining for ACS convolutions. Notably, features from
ACS p. are even more discriminative than 2.5D p. After
training on the 3D dataset, the performance of ACS UNet r. is
comparable to 3D UNet r., and the ACS UNet p. achieves the
best performance. The results indicate that ACS convolution
is an alternative to 3D convolution with comparable or even
better performance, and a smaller model size.

B. Lung Nodule Classification and Segmentation

1) Dataset: We then validate the effectiveness of the
proposed method on a large medical data LIDC-IDRI [60],
the largest public lung nodule dataset, for both lung nodule
segmentation and malignancy classification task. There are
2,635 lung nodules annotated by at most 4 experts, from
1,018 CT scans. The annotations include pixel-level labelling
of the nodules and 5-level classification of the malignancy,
from “1” (highly benign) to “5” (highly malignant). For
segmentation, we choose one of the up to 4 annotations
for all cases. For classification, we take the mode of the
annotations as its category. In order to reduce ambiguity,
we ignore nodules with level-“3” (uncertain labelling) and
perform binary classification by categorizing the cases with
level “1/2”, “4/5” into class O, 1. It results in a total of 1,633
nodules for classification. We randomly divide the dataset into
4 : 1 for training and evaluation, respectively. At training
stage we perform data augmentation including random-center
cropping, random-axis rotation and flipping.

2) Experiment Setting: We compare the ACS models with
2.5D and 3D counterparts with or without pretraining. The
pretrained 2.5D / ACS weights are from PyTorch torchvision
package [25], trained on ImageNet [14]. For 3D pretraining,
we use the official pretrained models by Med3D [50] and

Video [49], while 13D [56] weights are transformed from
the 2D ImageNet-pretrained weights as well. For PSC [39],
we use the configuration of P3SC;, which resembles our
ACS methods. To take advantage of the pretrained weights
from Med3D [50] and video [49] for comparison, all models
are adopted a ResNet-18 [54] architecture, except for Model
Genesis [51], since the official pretrained model is based on a
3D UNet [19] architecture. For all model training, we use an
Adam optimizer [61] with an initial learning rate of 0.001 and
train the model for 100 epochs, and delay the learning rate by
0.1 after 50 and 75 epochs. For ResNet-18 backbone, in order
to keep higher resolution for output feature maps, we modify
the stride of first layer (7 x 7 stride-2 convolution) into 1,
and remove the first max-pooling. Note that this modification
still enables pretraining. A FCN-like [31] decoder is applied
with progressive upsampling twice. Dice loss with a batch
of 8 is used for segmentation, and binary cross-entropy loss
with a batch of 24 for classification. Dice global and AUC are
reported for these two tasks. To demonstrate the flexibility and
versatility of ACS convolutions, we also report the results of
VGG [62] and DenseNet [55] in the supplementary materials,
which is consistent with the ResNet-18.

To further demonstrate the effectiveness of pretraining,
we evaluate models trained with various percentages of
training data (25%, 50%, 75% and 100%) on both
segmentation and classification. To maintain the same number
of training iterations, the numbers of epoch are increased to
100/(0.25,0.5,0.75, 1). The best results among all epochs are
reported. We plot the results in Fig. ]

3) Result Analysis: Experiment results are depicted in
Table The ACS models consistently outperform all the
counterparts by large margins, including 2.5D and 3D models
in both random initialization or pretraining settings. P3SC;
[39] performance is similar to standard 3D convolution.
We observe that the 3D models (ACS, PSC and 3D)
generally outperform the 2.5D models, indicating that the
usefulness of 3D contexts. Except for the pretrained 2.5D
model on classification task, its superior performance over
3D counterparts may explain the prior art [63], [64] with 2D
networks on this dataset. As for pretraining, the ImageNet
[14] provides significant performance boost (see 2.5D p.,
3D p. I3D [56] and ACS p.), while Med3D [50] brings
limited performance boost. We conjecture that it owes to the
overwhelming data scale and diversity of 2D image dataset.

Due to the difference on network architecture (ResNet-
based FCN vs. UNet), we experiment with the official code of
self-supervised pretrained Models Genesis [51] with exactly
same setting. Even without pretraining, the segmentation
and classification performance of the UNet-based models
are strong on this dataset. Despite this, the pretrained ACS
model is still better performing. Besides, negative transferring
is observed for classification experiments by the Models
Genesis [51] encoder-only transferring, whereas the ImageNet
pretraining consistently improves the performance. Apart from
the superior model performance, the ACS model achieves
the best parameter efficiency in our experiments. Take the
segmentation task for example, the size of ACS model is 49.8
Mb, compared to 49.8 Mb (2.5D), 142.5 Mb (3D) and 65.4
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Fig. 4. Performance of ACS, 2.5D, 3D and MG [51] on LIDC-IDRI [60] lung nodule classification and segmentation vs. the training data scale.

TABLE VI
LITS [65] SEGMENTATION PERFORMANCE ON LESION AND LIVER. DG:
DicE GLOBAL. DPC: DIGE PER CASE.

Lesion Liver
Models DG  DPC DG DPC
H-DenseUNet [22] 824 72.2 96.5 96.1
Models Genesis [51 - - - 91.13 £1.51
P3SC; [39] r. 72.6 59.1 93.9 94.2
2.5D DeepLab r. 72.9 56.9 93.1 92.7
2.5D DeepLab p. 734 604 92.9 92.0
3D DeepLab r. 75.5 62.6 94.8 94.8
3D DeepLab p. 13D [56] 76.5 58.2 94.1 934
3D DeepLab p. Med3D [50] 67.1 53.9 92.0 93.6
3D DeepLab p. Video [49] 66.3 56.9 92.5 93.2
ACS DeepLab r. 75.3 62.4 95.0 94.9
ACS DeepLab p. 79.1 65.8 96.7 96.2

Mb (MG [51)).

As showed in Fig @] models with pretraining consistently
outperform those without pretraining under various training
data scales. Moreover, when trained with 25% data, the
performance gap between p. and n. reaches the highest, which
implies the efficiency of pretraining for limited annotated data.
Note that ACS p. consistently outperforms all counterparts, no
matter how much training data are leveraged.

C. Liver Tumor Segmentation (LiTS) Benchmark

1) Dataset: We further experiment with our approach on
LiTS [65], a challenging 3D medical image segmentation
dataest. It consists of 131 and 70 enhanced abdominal CT
scans for training and testing respectively, to segment the liver
and liver tumors. The training annotations are open to public
while the test ones are only accessible by online evaluation.
The sizes of z, y axis are 512, while the sizes of z axis vary
in the range of [50,1000]. We transpose the axes into z,y,
to keep the concept consistent as previously mentioned. For
pre-processing, we clip the Hounsfield Unit to [—200, 250] and
then normalize to [0, 1]. Training data augmentation includes
random-center cropping, random-axis flipping and rotation,
and random-scale resampling.

>The author only releases the pretrained model on chest CTs, thereby we
simply report the evaluation metric provided by the paper.

2) Experiment Setting: A DeepLabv3+ [34] with a
backbone of ResNet-101 [54] is used in this experiment.
The pretrained 2D model is directly obtained from PyTorch
torchvision package [25]. The compared baselines are similar
to those in the above LIDC experiment (Sec. [[V-B). We train
all the models for 6000 epochs. An Adam optimizer [61] is
used with an initial learning rate of 0.001, and we decay the
learning rate by 0.1 after 3000 and 4500 epochs. At training
stage, we crop the volumes to the size of 64 x 224 x 224. As for
testing stage, we crop the volumes to the size of 64 x512x512
and adopt window sliding at a step of 24 at z axis. Dice global
and Dice per case of lesion and liver are reported as standard
evaluation on this dataset.

3) Result Analysis: As shown in Table [V consistent model
performance as LIDC experiment (Sec. can be observed.
The pretrained ACS DeepLab achieves better performance
than the 2D and 3D counterparts (including self-supervised
pretraining [51]) by large margins; without pretraining, ACS
DeepLab achieves comparable or better performance than
3D DeepLab. According to pretraining results on 13D [56],
Med3D [50] and Video [49] for 3D DeepLab, negative
transferring is observed, probably due to severe domain shift
and anisotropy on LiTS dataset. We also report a state-of-the-
art performance on LiTS dataset using H-DenseUNet [22] as
a reference. Note that it adopts a completely different training
strategy and network architecture (a cascade of 2D and 3D
DenseNet [55] models), thereby it is insuitable to compare to
our models directly. It is feasible to integrate these orthogonal
contributions into ours to improve the model performance.

A key advantage of the proposed ACS convolution is
that it enables flexible whole-network conversion together
with the pretrained weights, including the task head. In
the supplementary materials, we validate the superiority of
whole-network weight transferring over encoder-only weight
transferring. The previous pretraining methods, e.g., I3D [56],
Med3D [50] and Video [49], hardly take care of the scenarios.

D. Universal Lesion Detection on DeeplLesion

1) Dataset: DeepLesion dataset [3] consists of 32,120 axial
CT slices from 10,594 studies of unique patients. There are 1
to 3 lesions in each slice, with totally 32,735 lesions from
several organs, whose sizes vary from 0.21 to 342.5mm.
RECIST diameter coordinates and bounding boxes were
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TABLE VII
PERFORMANCE ON THE DEEPLESION BENCHMARK [3], IN TERMS OF DETECTION SENSITIVITY (SENS, %) AT VARIOUS FALSE POSITIVES (FPSs)
PER IMAGE. NOTE THAT MULAN [8] USES EXTRA CLASSIFICATION TAG SUPERVISION AND AN ADDITION SCORE REFINEMENT LAYER (SRL) WITH
TAG INPUTS; WE REPORT ITS PERFORMANC UNDER PUBLIC 171-TAG SUPERVISION AS WELL AS THAT WITHOUT SRL.

Methods Venue Slices  Sens@0.5 Sens@1 Sens@2  Sens@4  Sens@8  Sens@16  Avg.[0.5,1,2,4]
3DCE [67] MICCAT' 18 x27 62.48 73.37 80.70 85.65 89.09 91.06 75.55
ULDor [68] ISBI’'19 x1 52.86 64.8 74.84 84.38 87.17 91.8 69.22
Volumetric Attention [69] MICCAT' 19 X3 69.10 77.90 83.80 - - - -
Improved RetinaNet [70] MICCAT' 19 X3 72.15 80.07 86.40 90.77 94.09 96.32 82.35
MVP-Net [71] MICCAT' 19 x3 70.01 78.77 84.71 89.03 - - 80.63
MVP-Net [71] MICCAT’ 19 X9 73.83 81.82 87.60 91.30 - - 83.64
MULAN (Mask R-CNN) [8] MICCAT' 19 X9 76.12 83.69 88.76 92.30 94.71 95.64 85.22
MULAN (Mask R-CNN) w/o SRL [8] MICCAI'19 X9 - - - - - - 84.22
2.5D Mask R-CNN r. Ours x3 70.34 79.11 86.16 90.94 94.04 96.01 81.64
2.5D Mask R-CNN p. Ours X3 72.57 79.89 86.80 91.04 94.24 96.32 82.58
3D Mask R-CNN r. Ours X3 63.58 74.63 82.88 88.03 91.39 93.99 77.28
3D Mask R-CNN p. I3D [56] Ours x3 72.01 80.09 86.54 91.29 93.91 95.68 82.48
ACS Mask R-CNN r. Ours X3 72.52 80.85 87.10 91.05 94.39 96.12 82.88
ACS Mask R-CNN p. Ours X3 73.00 81.17 87.05 91.78 94.63 95.48 83.25
2.5D Mask R-CNN r. Ours X7 73.37 81.13 86.73 90.96 93.99 95.79 83.05
2.5D Mask R-CNN p. Ours X7 73.66 82.15 87.72 91.38 93.86 95.98 83.73
3D Mask R-CNN r. Ours X7 64.10 75.14 82.13 87.44 91.53 94.22 77.20
3D Mask R-CNN p. 13D [56] Ours X7 75.37 83.43 88.68 92.20 94.52 96.07 84.92
ACS Mask R-CNN r. Ours X7 78.01 84.75 88.97 91.76 93.79 95.26 85.87
ACS Mask R-CNN p. Ours X7 78.38 85.39 90.07 93.19 95.18 96.75 86.76

Truncated DenseNet-121 Backbone with 2.5D/3D/ACS Convolutions

/ % [ 64051285428 | -+ 256-0x128:128 | -+ 5120564564 |-+| 1024x062:2 |
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Fig. 5. llustration of the Mask R-CNN [66] for universal lesion detection
on DeepLesion [3]. The 3D backbone is converted from a truncated
DenseNet-121 [8], [55] with 2.5D/3D/ACS convolutions.

Ground Truth

[C] Ground Truth [] True Positives [_] False Positives

Fig. 6. lllustration of universal lesion detection on the DeeplLesion
Benchmark. Predicted results with 7-slice inputs are depicted. We
also demonstrate the predicted segmentation contours and RECIST
diameters in the figure.

labeled on the key slices, with adjacent slices (above and below
30mm) provided as contextual information. We use GrabCut
algorithm to generate weak segmentation “ground truth” from
weak RECIST labels [70]. Hounsfield units of the input are
clipped into [—1024, 2050] and normalized. The thickness of
all slicces is normalized into 2mm.

Data augmentation including horizontal flip, shift, rescaling
and rotation is applied during training stage, no test-time
augmentation (TTA) is applied. We resize each input slice to
512 x 512 before feeding into the networks. We use official
data split (training/validation/test: 70%/15%/15%). To evaluate
detection performance, sensitivity at various false positives
levels (i.e., FROC analysis) is tuned on the validation set and
evaluated on the test set.

2) Experiment Setting: As illustrated in Fig. |§|, a detection
and instance segmentation network based on Mask R-CNN
[66] with a same backbone of previous state-of-the-art
MULAN [8] is developed for universal lesion detection. Since
the inputs are 3D slices whereas only 2D key-slice annotations
are available on DeepLesion dataset [3], we use a 3D backbone
(truncated DenseNet-121 [55] converted with 2.5D/3D/ACS
convolutions) with a 2D outputs. All 2D 2 x 2 pooling
operators are converted into 3D 1 x 2 x 2 pooling. The
encoder takes a grey-scale 3D tensor of 1 x D x 512 x 512 as
input, where D is the length of key slices (D = 3,7 in this
study), and extracts 3D features through three dense blocks.
The feature output of each dense blocks is processed by a
D x1x1 3D convolution and then squeezed into a 2D shape.
A 2D decoder then combines these features under different
resolutions and upsamples the features step by step. The final
feature map is fed into RPN head, BBox head and Mask head
for detection and instance segmentation supervised by weak
RECIST labels. We implement the Mask-RCNN with PyTorch
[25] and MMDetection [72].
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We adopt cross entropy loss for classification and smooth
L1 loss for bounding box regression in the RPN head and
BBox head, while in the Mask head we adopt the dice loss.
These losses weigh equally to form the final loss function. We
use an momentum SGD optimizer to train the models for 20
epochs. The learning rate is initialized as 0.02 and multiplied
by 0.1 at epoch 10 and 13.

3) Result Analysis: As depicted in Table the proposed
ACS Mask R-CNN with pretraining significantly outperforms
previous state-of-the-art MULAN [8]. Notably, we use only
the detection and RECIST supervision, without additional
information beyond the CT images such as tags from medical
reports and demographic information. 3D context modeling
with 3D and ACS convolutions is proven effective, especially
with more input slices. Pretraining consistently improves the
model performance for 2.5D, 3D and ACS convolutions. Large
performance gap is observed for 3D r. and 3D p., perhaps due
to the large model size of 3D convolutions. We also visualize
several examples of detection results in Fig.[6] Both 3D context
modeling and pretraining reduce the predicted false positives.

V. CONCLUSION

We propose ACS convolution for 3D medical images, as
a generic and plug-and-play replacement of standard 3D
convolution. It enables pretraining from 2D images, which
consistently provides singificant performance boost in our
experiments. Even without pretraining, the ACS convolution is
comparable or even better than 3D convolution, with smaller
model size and less computation. In further study, we will
focus on optimal ACS kernel axis assignment and integration
with other 2D-to-3D transfer learning operators.
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APPENDIX

A. Analysis of ACS Convolution Variants

We analyze the variants of ACS convolutions, including
Mean-ACS convolutions and Soft-ACS convolutions. We test
these three methods on LIDC-IDRI dataset, using the same
experiment settings and training strategy. As depicted in Table
@ the vanilla ACS outperforms its variants in most situations,
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TABLE A1
A COMPARISON OF ACS VARIANTS, WITH / WITHOUT PRETRAINING, IN
TERMS OF LIDC-IDRI SEGMENTATION DICE, CLASSIFICATION AUC,
ACTUAL MEMORY AND RUNTIME SPEED PER ITERATION.

Seg Cls Memory (Seg) Time (Seg)
ACS r. 75.1 92.5 6.6 Gb 0.95 s
M-ACS r. 74.4 89.9 7.8 Gb 1.49 s
S-ACS r. 75.0 89.3 9.9 Gb 1.58 s
ACS p. 76.5 94.9 6.6 Gb 095 s
M-ACS p. 75.1 92.7 7.8 Gb 149 s
S-ACS p. 75.9 95.1 9.9 Gb 1.58 s

and pretraining is useful in all cases. Specifically, Mean-ACS
is the worst under pretraining setting, due to its inability
to distinguish the view-based difference with a symmetric
aggregation. Soft-ACS outperforms others in some cases
(i.e., classification with pretraining). However, it consumes
more GPU memory and time at the training stage without
significant performance boost. We suspect the key issue of
Soft-ACS is the soft weights using Softmax, which tends
to be producing high-entropy outputs (i.e., around 1/3) as
Mean-ACS. Nevertheless, it is potential to improve the ACS
convolutions by sophisticated optimization techniques (e.g.,
temperature annealing) to automatically assign the ACS kernel
axes. Memory and time is measured with a batch size of 2, on a
single Titan Xp GPU. The memory consuming differs from the
theoretical analysis due to PyTorch internal implementation.

B. Whole-Network vs. Encoder-Only Pretraining

A key advantage of the proposed ACS convolution is that
it enables flexible whole-network conversion together with
the pretrained weights. We thereby validate the superiority
of whole-network weight transferring (WN) over encoder-
only weight transferring (EO). We train 4 models in different
pretraining setting: entirely randomly-initialized (ACS r.),
only the pretrained ResNet-101 backbone (ACS p.EO) on
ImageNet (IMN) [14] and MS-COCO (MSC) [15], and whole
pretrained model (ACS p.WN) on MS-COCO (MSC) [15].
The results are shown in Table [A2l It is observed that
with more pretrained weights loaded, the model achieves
better performance (p.WN>p.EO>r.), and the whole-network
pretraining achieves the best. Note that although methods
like 13D [56], Med3D [50] and Video [49] provide natively
3D pretrained models, apart from the underperforming
performance, these pretraining methods are less flexible and
versatile than our method. Generally, only the encoders
(backbones) are transferred in previous pretraining methods,
however the decoders of state-of-the-art models are also very
large in parameter size, e.g., the DeepLabv3+ [34] decoder
(ASPP) represents 27.5% parameters. The previous pretraining
methods hardly take care of the scenarios.

For the sake of completeness, we describe the detailed
calculation of ACS convolutions in Algorithm Our
PyTorch [25] implementation is open-source at https:
//github.com/M3DV/ACSConv/l Using the provided
functions, standard 2D CNNs could be converted into ACS
CNNs for 3D images with a single line of code, where 2D

TABLE A2

LITS SEGMENTATION PERFORMANCE OF ACS DEEPLAB “R."
(INITIALIZED RANDOMLY), “P.EO-IMN" (ENCODER-ONLY PRETRAINING
ON IMAGENET [14]), AND “P.EO-MSC" (ENCODER-ONLY PRETRAINING

ON MS-COCO [15]), “P.WN" (WHOLE-NETWORK PRETRAINING ON

MS-COCO (MSC) [15]). THE MODEL SIZES OF PRETRAINED WEIGHTS
OUT OF THE WHOLE MODELS ARE ALSO DEPICTED, PARAMETERS FROM

THE FINAL RANDOM INITIALIZED LAYER ARE NOT COUNTED.

Models Size of ' Lesion Liver
Pretrained Weights DG DPC DG DPC
ACSr. 0 Mb (0%) 75.2 62.1 95.0 94.9
ACS p.EO-IMN 170.0 Mb (72.5%) 753 64.3 94.7 94.0
ACS p.EO-MSC 170.0 Mb (72.5%) 76.1 61.6 95.5 95.0
ACS p.WN 234.5 Mb (100%) 78.9 65.3 96.7 96.2

pretrained weights could be directly loaded. Compared with
2D models, it introduces no additional computation costs, in
terms of FLOPs, memory and model size.

Algorithm 1: ACS Convolution
Input: X; € RC,;xD,XHixWi, W € RCOXCiXKXK,
padding: p, stride: s, dilation: d, view : V = {q, ¢, s},
kernel split: (Céa), Cff), Cés)), ZUV(C((,U)) =C,,
pad: compute the padded tensor given an axis to
satisfy the final output shape same as Conv3D,
unsqueeze: expand tensor dimension given an axis.
Output: X, € RC*XDoxHoxW,
Compute ACS kernels: W, € RO X Cix KxKx1,
Wc € RC&C)XC%XKXIXK’ Ws c RC(()S)XCinxKXK
W, = unsqueeze (W0 : CS“’], azris = a);
W, = unsqueeze (W[C(()a) : C(()a) + C(gc)], azis = c);
W, = unsqueeze (W[C’éa) + )], axis = s);
2 Compute view-based 3D features from three views:
for vin V ={a,c,s} do
X () = Conv3D ( pad
(X5, p, 8,d, aris = v), Wy,
stride = s, dilation = d) € IRCC()“)XDOXHOXWO;

3 X, = concatenate ([ X, X (9, X ()], azis = 0).

-

from torchvision.models import resnetl8
from acsconv.converters import ACSConverter
# model_2d is a standard PyTorch 2D model

model_2d = resnetl8 (pretrained=True)
# model_3d is dealing with 3D data
model_3d = ACSConverter(model_2d)

Actual memory consuming and runtime speed are reported
in Table [A3] Due to the engineering issues (PyTorch internal
implementation), the memory of ACS convolutions is large
than that of 2D (2.5D) and 3D convolutions, yet theoretically
identical. It is expected to be fixed (6.6 Gb to 5.0 Gb)
in further implementation by custom memory checkpointing.
Even though time complexity of ACS and 2D convolutions
is the same, the parallelism of the ACS convolutions is
weaker than that of 2D convolutions. Thereby, the actual
runtime speed of ACS convolutions is slower than that of 2D
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TABLE A3
MODEL PERFORMANCE, MEMORY CONSUMING AND RUNTIME SPEED OF
2D (2.5D) AND 3D AND ACS CONVOLUTIONS.

Seg Cls Memory (Seg) Time (Seg)
2Dr. 68.8 89.4 5.0 Gb 0.57s
3Dr 74.7 90.3 5.0 Gb 1.01s
ACS 1. 75.1 92.5 6.6 Gb 0.95s

TABLE A4

VGG-16 [62] RESULTS ON LIDC-IDRI LUNG NODULE SEGMENTATION
(DICE GLOBAL) AND CLASSIFICATION (AUC).

Models Segmentation Classification
2.5D VGG-16 1. 71.0 89.7
2.5D VGG-16 p. 71.6 93.9

3D VGG-16 r. 75.0 91.7

3D VGG-16 p. 13D [56] 75.5 94.0
ACS VGG-16 1. 752 94.2
ACS VGG-16 p. 75.8 9.3
convolutions.

To generate the 2D dataset in the proof-of-concept
experiments, we first equally divide a blank 48 x 48 2D image
into four 24 x 24 pieces. We randomly choose 3 out of the
4 pieces and in each of the selected piece, we generate a
random-size circle or square with same probability at random
center. The size is limited in the 24 x 24 piece. Thereby, the
generated shape is guaranteed to be non-overlapped. Similarly,
for generating 3D dataset, we equally divide a blank 48 x 48 x
48 3D volume into eight 24 x 24 x 24 pieces. We randomly
choose 4 out of the 8 pieces and in each of the selected piece,
we generate a random-size cone, pyramid, cube, cylinder or
sphere with same probability at random center. The size is
limited in the 24 x 24 x 24 piece. For both 2D and 3D datasets,
we add A (0,0.5) Gaussian noise on each pixel / voxel.

Apart from the ResNet [54] in the main text, we further
experiment with the proposed ACS convolutions on LIDC-
IDRI lung nodule classification and segmentation task, using
VGG [62] and DenseNet [55]. The experiment settings are
exactly the same. As depicted in Table [A4] and [A35] the
results are consistent with the main text. The 3D (3D and
ACS) models outperform the 2D (2.5D) ones. The randomly-
initialized ACS models are comparable or better than the 3D
models; when pretrained with 2D datasets (e.g., ImageNet
[14]), the ACS models consistently outperform the 3D ones.

TABLE A5
DENSENET-121 [55] RESULTS ON LIDC-IDRI LUNG NODULE
SEGMENTATION (DICE GLOBAL) AND CLASSIFICATION (AUC).

Models Segmentation Classification
2.5D DenseNet-121 r. 67.4 87.4
2.5D DenseNet-121 p. 71.8 92.6
3D DenseNet-121 r. 73.6 90.0
3D DenseNet-121 p. I3D [56] 73.6 90.0
ACS DenseNet-121 r. 734 89.2

ACS DenseNet-121 p. 74.7 92.9
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