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Adaptive Gaussian Mixture Model Driven Level
Set Segmentation for Remote Pulse
Rate Detection

Alexander Woyczyk

Abstract—This paper presents an approach for pulse rate
extraction from videos. The core of the presented approach
is a novel method to segment and track a suitable region of
interest (ROIl). The proposed method combines level sets
with subject-individual Gaussian Mixture Models to yield a
time varying ROI. The ROI builds up from multiple homoge-
neous skin areas under constraints regarding the area and
contour length of the ROI. Together with state of the art sig-
nal processing methods our approach yields an Mean Av-
erage Error (MAE) of 2.3 bpm, 1.4 bpm and 2.7 bpm on own
data, the PURE database and the UBFC-rPPG database, re-
spectively. Therewith, our method performs equal or better
compared to widely used approaches (e.g. the KLT tracker
instead of the proposed image processing yields an MAE
of 2.6 bpm, 2.6 bpm and 4.4 bpm). Such results and the
2nd place with a MAE of 7.92 bpm in the 1st Challenge on
Remote Physiological Signal Sensing prove the applicabil-
ity of the proposed method. The taken approach, however,
bears further potential for optimization in the context of
photoplethysmography imaging and should be transferable
to other segmentation tasks as well.

Index Terms—Active contours, bayesian, biomedical
informatics, biomedical monitoring, biomedical signal
processing, heart rate, image segmentation, level set,
object detection, object segmentation, PPGI, pulse rate.

[. INTRODUCTION

HOTOPLETHYSMOGRAPHY imaging is a non-contact

method for acquisition of photophlethysmography (PPG)
signals. As conventional PPG, photoplethysmography imaging
(PPGI) relies on the absorption of light within tissue and blood
vessels. Light encountering skin tissue is partly reflected at the
surface and partially transmits through the tissue, where it is
scattered and absorbed [1]. A part of the scattered light is re-
emitted and using a photo-detector, it is possible to measure the
amount of light originating from the skin surface (i.e. reflected
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and scattered light). The recorded light intensity features slight
variations due to local blood volume changes induced by the
heart activity [2]. PPGI omits the use of contact equipment (con-
sisting of light source and photo-detector) in favour of cameras
located at a distance to the patient. The remote acquisition has
the advantage of avoiding bruises from ear or finger clips and can
be used despite of injured skin. Also it requires less disinfecting
and grants the patient more freedom of movement.

While PPGI features multiple physiological information, the
pulse rate and pulse rate extraction is most often addressed [3].
Early work of Humphreys et al. demonstrated the extraction of
physiological signals via camera using discrete light sources [4].
Verkruysse et al. laid another milestone regarding the remote
measurement of PPG signals, showing that pulse signals can
be obtained using ambient light as well [5]. Their observations
confirmed that intensity variations in videos correspond to the
PPG. Since such early works, several modifications and im-
provements have been presented. Today’s common procedure to
extract the pulse rate from videos consists of four steps, namely
image processing, i.e. segmentation of a region of interest (ROI)
and its tracking, pulse signal formation, e.g. the combination
of color channels or fusion of spatial information, signal pro-
cessing, i.e. filtering, and pulse rate extraction. All steps are
relevant and only a proper combination of them guarantees a
high performance. During recent years, huge progress has been
made in pulse signal formation, signal processing and pulse rate
extraction. Particularly, the combination of color channels, e.g.
by independent component analysis (ICA) [6] or by methods
like CHROM and POS [7], [8], can have enormous (positive)
impact on the performance [9].

As fewer works direct at image and video processing, our
work has its focus on such aspects. We propose a novel method
to segment and track a suitable (ROI). The proposed method
combines subject individual Gaussian mixture model (GMM)
with a level set formulation to yield a time varying ROI. This
work builds upon the ideas of our contribution that won the
second place at the 1st RePSS challenge [10]. We refined our
initial approach and conducted intensive tests on different data.

The remainder of the work is structured as follows. Section II
gives an overview on the most widespread image processing
approaches for pulse rate extraction from videos. Section III
provides some background to Gaussian Mixture Models
and Level sets. Section IV describes the novel method for
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segmentation and tracking of a ROI. Section V describes the
used data and evaluation strategy. Sections VI to VIII give
results, discuss them and draw final conclusions.

[l. OVERVIEW ON IMAGE AND VIDEO PROCESSING
FOR PPGI

As stated before, PPGI invokes multiple steps. In the fol-
lowing we provide a short overview on the most important
approaches to image processing for PPGI.

Though PPGI applies to all skin regions, the vast majority
of works rely on the face as it features several advantages over
other skin areas. Firstly, most of the time it is not covered by
clothes. Secondly, it has a large skin area and good perfusion,
which is essential to the extraction of a pulse signal. And thirdly,
it features prominent landmarks and other features, which facil-
itate automatic detection [11]. One basic approach (but the most
often employed) is the use of a cascade classifier to detect the
face as described by Viola and Jones [12]. The algorithm uses
Haar-like image filters to recognize facial features and results
in a bounding box indicating its position and size. Pulse signals
for every color channel are then extracted by averaging over the
image data of the face bounding box [13]. A major drawback
of this method is its limitation to predefined viewing angles on
the face. In order to deal with rotation as well as movement
of the subject, a very common solution is the usage of a point
tracking algorithm, e.g. Kanade-Lucas-Tomasi Tracker [14], to
subsequently move the bounding box in accordance to subject
movement [15], [16]. A more detailed ROI can be achieved by
the usage of landmark detectors. A set of facial landmarks, e.g.
eyes, nose, mouth and jaw line, are detected, and those landmarks
are either used as anchor points for an ellipsoid ROI [17] or used
to define the outer corners of a polygon which serves as ROI [18].

Face detection methods allow to focus on relevant areas and
reduce the number of background pixels. Additionally using
re-detection or tracking enables reduction of movement related
signal distortions. However, those methods are incapable of
detecting occluded skin areas, e.g. by hair or glasses. Therefore,
a combination of the above methods with skin detection can be a
solution. Skin detection can be achieved by using color thresh-
olds [19] or using more generic methods like Bayesian skin
detectors based on a probability matrix for all RGB values [20].
Labelling detected skin pixels, this procedure further reduces the
number of pixels used for signal extraction. Its disadvantage is
to rely on a skin model, which has to be general enough to detect
all kinds of skin tones under varying lighting conditions, while
at the same time being specific in order to limit false positives on
non-skin areas. Another approach to arefined ROI uses so-called
superpixels, i.e. subregions of an image. Superpixels can be
formed within a previously defined ROI, e.g. a bounding box,
or applied to a full frame. The selection or weighting of those
superpixels to be used typically invokes some signal processing,
e.g. the evaluation of its pulsatile character [21]. Po et al. use
block division of the face bounding box and a SNR based quality
measure for each block to form an adaptive ROI [22].

Although the aforementioned methods and their combination
can yield good results, they have some limitations. As stated

before, using bounding boxes includes non-skin areas. An ad-
ditional skin classification is helpful. Skin classifiers, however,
typically do not make use of spatial dependencies and discard
available information, though recent research targeted this limi-
tation through the usage of convolutional neural network (CNN)
for skin segmentation [23].

In recent development CNN are also used to directly derive
physiological signals, e.g. Spetlik ef al. use a CNN to derive
the heart rate [24] from video data. Other techniques suffer
from (partial) occlusion. Owing to such limitations, Trumpp
et al. [25] proposed a method, which exploits color information
and spatial information. The method uses a level set formulation
to segment the skin area. The level set is evolved using a
Gaussian distribution for the skin and background RGB val-
ues. The method shows good results but also has limitations.
Firstly, it relies on univariate models, i.e. considers each color
channel independently. The interaction of color channels, and
therewith the skin signature, is not used. Secondly, modelling
of foreground and background relies on single Gaussians. In
case of mixed backgrounds (which might often be the case) or
foregrounds (e.g. in case of inhomogeneous illumination) this
can, but does not have to, lead to faulty segmentations.

This contribution aims to overcome such limitations. Com-
pared to [25] we adhere to the idea of using level sets but
we introduce a novel formulation, which allows to include
multivariate modelling through mixtures of Gaussians. To the
best of our knowledge the method of combining level sets with
Gaussian Mixture Models in RGB space has not been explored
widely. Though Soffientini er al. use a GMM driven level set on
grayscale PET data [26], this is the first time, that a GMM based
level set is formulated in RGB space in order to segment patches
of similar textures, e.g. skin areas.

[ll. METHODS

For our method we combine GMM and level set/active con-
tour for adaptive ROI segmentation. We support the level set with
probabilistic foreground and background models (i.e. GMM).
Our approach therefore contains four components: First, we
use unsupervised training of the GMM to model foreground
(skin) and background by using the starting frame of a video se-
quence. Second, GMM are used to assign fore- and background
probabilities to each pixel. Third, using level set, we combine
these probabilities with additional constraints regarding area
and contour length to yield a smooth area, which is used as
ROI. Fourth, we initialize the ROI for the next frame with the
previously ROI and repeat steps two and three for the new frame.
The following description thus will provide basic information
on GMM and level set and afterwards goes into detail of the
concrete algorithm.

A. Gaussian Mixture Models

GMM are used to approximate unknown distributions, e.g.
histograms of color distributions. Using these models as class
description it is possible to predict the probability of class
affiliation of an observation, e.g. color value of a pixel. GMM
model the data distribution by the combination of multiple



Gaussian distributions. The single Gaussians are entitled as
components of the GMM. Using the notation N (u1, o2) for a
Gaussian distribution with mean x4 and standard deviation o, the
approximated data distribution is

K
> N (s 07) ()

k=1

where K denotes the number of Gaussians and 7, each Gaus-
sian’s weight, according to its prior probability. For use in
higher dimensional spaces, as the utilized RGB color space,
it is necessary to expand the Gaussians to m dimensions
(i.e. 3-dimensional space for RGB), making p a point in m-
dimensional space and o expanding to the m x m covariance
matrix 3. Using the above definitions and Bayes’ theorem, the
posterior probability of an observation u, e.g. the observed pixel
color in RGB space, belonging to any component k£ can be
calculated by

N(ulpy, i)
p(Zk |u> 7Tk Z(I,(zl To * N(u‘“m 2o)

where z;, = 1 indicates u belonging to component k.

To use a GMM, its parameters first have to be determined by
fitting the model to a sample distribution. Therefore, the number
of components is set to a fixed size, either by prior knowledge
or an assumption about the expected distribution. The GMM
itself is fitted to the sample data U = {u; ... ur} using the
expectation-maximization (EM) algorithm. The EM algorithm
alternates between an expectation and a maximization step. The
expectation step is used to categorize the sample data, whereas
the maximization step modifies the models parameters. A practi-
cal way to get an initial estimation for each GMM component is
achieved by the K-means algorithm [27]. Using the estimations
for each component and (2), each observation is assigned an
expectation for each component. Using the expectations, the
maximization step modifies the parameters for every component
to better fit the observed data. For better readability, the posterior
probability p(z = 1|u;) will further be substituted by 7; ;.. The
weights 75, means p;, and covariance Xy, respectively, are
updated by
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This process leads to a local maximum of the log-likelihood
function of the entire model, which is given by
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The posterior probability of a sample u belonging to the model
can then be calculated using the following formula

K
p(u) =Y mN (ulpy, k). (7)

k=1

B. Level Set Contour Description

Level sets are able to produce a segmentation based on a
contour description. The contour is described by an energy
function, which is approximated based on different aspects, as
image data, size or shape of the contour. They hereby implicitly
represent a contour in the two dimensional image space [28].
This is achieved by defining a continuous function over the im-
age space, which integrates image data and smoothness. Using
a threshold plane the contour is described by the intersection
of the plane with the energy function so that each point can be
distinctly assigned to the outer or inner side of the contour based
on its energy value. Combining the level set method with an
active contours approach, the contour can be evolved to satisfy
smoothness or image data related constraints. The contour is
therefore evolved over a series of iterations or time steps ts.
Since the level set function ¢ is defined for every position x
within the image’s x-y plane, the contour at each time step is
given with all points where ¢(x,ts) = 7 for threshold 7 [29].
The inside of the contour is then implicitly defined by all points
where ¢(x,ts) > 7. Every point is either inside, outside or part
of the boundary according to its current ¢ value. This definition
of a contour is beneficial as it does not have to deal with self
intersections of the contour.

Chan and Vese presented one fundamental approach of a level
set function in 1999 by describing the evolution of the contour
with an energy minimization problem [30]. They formulate the
total energy F of a contour C' and its enclosed area C within the
image (2 by

F(C701702):/€'%dT+V-//d(Edy
c foi
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o

+ Ao - // u(z,y) — codady.  (8)
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The energy consists of the length of the contour, the area it
encloses and as image data property the distance of every pixels
intensity u(z,y) to its regions average intensity c¢; (for the
inside) or ¢, (for the outside). The factors «, v, A1, and Ao are
weights for the different aspects of the total energy. A large w
penalizes high curvature and thus results in a smoother contour. v/
is used to penalize the area enclosed by the contour. Additionally
v determines if the enclosed area has a stronger force to shrink (v
used with positive sign) or to grow (v used with negative sign).
Chan and Vese derive, through discretisation and linearisation,
a numeric formulation to update the ¢ function at position (4, j)
with ¢, j being the discrete pixel positions, fictional space and
time steps h and At, n being the index of fictional time steps
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and dy, an approximation of the dirac function [31].
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Because of computation time and discrete space steps based
on the pixel level, gradients in (9) are only calculated on a
local neighbourhood and therefore are substituted by the finite
differences given in (10).

AT¢ij = ¢ij— Gi-15, ALdij = dit1; — bij,

AV i =iy —bijo1, ALdij=dijr1—diy; (10)

IV. ROl SEGMENTATION BY LEVEL SET AND GMM
A. Algorithmic Approach

The proposed algorithm for ROI segmentation combines level
set and GMM. The original level set approach by Chan and Vese
is limited to separation between two mean values in monochro-
matic images (i.e. mean foreground intensity and mean back-
ground intensity). This limitation may lead to difficulties when
the background’s intensity distribution overlaps or envelopes the
foreground’s distribution. In order to deal with colored images
and heterogeneous backgrounds, we employ GMMs that model
the color distribution of fore- and background (i.e. skin and
non skin) instead of a mean intensity values. These GMMs are
formed of multiple kernels in order to be able to model various
color distributions. Since color distributions for the face region
often show multi-variate distributions (e.g. due to shadows or
non-uniform illumination), the skin-GMM was initially set to
three kernels. Within this contribution the GMMs are trained
for each video sequence individually and the non-skin kernel
number remains fixed for all sequences and data sets, whereas
the number of skin kernels is automatically adapted to each
subject or video sequence. The proposed algorithm thus features
two steps, namely GMM initialization and ROI segmentation,
which are detailed in the next sections. The algorithm was
implemented in C++ using OpenCV [27].

B. Initialization of GMMs

The initialization features three stages, face detection, setting
up model parameters and model training. Using the first frame,
the subject’s face is detected by a cascade classifier. The pre-
sented algorithm uses the pre-trained Haar cascade distributed
with OpenCV to detect faces [27]. Pixels from the resulting

bounding box are then used to train the skin GMM. In order
to eliminate kernels representing non-skin color from the skin
GMM, each kernel is evaluated by combining the kernel’s
probability distribution with the probability distribution of the
skin classifier, pskincr, described by Jones and Rehg’s skin
model [32]. The combined weight s, of each kernel k is given
by

r r
Zf:o ZgG=o Zszo pskncL [ {9 | |- N | 9] 1w Bk
b b
S —
a B "
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Dm0 290 2bmo N | | 9| 1k, B

b

(1)

Because of the 3-dimensional RGB space, pixel intensities are
denoted as 3-dimensional vectors u = (rgb), holding intensity
values for every color channel. Using a decision threshold ©,
a kernel k is deactivated, if s < © - max(sy,...,sk). This
step dynamically reduces the number of actual used skin kernels
based on the image data. Practically, if a certain kernel is far from
the skin model, this will lead to exclusion of that kernel. For our
tests, © was set to 0.3 (as general purpose parameter). Lastly,
the weights of the remaining kernels are adjusted to reflect the
new model with reduced kernels, i.e. weights of the remaining
kernels are normalized to sum up to 1. After setting up the skin
GMM, the pixels outside of the face bounding box are used to
train the non-skin GMM. Training of both GMMs is performed
by using the EM algorithm as described in Section III-A.

C. Segmentation of ROI

To segment the ROI, we modified the level set function as
described by Chan and Vese in order to incorporate both skin and
non-skin GMM:s. To that end, the data terms (u (4, j) — c1(¢™))?
and (u(i,j) — c2(¢™))? in (9) are substituted by data terms
based on both GMM models. Instead of the Euclidean distance
between a pixel and the average intensity of its class, we use
GMM based distances for the pixels RGB value. They are
defined by

. Pskin (u)
distgin(u) = (12
* n( ) Pskin (u) + PnonSkin (u) )
for all pixels assigned to the skin region and
disthonskin (u) = PronSkin (U) (13)

B pskin(u) + pnnnSkin(u)

for all background pixels. As described in (7), the posterior
probability pskin (and pponskin) 1S the cumulative posterior over
all components of the according GMM.

Since the distance function might yield high values when
both pgin(u) and pponskin(u) are small, an additional scaling
parameter is added to each distance measure according to

1

S 14
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and for the non-skin distance
1
log (pnonSkin (u)) '

Combining the above distance measures with the level set ap-
proach from (9) our iterative solution to propagate the ¢-function
reads as follows

wnonSkin(u) - (15)
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In order to limit calculation time, two stopping criteria are
formulated. The first triggers if the solution converges to a stable
segmentation, whereas the second is defined as a maximum num-
ber of iteration steps. The computed segmentation is afterwards
used to initialize the ¢-function in the subsequent frame, where
the iteration loop is restarted. This way the contour is allowed
to adapt to the new image data.

V. DATA AND EVALUATION STRATEGY
A. Video Data

The used data is composed of different, partially publicly
available, datasets to include a substantial number of subjects
and reflect a wide variety of experimental settings. Our analy-
ses primarily focus on uncompressed video data. Overall, we
include 145 video sequences of 74 subjects from uncompressed
databases. Details for such data are given below. For our discus-
sion, we further considered 673 video sequences of 67 subjects
in compressed databases, which will be shortly presented in
Section VII-B.

Cold pressure test data (CPT data): the data originates from
a custom cold pressure study. Video recordings captured the
subjects’ faces in frontal view at a distance of approximately
1 m by an RGB camera (UI-3370CP-C-HQ, IDS). Recordings
were done at a color depth of 12bit, a frame rate of 100 fps and
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aresolution of 420 x 320 pixels. Data was stored without com-
pression but reduced to 8bit color depth and a frame rate of 25 fps
before processing. The experimental setup was illuminated by
ambient and a fluorescent ceiling light. The reference pulse rate
was extracted from an electrocardiogram in a semi-automated
manner. The experimental protocol of the study consisted of an
initial resting phase followed by the CPT and another resting
phase [33]. During CPT, subjects immersed their hand into cold
water (4 °C). Within this contribution, we use a data segment
30 s before to 30 s after immersion of the hand into cold water.
This segment is challenging because it contains subject motion
together with a typical physiological reaction in pulse rate. 22
healthy subjects (age 25.5 & 3.73 years, 10 female) participated
in the study. Each participant took part twice, one time in supine
position and one time in sitting position. One recording had to
be discarded due to technical problems resulting in 43 video
sequences of 60 s each.

PURE dataset (PURE data)[34]: the data originates from the
Technical University Ilmenau, Germany and is available upon
request via http://www.tu-ilmenau.de/neurob/data-sets/pulse.
Video recordings captured the subjects’ faces in a frontal view at
adistance of about 1.1 mby a RGB camera (eco274CVGE, SVS-
Vistek GmbH). Recodings where done at a color depth of 8bit, a
frame rate of 30 fps and a resolution of 640 x 480 pixels. Each
frame was stored as uncompressed jpg file. The reference pulse
rate was extracted from a pulse oximeter (pulox CMS50E) in a
semi-automated manner. The recordings consist of 10 subjects (8
male, 2 female) performing different instructed tasks as talking,
head translation and head rotation. Each task was performed for
60 s, resulting in six 1-minute sequences per subject.

UBFC-rPPG dataset (UBFC data)[21]: the data originates
from the University of Burgundy - Franche-Comté, and is avail-
able upon request [21]. Video recordings captured the subjects’
faces at a distance of about 1m in frontal view by a RGB
camera (Logitech C920 HD Pro). Recordings were done at a
color depth of 8bit, a frame rate of 30 fps and a resolution of
640 x 480 pixels. Videos were stored as uncompressed files.
[lumination invoked varying amounts of sunlight and indoor
illumination. The reference pulse rate was extracted from a
transmissive pulse oximeter in a semi-automated manner. The
dataset consists of two parts, part one (labeled SIMPLE) features
videos, where the participants were instructed not to move during
the recording. Videos of the second part (labeled REALISTIC)
show a more realistic scenario, where participants conducted an
experiment. During the experiment, participants played a time
sensitive mathematical game that aimed at augmenting their
pulse rate while simultaneously emulating a normal human-
computer interaction scenario. The experiment lasted 60 s. 49
subjects participated in the study. Three recordings were not
usable due to technical problems. Of the remaining subjects,
42 agreed to provide their data for research purposes. In this
publication only videos of the second, realistic, part were used.

B. Reference Methods for ROl Segmentation

We tested our method against four methods, which were
frequently used in the literature. The first one, further denoted
as VJ static, uses the face detection system described in [12], to
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(a) ROI by LS-GMM (b) ROI by KLT-Skin

Fig. 1.

(c) ROI by KLT (d) ROI by LM

ROI of participants 37 (top) and 45 (bottom) from the UBFC-rPPG dataset. Images show, from left to right, our own LS-GMM method, the

KLT tracked bounding box with skin classifier, the tracked Viola Jones bounding box and the ROI defined by landmarks.

obtain a squared bounding box containing the face. This initial
ROI is kept static over the complete video sequence. In contrast
to other methods, as [13], we do not reduce the horizontal size
of the bounding box. The shrinking is usually applied in order
to better approximate the oval shape of the face, but since we are
expecting head movement and rotation in our videos we benefit
from additional space to the left and right of the face.

The second reference method, denoted as KLT, uses the
initial ROI from the VI static algorithm. Instead of keeping
the ROI at a fixed position, it is tracked over time using
the Kanade-Lucas-Tomasi algorithm. Using feature points, i.e.
Good-Features-to-Track [35], found within the ROI of a frame,
the algorithm calculates the new position of each feature point
in the next frame. A set of displacement vectors can then be
calculated from each feature’s old and new position. The shift
of the ROl is then calculated by averaging over all displacement
vectors.

The third method, denoted as KLT-Skin, builds upon the
tracked ROI of KLT. A Bayesian skin classifier is used to label
each pixel within the KLT ROI. The classifier, presented in [32],
uses probability density functions for both skin and non-skin
class in RGB space. Comparing the proportion of posterior
skin vs. posterior non-skin probability against a threshold value
results in the classification as skin or non-skin pixel. In order to
gain a smoother ROI and a less noisy signal the resulting binary
mask was dilated and spatial averaging over all mask pixels was
applied to extract the signal value.

The fourth method, denoted as LM makes use of facial
landmarks to define a ROI. Similar to Li et al. we used landmarks
to segment the cheeks [36]. Landmark detection is based on the
pre trained Dlib 68 landmark shape predictor [37]. The pulse
signal is generated by averaging the intensity values of every
pixel in both left and right cheek ROI.

Fig. 1 exemplarily shows the ROIs from all presented methods
(except VJ, since it is a stationary version of the KLT bounding
box). Al ROIs, our own and the four reference methods, undergo
the same signal processing steps to yield a pulse signal and
subsequently the pulse rate from it.

C. Signal Processing

The ROl is used as base for the subsequent processing steps,
namely signal extraction and pulse rate estimation.

For signal extraction multiple strategies have been described
in the literature, e.g. blind source separation or model based
approaches [8], [13]. We have employed various of them to
test the impact of using single or combining multiple color
channels. Within this contribution, we report results for the
green channel and CHROM [7]. The green channel was shown
to yield the highest signal quality as single channel [5], does
not require further computations and is widely used. Similarly,
CHROM [7] is a widely used and powerful method that serves
as representative of color combination approaches. Within our
tests we employed multiple methods for channel combination
like CHROM and POS. Despite producing very similar results
CHROM vyielded the overall best performance leading to the
decision to only present CHROM (using the proposed parameter
setting) in our results.

Pulse rate estimation is done by a sliding window with a win-
dow length of 10 s and a step size of 1 s. The found pulse rate is
assigned to the center point of the window. The extraction applies
to the whole record except the first and the last 5 s to account
for the used window length. We estimate the pulse rate for each
window independently in order to assure that stable pulse rates
do not impose a positive bias to the performance. The estimation
procedure thus applies to each single window of 10 s and reads
as follows. First, in order to remove trends and high frequency
components originating from image noise or artefacts, the signal
is band pass filtered. Filtering is implemented by applying two
fifth order butterworth low-pass filters in forward and reverse
direction and subtracting their outputs. The cut-off frequencies
are set to 0.8 Hz and 3 Hz. Secondly, we transform the filtered
signal to frequency domain using fast Fourier transform. Lastly,
the frequency component having the highest amplitude within
the range of 40 bpm to 180 bpm is considered as pulse rate. This
procedure is equally applied to all methods of signal extraction,
i.e. the green channel or CHROM.



TABLE |
PARAMETER CONFIGURATION OF THE LS-GMM METHOD
USED FOR EXPERIMETS

A1 = A2 | kK | v |max. iterations| © |non-skin kernel number
10.0 |0.1]0.3 100 0.3 5

VI. RESULTS
A. Evaluation Metrics

The evaluation is inspired by [38]. We use Availability, Root
Mean Square Error (RMSE) and Mean Absolute Error (MAE) to
assess the performance of the proposed method. The Availability
A(e) describes the percentage of correct pulse rate estimates
in dependency on the error margin e within a measurement is
considered as correct. For all N pulse rates within a dataset A(e)
is defined by

_ nyzl by (€)
Ale) = 7 (18)
with
1, if |A, 4
bn@:{’ if A < e o)
0, otherwise

where A,, denotes the difference between the belonging pulse
rates from the algorithm and a reference measurement according
to

A, = HR(AW) _ HR(Eef), (20)

The RMSE assesses the squared differences between algorithm
and reference considering the available estimates only. It is
defined by

N 2

RMSE(e) = \/ —Z”:}Vb”(e) A
2 n=1bn(e)

The depicted measure can be used in variable ways.
A(5 bpm), i.e. the Availability at an error margin of ¢ = 5 bpm
assesses the percentage of measurements within a margin of
5 bpm, which often serves as measure of performance. The
RMSE at Availability of 100% can be considered as overall
accuracy. RMSE shown over availability yields a receiver op-
erator characteristic (ROC) curve that illustrates the interplay
between both measures graphically. The ROC curve can be
used to get an idea on possible tradeoffs between Availability
and RMSE. Additionally we calculate the MAE at Availability
of 100% based on the following definition.

21

Soa 1 bale) - |A,
MAE(e) = 22
==y e .

B. Results

Fig. 2 shows the ROC curves using CPT, PURE and UBFC
datasets for KLT-Skin and the proposed method. As expected,
an increasing availability increases RMSE. Though the general
behaviour can be found in all databases, there are large absolute
differences between databases. Table II and Table III highlight
absolute differences between databases by giving mean values
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TABLE Il
RESULTS ON A(5 bpm), i.e. PERCENTAGE OF MEASUREMENTS WITH AN
ERROR LOWER THAN 5 bpm, FOR DIFFERENT DATABASES AND METHODS.
BoLD LETTERS MARK THE BEST RESULTS PER COLOR CHANNEL
AND DATABASE

CPT data PURE data UBFC data
Green CHROM |Green CHROM |Green CHROM
LS-GMM| 73.8 89.4 88.8 96.9 78.1 91.6
LM 49.1 80.3 48.9 69.4 56.9 65.9
KLT-Skin | 65.8 88.4 73.1 96.2 63.3 84.4
KLT 64.5 87.3 62.3 92.0 72.1 87.0
VI static | 63.7 88.2 66.7 84.5 79.5 87.9
TABLE IlI

RMSE AT A(oco bpm), i.e. 100% AVAILABILTY, FOR DIFFERENT DATABASES
AND METHODS. BOLD LETTERS MARK THE BEST RESULTS PER COLOR
CHANNEL AND DATABASE

CPT data PURE data UBFC data

Green CHROM |Green CHROM |Green CHROM
LS-GMM| 8.9 3.9 6.0 2.3 12.2 4.0
LM 15.9 7.2 18.9 11.9 19.4 14.5
KLT-Skin | 10.6 4.1 11.5 2.9 16.8 6.4
KLT 10.8 4.1 12.3 4.7 14.2 6.9
VIJ static | 11.1 4.7 12.5 6.3 9.6 6.4

on A(5 bpm) and RMSE at Availability of 100% for different
methods. Fig. 3 shows Bland Altman plots and correlation
coefficients of our method and KLT-Skin in comparison. Our
method not only results in lower standard deviation, but also
has a higher correlation coefficient in every database. All results
for our method were obtained using the parameter configuration
introduced in Table I, if not specified differently.

VII. DISCUSSION
A. Discussion on Results

Overall, our results give a highly consistent picture on the per-
formance of the proposed method. LS-GMM performs best in all
databases, selected color channels or color channel combination
and according to all quality measures with only one exception,
namely using the green channel in UBFC dataset (details below).

As expected, CHROM causes a significant boost of the results
over the green channel. LS-GMM on average slightly improves
the results compared to the other methods. The positive effect
is much more pronounced on the green channel. This finding
is a strong hint at the proper function of the segmentation by
LS-GMM. Considering CHROM, the effect of LS-GMM is
much less pronounced but still existing. This can be attributed,
most importantly, to the strength of CHROM, which is able to
remove distortions resulting from inaccurate ROI segmentation
or tracking, respectively. Considering the UBFC-rPPG dataset,
LS-GMM yields 91.6% availability at 5 bpm and outperforms
results reported in other publications. Using the realistic part of
UBFC-rPPG, e.g. Macwan et al. yield 87% precision at 5 bpm
tolerance) using constrained ICA [39], Li et al. yield 87.6%
precision at 5 bpm tolerance using weighted mask model [40]
and Bobbia et al. report 89% using weighted superpixels [21].
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Fig. 2. ROC curves for all databases. The plots show results for the green channel (green line) and CHROM (black line) using KLT-Skin (upper
row) and the LS-GMM (lower row).
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Effect of the threshold © on the availability A(5 bpm) using the LS-GMM method (solid lines). Dashed lines indicate the perfomance of

using KLT. Black lines indicate usage of CHROM, green lines indicate the usage of the green color channel. The red vertical line indicate the used
general purpose parameters. Overall, the LS-GMM method behaves stable but has maxima at varying values. Using © = 0.6 or higher values

generally result in a slight decrease.

TABLE IV
MAE AT A(co bpm), i.e. 100% AVAILABILTY, FOR DIFFERENT DATABASES
AND METHODS. BOLD LETTERS MARK THE BEST RESULTS PER COLOR
CHANNEL AND DATABASE

CPT data PURE data UBFC data
Green CHROM |Green CHROM |Green CHROM
LS-GMM| 5.5 2.3 4.1 14 8.4 2.7

LM 11.2 4.4 14.7 8.9 14.3 10.8
KLT-Skin| 7.1 2.6 8.0 1.6 11.4 4.0
KLT 73 2.6 9.5 2.6 10.0 44

VI static | 7.5 3.0 10.5 49 7.0 43

Such findings underline the efficiency of LS-GMM. When inter-
preting the results one has to keep in mind that the UBFC data
shows only small movement, accordingly using a static ROI
as VJ yields nearly as good results as other methods or even
outperforms them. This may be caused by artifacts introduced
by skin classification or non stable tracking points. In the CPT
data movement mostly consists of short, fast head movements,
while subjects are looking at their arm. Here the available area
of skin changes significantly, which may explain the worse
results using ROIs without skin detection as in KLT or VJ
static. Lastly, the strength of LS-GMM method, being able to
maintain a qualitatively superior ROI during motion and mimic,
is evident, when evaluating the results on the PURE dataset,
where 2/3 of the videos show translational or rotational head
motion. Our method achieves an availability of 96.9% at 5 bpm
and surpasses all reference methods. With an RMSE of 2.3 it is at
scale with recent CNN based approach [24], though differences
in the results of CHROM in our paper and [24] (2.9 in ours vs.
2.5 in Spetlik et al.) suggest differences in HR evaluation.
Remarkably, we obtained the results from Table II to Table IV
using general purpose parameters (i.e. using the fixed parameter
setting from Table I for all datasets). Most importantly, this re-
lates to the threshold ©, which controls the number of Gaussian
kernels that is actually used to model the foreground per video. It
balances between using all three kernels (probably adding facial
hair, eyes or mouth to the model) and using only one kernel
(omitting different lighted skin patches). For the evaluation, we
globally selected © = 0.3. At © = 0 all kernels would remain
part of the GMM while © = 1 would use a single kernel, the

highest weighted, only. In order to determine the influence of an
individually adjusted number of kernels for the skin GMM, the
decision factor © was tested by gradually increasing its value
by 0.1 from 0.0 to 1.0 for each dataset. The resulting ROIs were
evaluated based on the availability at 5 bpm heart rate (HR). The
results for different data sets can be found in fig. 4. According to
fig. 4, all data sets have in common that combining multiple
kernels yields better results than using only a single one. It
further turns out that, though © = 0.3 being a good tradeoft,
all databases have individual maxima. In other words: LS-GMM
can yield even better results than reported in Table IT underlining
the high potential of the method. Results should further improve
if a patient-specific threshold is used. However, of course this
would require a data-driven criterion to determine ©, which we
currently do not have.

B. Compressed Datasets

Beyond the data we introduced in detail before, we considered
two more datasets, namely COHFACE dataset and MANHOB-
HCI Tagging dataset.

The COHFACE dataset from Idiap Research Institute (avail-
able upon request via https://www.idiap.ch/dataset/cohface)
features 160 videos from 40 subjects [41]. Subjects were in-
structed not to move or talk during the recording. The database
contains 4 videos of every subject, two under controlled lighting
and two under natural conditions with ambient light.

The MANHOB-HCI Tagging dataset (available upon request
at https://mahnob-db.eu/hci-tagging/) from the Imperial Col-
lege London features 513 videos from 27 subjects [42]. Subjects
were presented various images or short videos in order to elicit
emotional responses. The recordings took place in a controlled
environment.

Considering both datasets, the results, as presented in
Table V to Table VII, are substantially worse compared to
the results shown before. As both datasets contain compressed
videos and previous research has shown that video compression
degrades the results [43], [44], some deterioration was expected.
The extent of deterioration, particularly regarding LS-GMM
which performs best on other data, can be explained by de-
tails of the employed compression algorithm. Both datasets
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use the MPEG-4 file format, which omits color information
for compression (Chroma subsampling at 4:2:0 Y’CbCr) and
additionally uses (temporal) forward and backward prediction
of image data [45].

As already described in [8], CHROM is strongly affected
by the loss of color information due to compression as well.
Similarly, all algorithms that rely on color information for skin
classification, which applies here to LS-GMM and KLT-Skin,
are heavily affected by such compression. Another problem
applies specifically to the LS-GMM method. Fig. 5 shows an ex-
emplary recording of COHFACE compared to UBFC data. The
figure details the size of the adaptive ROI from LS-GMM. The
first signal reveals a rhythmic adaptation of ROI. This behaviour
is likely to originate from forward and backward prediction of
image data and may lead to temporal static color information as
well as artificial image features (i.e. edges) due to block motion
compensation. As a result, the ROI is kept statically and adapted
rhythmically. This rhythmicity can interfere with the pulsation
and negatively affects the results. Despite such unfavorable
findings, we decided to present results from COHFACE and HCI
database to underline the effect of compression. Importantly,
while many compression algorithms introduce mild errors, the
MPEG-4 compression is critical (see also [46]). This should be
kept in mind when choosing an appropriate processing method.

C. Execution Speed

With respect to real time performance our method is not
yet able to process the typical 25 to 30 fps. Additionally our
algorithm needs a initialization phase for each video sequence
to train the subject specific GMM. This process takes an average
of 21.22s on a framesize of 640 x 480 pixels. Table VIII
shows single threaded execution times of all compared methods
without initialization phase on a Intel Core i-10940X. Methods
denoted with * were executed with the help of a GPU, namely
NVidia Geforce GTX 1660. The LM method used the parallel
implementation of the Dlib library, whereas we implemented
LS-GMM ourselves.

D. Limitations

By using publicly available data and implementing previ-
ously described algorithms as reference, we want to make our
research comparable to other works. In many cases we obtained

TABLE V
RESULTS ON A (5 bpm), i.e. PERCENTAGE OF MEASUREMENTS WITH AN
ERROR LOWER THAN 5 bpm, FOR DIFFERENT DATABASES AND METHODS.
BoOLD LETTERS MARK THE BEST RESULTS PER COLOR CHANNEL
AND DATABASE

COHFACE data HCI data

Green CHROM | Green CHROM
LS-GMM| 61.7 47.1 51.7 44.2
LM 41.9 42.7 41.3 42.7
KLT-Skin | 26.2 34.8 23.9 26.3
KLT 74.1 53.0 59.0 47.9
VI static | 76.9 60.9 60.4 51.6

TABLE VI

RMSE AT A(co bpm), i.e. 100% AVAILABILTY, FOR DIFFERENT DATABASES
AND METHODS. BOLD LETTERS MARK THE BEST RESULTS PER COLOR
CHANNEL AND DATABASE

COHFACE data HCI data

Green CHROM |Green CHROM
LS-GMM| 10.5 13.2 12.7 15.0
LM 21.1 16.9 17.9 16.1
KLT-Skin| 18.3 17.8 21.1 20.9
KLT 8.4 12.7 11.8 15.4
VI static | 7.3 11.5 11.5 14.2

TABLE VI

MAE AT A(co bpm), i.e. 100% AVAILABILTY, FOR DIFFERENT DATABASES
AND METHODS. BOLD LETTERS MARK THE BEST RESULTS PER COLOR
CHANNEL AND DATABASE

COHFACE data HCI data

Green CHROM |Green CHROM
LS-GMM| 7.6 9.8 9.9 11.6
LM 15.3 11.9 13.5 12.2
KLT-Skin | 14.5 13.5 17.3 17.0
KLT 6.0 9.4 9.0 11.8
VJ static | 5.1 8.0 9.0 10.8

even better results than previously reported using said reference
algorithms. Anyway, regarding the reference algorithms there
might be details, which our implementation does not capture.
Particularly using facial landmarks (LM), more sophisticated
schemes for their usage are feasible but out of scope of this
work. Particularly the results on LM thus must be taken with
caution.



TABLE VI
AVERAGE EXECUTION TIME OF THE EVALUATED ALGORITHMS ON A
640 x 480 VIDEO FRAME

*LS-GMM
73.2ms

LS-GMM | *LM
2322.2ms|7.6 ms

KLT-Skin
77.7ms

KLT
22.0ms

VI static
5.6 ms

VIIl. CONCLUSION

The presented approach yields a ROI that is able to improve
pulse rate extraction in PPGI compared to commonly used proce-
dures. By successfully applying the method to different data sets,
we could prove its applicability to some extent. Additionally, a
preceding version of the presented algorithm participated in the
Ist challenge on Remote Physiological Signal Sensing (RePSS),
where it achieved the second rank with a MAE of 7.92 bpm [10].

The presented algorithmic approach thereby leaves room for
improvement. We have decided to use a varying number of
kernels for the foreground and a fixed number of kernels for
the background GMM. Adapting the number of skin kernels
reflects our own experiences on often occurring distributions
in video data of variable origin. Though the obtained results
prove the effectiveness of our current approach, there is still
potential for optimization. First, an adaptive choice of © can
improve the results as discussed before. Second, based on the
multivariate models all pixels of the ROI have a strongest sup-
porting kernel of the GMM. This information can be used to
generate multiple separated time signals that allow stable pulse
rate extraction although some parts of the ROI are not useful
or introduce distortions. Third, updating GMM parameters, as
kernel mean, covariances and weights, during the segmentation
process may lead to less constrained skin and non-skin models,
which may improve signal quality under changing illumination
situations, e.g. changing shadows during head movement or
gradually changing illumination conditions. Fourth, changing
the initialization method from a frontal face detector to a more
general face detection or color based subject detection has the
potential to increase the coverage of video sequences in which
a ROI can be established.

Overall, we are convinced that the proposed method bears
large potential for PPGI. But even beyond PPGI the combination
of GMM and LS might be beneficial for segmentations tasks, e.g.
automated skin lesion segmentation or satellite image classifica-
tion. Since the presented method can be expanded to an arbitrary
number of image channels, e.g. MRT and CT channels instead
of RGB, it could be applied in tasks of image segmentation in
the context of multimodal image fusion.
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