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Abstract—In this paper, we propose a novel method 
named Biomedical Confident Itemsets Explanation 
(BioCIE), aiming at post-hoc explanation of black-box 
machine learning models for biomedical text 
classification. Using sources of domain knowledge and a 
confident itemset mining method, BioCIE discretizes the 
decision space of a black-box into smaller subspaces and 
extracts semantic relationships between the input text and 
class labels in different subspaces. Confident itemsets 
discover how biomedical concepts are related to class 
labels in the black-box’s decision space. BioCIE uses the 
itemsets to approximate the black-box’s behavior for 
individual predictions. Optimizing fidelity, interpretability, 
and coverage measures, BioCIE produces class-wise 
explanations that represent decision boundaries of the 
black-box. Results of evaluations on various biomedical 
text classification tasks and black-box models 
demonstrated that BioCIE can outperform perturbation-
based and decision set methods in terms of producing 
concise, accurate, and interpretable explanations. BioCIE 
improved the fidelity of instance-wise and class-wise 
explanations by 11.6% and 7.5%, respectively. It also 
improved the interpretability of explanations by 8%. 
BioCIE can be effectively used to explain how a black-box 
biomedical text classification model semantically relates 
input texts to class labels. The source code and 
supplementary material are available at 
https://github.com/mmoradi-iut/BioCIE. 

 
Index Terms—Biomedical text classification, Black-box 

classifiers, Explainable artificial intelligence, Information 
extraction, Interpretable machine learning 

I. INTRODUCTION 

OMPLEX Artificial Intelligence (AI) models, such as deep 

neural networks, support vector machines, random 

forests, ensemble methods, etc. have been widely utilized in 

biomedical Natural Language Processing (NLP).  Due to their 

immense capability of modeling lexical, syntactic, and 

semantic properties of natural language, these intricate 

methods have led NLP systems to achieve state-of-the-art 

results on a wide variety of biomedical and clinical text 

processing tasks [1-5]. However, these models inherently lack 

transparency and intelligibility, which restricts their 

application in real-world use cases. Users and developers often 

 
Milad Moradi and Matthias Samwald are with Institute for Artificial 

Intelligence and Decision Support, Center for Medical Statistics, 
Informatics, and Intelligent Systems, Medical University of Vienna, 
1090 Vienna, Austria (e-mails: {milad.moradivastegani, 
matthias.samwald}@meduniwien.ac.at). 

need to know how a black-box AI system arrives at a 

particular decision, or how a set of inputs can lead to 

producing a specific output. Aiming at promoting 

transparency, fairness, and accountability of intelligent 

systems, eXplainable AI (XAI) methods try to disclose the 

inner working or decision logic of black-box AI models [6]. 

XAI models can be broadly divided into two categories of 

model-based and post-hoc methods [7]. The model-based 

explainability refers to designing and developing AI models 

whose inner working and decision making process is 

transparent to the user. Decision trees and linear regression 

models fall into this category. However, these simple models 

are not capable of learning nonlinear and complex data 

relationships; intricate black-box models, e.g. deep neural 

networks, are needed. Therefore, post-hoc explainability 

comes into play to show how a black-box AI model makes 

particular decisions or which relationships it has learned from 

the data. Post-hoc XAI methods can be of high importance in 

the biomedical NLP domain, since most of the recent 

successes have been achieved through utilizing complicated 

AI models [1, 2, 8]. Revealing how a NLP system relates a set 

of inputs to a particular output, a post-hoc XAI method can 

help the user discover the black-box’s decision logic, biases in 

the model or data, and errors that the model is prone to. 

In this paper, we propose a post-hoc explanation method 

named Biomedical Confident Itemsets Explanation (BioCIE) 

aiming at explaining black-box AI models used in biomedical 

text classification. Our goal is to tackle explainability issues 

imposed by perturbation-based and decision set explanators in 

the biomedical NLP domain. Perturbation-based methods 

approximate the behavior of a black-box by randomly 

changing the input and measuring the change in the output [9]. 

The problem is that the explanation is built based on random 

feature values that may never appear in the real inputs. 

Furthermore, random perturbation of textual inputs leads to 

meaningless data instances that may result in misleading 

explanations. Decision set explanation methods use frequent 

itemsets, i.e. feature values that frequently appear in the 

inputs, to create if-then rules that show how specific inputs 

result in producing an outcome [10]. The problem is that 

frequent words cannot properly define subspaces and decision 

logics within a classification model. An effective approach is 

needed to discover strong relationships between the inputs and 

black-box’s predictions, no matter how frequent the input 

words are. 

Addressing the above problems, BioCIE applies a confident 
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itemset mining algorithm on real inputs to discretize the black-

box’s whole decision space into smaller subspaces. The 

explanator maps textual samples into biomedical concepts in 

order to capture semantic relationships between the inputs and 

the black-box’s predictions. It extracts confident itemsets that 

discover strong relationships between concepts and class 

labels within each subspace. BioCIE uses confident itemsets to 

produce high-quality instance-wise explanations that 

accurately approximate the black-box’s behavior for 

individual predictions. Utilizing an optimization procedure, 

BioCIE optimizes descriptive accuracy and interpretability 

measures on confident itemsets; it constructs class-wise 

explanations that accurately approximate decision boundaries 

of the black-box classifier. 

We investigated the ability of BioCIE in producing accurate 

and interpretable explanations for predictions of three black-

box models on various biomedical text classification tasks. 

The results showed that our BioCIE method outperforms 

perturbation-based and decision set explanators in terms of 

descriptive accuracy and interpretability of the explanations. 

BioCIE can be effectively used to explain predictions and 

approximate decision boundaries of black-box models in the 

biomedical text classification domain. 

II. RELATED WORK 

With the widespread adoption of deep neural networks and 

other intricate computational models in the biomedical NLP 

and text processing fields [1, 8, 11], there has been a growing 

demand for XAI systems that help users understand how an 

opaque NLP model makes decisions or which relationships it 

has learned. So far, a wide variety of XAI techniques have 

been developed, each one aims at addressing challenges 

associated with a particular set of black-box models [6, 7]. 

Different classifications of XAI methods are proposed based 

on the explainability problem at hand, the type of explanator, 

the type of black-box model that is explained, and the 

modality of input data [12]. 

Based on the modelling stage in which explainability 

considerations come into play, XAI methods can be either 

model-based or post-hoc, which were already described in 

Section I. Post-hoc explainability can be further divided into 

local and global approaches [7]. A local XAI model provides 

an explanation for a single data record, while a global model 

tries to explain a whole predictive model learned by a black-

box. The BioCIE method proposed in this paper is a post-hoc 

one, aiming at producing instance-wise and class-wise 

explanations. The former is used to approximate the local 

behavior of a black-box; the latter explains decision 

boundaries of a black-box within different decision subspaces 

characterized by class labels. 

Explanations can be represented in the form of decision 

trees [13], decision rules [10], feature importance scores [9], 

partial dependence plots [14], prototypes [15], or other 

interpretable representations. Our BioCIE method provides 

explanations in the form of confident itemsets, i.e. a set of one 

or more biomedical concepts that are highly related to a class 

label, along with a confidence score that refers to the strength 

of the relationship between the concepts and the class label. In 

this way, interrelations between concepts in different parts of 

the decision space can be discovered. Moreover, the user is 

provided with a quantification of the strength of association 

between concepts and class labels. This helps to examine 

whether the underlying classifier is biased towards specific 

concepts when it produces an outcome. 

An explanator may be designed to open only a particular 

type of black-box, e.g. tree ensembles [16], deep neural 

networks [17, 18], support vector machines [19], etc. On the 

other hand, a model-agnostic explanator is not tied to a 

specific class of black-box [9, 13, 20]. Our BioCIE method is 

a model-agnostic explanator; it receives a set of samples and 

respective predictions made by a black-box, and discovers 

how the classifier relates inputs to outputs in terms of 

semantics behind the text. This can help to investigate the 

ability of biomedical text classification systems in capturing 

semantic relationships between inputs and class labels, 

regardless of the underlying black-box. 

Explanation methods may differ with regard to the data 

modalities they can handle. Some methods can be only applied 

to tabular [16], image [21], or text data [22], while some 

explanators were designed to work with various data 

modalities [9, 13]. Since the BioCIE explanation method 

utilizes biomedical domain knowledge to discover semantic 

relationships between input texts and predictions, it is 

considered a domain-specific explanator aiming at explaining 

black-box models on biomedical text classification tasks. 

So far, few XAI studies in the biomedical domain have been 

devoted to textual data. Gao et al. [22] focused on explaining 

forest-based models for sentence classification in online health 

forums. Predicted samples were projected to an interpretable 

feature space in which sentences are represented using labeled 

sequential patterns, ontology-based, heuristic and sentence-

based features. Decision rules were extracted from the new 

feature space to explain black-box predictions. Gehrmann et 

al. [23] defined a phrase-saliency metric to measure how much 

a phrase contributes to a prediction of a convolutional neural 

network for patient phenotyping from clinical narratives. In 

contrast to these works, our explanation method is designed to 

be model-agnostic. We also evaluate the efficacy of BioCIE 

for explaining various biomedical text classification tasks, 

instead of focusing on only one task. 

III. BIOCIE EXPLANATION METHOD 

Fig. 1 illustrates the overall architecture of our BioCIE 

explanation method. In this section, we first give a formulation 

of the problem, then every step of BioCIE is described in 

detail. 

A. Problem formulation 

Let f : X → C be a black-box classifier, X={X1, …, XM} be 

the set of input samples, and C={C1, …, CQ} be the set of 

class labels in the classification problem. Given a set of class 

labels Y={Y1, …, YM} predicted by f, such that Ym is the class 

label assigned to instance Xm, the goal is to construct an 

instance-wise explanation Em for every individual prediction 

made by the classifier and a class-wise explanation CEq for 

every class Cq. 

Confident itemset generation is the main building block of 
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BioCIE. An Itemset contains one or more biomedical concepts 

that appear in the samples belonging to a particular class Cq. A 

confidence property is computed for Itemset in a subspace 

characterized by Cq, as follows: 

Confidence(Itemset, Cq)=P(Itemset|Cq)/P(Itemset) (1) 

where P(Itemset) is the probability of observing Itemset in the 

set of all input samples, and P(Itemset|Cq) is the probability of 

observing Itemset in samples belonging to class Cq. A 

confident K-itemset is an itemset that contains K unique 

concepts and satisfies two criteria: 1) the confidence property 

of the itemset is equal to or greater than a threshold min_conf, 

and 2) every subset of the itemset is a confident itemset on its 

own. 

An instance-wise explanation is represented as 

Em={<Itemset1>, …, <ItemsetP> | Y′m} such that Y′m is the 

class label assigned by the BioCIE explanation method to 

sample Xm, and <Itemsetp> is a confident itemset containing 

one or more biomedical concepts that appear in Xm and are 

highly correlated with class label Y′m. A class-wise 

explanation is represented as CEq={<Itemset1>, …, 

<ItemsetR>} such that <Itemsetr> is a confident itemset 

containing one or more biomedical concepts that are highly 

discriminative in the decision subspace characterized by the 

class Cq. 

B. Concept extraction 

Given a set of samples X={X1, …, XM} such that Xm 

contains a number of words, the explanation method begins by 

mapping the samples to the biomedical concepts contained in 

the Unified Medical Language System (UMLS) [24]. The 

UMLS is a large biomedical knowledge source that integrates 

more than 100 vocabularies, classification systems, and 

ontologies in the biomedical domain. It contains three main 

components; 1) the Metathesaurus, a lexicon of millions of 

concepts in life sciences and medicine, and their relationships; 

2) the Specialist Lexicon that stores syntactic, morphological 

and orthographic information of the general English and 

biomedical vocabularies; 3) the Semantic Network that defines 

a set of semantic relations between the concepts and 

categorizes them into various semantic types.   

We used the MetaMap tool [25] to extract biomedical 

concepts from the samples. MetaMap utilizes NLP techniques 

to match phrases in the input text with the UMLS concepts. In 

this study, we used the 2016 version of MetaMap, along with 

the ‘2018AA’ release of UMLS as the knowledge base. Fig. 2 

shows a sample from the BioText dataset and the extracted 

concepts in the first step of the BioCIE explanation method. 

C. Confident itemset mining 

In this step, the decision space is divided into subspaces 

such that every subspace is characterized by a class Cq; 

biomedical concepts that are highly related to Cq and 

correlations between concepts in the respective subspace are 

extracted. To this end, we utilize the confident itemset mining 

algorithm proposed in [26].  

The confident itemset mining procedure is carried out in an 

iterative manner, where a set of confident K-itemsets are 

extracted for every class Cq in the Kth iteration. The confident 

itemset mining process continues until K reaches a predefined 

value or no confident itemsets are extracted in the latest 

iteration. At the end of this step, CI={CI1, …, CIQ} represents 

the set of all confident itemsets extracted for the whole 

 

Fig. 1.  The overall architecture of our BioCIE explanation method. 

 

Fig. 2.  A text sample from the BioText dataset and the extracted 
biomedical concepts in the first step of the BioCIE explanation 
method. 

 

Fig. 3.  Some confident itemsets extracted for the class 
TREATMENT_FOR_DISEASE in the BioText dataset. In this 
example, the value of min_conf was set to 0.8. 



 

4 

 

decision space; every CIq represents confident itemsets 

extracted for class Cq. Fig. 3 shows some confident itemsets 

extracted for the class TREATMENT_FOR_DISEASE in the 

BioText dataset. In this example, seven 1-itemsets, four 2-

itemsets, and one 3-itemsets are represented. 

D. Instance-wise explanation 

The BioCIE explanation method uses the confident itemsets 

extracted in the previous step to approximate the local 

behavior of the black-box f. Given an instance Xm, a set of 

confident itemsets CI={CI1, …, CIQ} such that CIq={Itemset1, 

…, ItemsetJ} represents the set of confident itemsets extracted 

for class Cq, an instance-wise explanation Em={<Itemset1>, …, 

<ItemsetP> | Y′m} is produced that approximates the local 

behavior of f for instance Xm. The set <Itemset1>, …, 

<ItemsetP> is constructed by searching over every CIq ϵ CI and 

extracting those confident itemsets that appear in Xm. A 

Confidence Score (CS) is computed for Em within every class 

Cq such that there is at least one Itemsetp ϵ CIq and Itemsetp 

appears in Xm, as follows: 

CS(Em, Cq) =


P

p 1

Confidence(Itemsetp, Cq) (2) 

where CS(Em, Cq) is the confidence score of explanation Em 

within class Cq, and Confidence(Itemsetp, Cq) is the confidence 

value of Itemsetp in class Cq. 

The explanation method selects the class label that obtained 

the highest confidence score and assigns it to Y′m as the local 

approximation of the black-box classifier f. Fig. 4 shows two 

instance-wise explanations produced by BioCIE for 

predictions of a black-box classifier on two samples from the 

BioText dataset. In these examples, the itemsets represent 

those biomedical concepts that appear in the input and are 

highly related to the predicted class label in the decision space 

learned by the target black-box classifier. It can be interpreted 

that the black-box in Fig. 4 has learned to classify a sample as 

‘TREATMENT_FOR_DISEASE’ if the input contains disease 

and treatment entities such as ‘small-cell lung cancer’ and 

‘combination chemotherapy’. However, another black-box 

may learn to predict the same class label if the word 

‘treatment’ appears in the input, or it may even learn wrong 

relations between the input text and class labels. The BioCIE 

explanation method aims to reflect these relations learned by 

the target black-box, not to be used for identifying named 

entities or as a relation classifier on its own. 

E. Class-wise explanation 

A class-wise explanation is an approximation of the 

behavior of the target black-box that shows what concepts and 

relationships between concepts lead the black box to produce a 

specific outcome. The set of confident itemsets CIq contains 

those concepts that are highly associated with class Cq. 

However, it may not be efficient to represent all itemsets in 

CIq as the class-wise explanation of Cq since the large number 

of itemsets reduces the interpretability and understandability 

of the explanation. In order to deal with this problem, we 

define six properties that quantifies the fidelity, 

interpretability, and coverage of a class-wise explanation, then 

select an optimal subset of itemsets in CIq that optimizes the 

six properties. 

Given a set of confident itemsets CIq={Itemset1, …, 

ItemsetJ} extracted for class Cq, and a class-wise explanation 

CEq={<Itemset1>, …, <ItemsetR>}, a Fidelity property is 

defined for CEq to quantify how accurately the explanation 

can mimic the behavior of the black-box in the respective 

subspace, as follows: 

Fidelity(CEq)= 

[


M

m 1

XmϵX | f(Xm)=Cq and f(Xm)=BioCIE(Xm)]/Mq 
(3) 

where BioCIE(Xm) is the class label assigned to instance Xm by 

the BioCIE explanator, and Mq is the total number of instances 

in X classified into class Cq by black-box f. 

Size, NumConcepts, MaxLength, and ItemsetOverlap are 

four properties that quantify the interpretability. The size of 

explanation CEq is defined as the total number of itemsets in 

CEq: 

Size(CEq)=


R

r 1

Itemsetr (4) 

NumConcepts is computed by summing up the size of 

confident itemsets in CEq: 

NumConcepts(CEq)=


R

r 1

Size(Itemsetr) (5) 

where Size(Itemsetr) is the total number of concepts that 

appear in Itemsetr. 

MaxLength is the maximum size of a confident itemset in 

CEq: 

MaxLength(CEq) = max Size(Itemsetr) (6) 

ItemsetOverlap (IO) is defined as the total number of 

confident itemset pairs in CEq that have at least one concept in 

 

Fig. 4.  Two instance-wise explanations produced by BioCIE for 
predictions of a black-box classifier on two samples from the BioText 
dataset. 
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common: 

IO(CEq)=


R

r 1




H

h 1

ISr, ISh ϵ CEq | 

Overlap(ISr, ISh)=True 

(7) 

where Overlap(ISr, ISh) is True if itemsets ISr and ISh have at 

least one concept in common. 

A Coverage property is defined for class-wise explanation 

CEq as the total number of instances that were classified into 

class Cq and are covered by a confident itemset in CEq, as 

follows: 

Coverage(CEq)= 




M

m 1

XmϵX | f(Xm)=Cq and Cover(CEq, Xm)=True 

(8) 

where Cover(CEq, Xm) is True if at least one Itemsetr ϵ CEq 

appears in instance Xm. 

Non-negative reward functions are defined for the six 

properties. When lower values are preferred for a property, the 

computed value is subtracted from the upper bound value. The 

reward functions are presented in TABLE I. The fidelity, 

interpretability, and coverage properties are jointly optimized 

using the six reward functions and the following objective: 

max CEq ⊆ CIq 


6

1i

wi fi(CEq) (9) 

where w1, …, w6 are positive weights that control the relative 

importance of the reward functions and are selected through 

cross-validation. The following constraints apply to the 

optimization objective: 

Size(CEq) ≤ θ1 

NumItems(CEq) ≤ θ2 

MaxLength(CEq) ≤ θ3 

(10) 

where θ1, θ2, and θ3 are specified by the user. 

As already proven by Lee et al. [27] and Lakkaraju et al. 

[10], the objective given by (9) is submodular, non-monotone, 

non-negative, and non-normal. We use the optimization 

method proposed by Lee et al. [27] since it guarantees an 

optimal solution, relying on approximate local search. TABLE 

II gives a pseudo-code of the optimization algorithm utilized 

for selecting an optimal subset of confident itemsets to 

produce a class-wise explanation. Finally, those biomedical 

concepts that are highly associated with a class label and 

strong correlations between concepts in the respective 

subspace are represented in the form of a class-wise 

explanation. 

Please note that our post-hoc explanation method is not 

intended to be used as a classification model; the goal is to 

produce explanations that reflect both correct and wrong 

decisions made by the underlying black-box. That is the 

reason why we do not discriminate between correct and wrong 

classifications produced by the black-box in equations (3) and 

(8). 

IV. EVALUATION METHOD 

In order to evaluate the ability of our BioCIE explanation 

method in producing accurate and interpretable explanations 

for black-box classifiers, we implemented classification 

systems based on three AI models, i.e. BioBERT, LSTM, and 

SVM. 

BioBERT [3] is a version of the well-known Bidirectional 

Encoder Representations from Transformers (BERT) [28] that 

was pretrained on massive corpora of biomedical text. We 

used the BioBERT-base version 1.0 pretrained on the PubMed 

and PMC corpora along with the default hyperparametr 

settings. Long Short-Term Memory (LSTM) [29] is a 

variation of recurrent neural networks that can effectively 

handle long-term dependencies in sequence data such as text. 

We used the keras library in python to implement the LSTM 

text classifier. We also used 100-dimensional embeddings as 

the input, the softmax activation in the output layer, binary 

cross entropy as the loss function, and the Adam optimizer 

with the default settings. Support Vector Machines (SVM) 

[30] separate samples of two classes in a high-dimensional 

vector space by maximizing the distance between the classes’ 

TABLE I 
THE SIX REWARD FUNCTIONS DEFINED FOR OPTIMIZING THE FIDELITY, 

INTERPRETABILITY, AND COVERAGE PROPERTIES OF A CLASS-WISE 

EXPLANATION 

f1(CEq)=Fidelity(CEq) 

f2(CEq)=Max(Size(CEq))−Size(CEq) 

f3(CEq)=Max(NumConcepts(CEq))−NumConcepts(CEq) 

f4(CEq)=Max(MaxLength(CEq))−MaxLength(CEq) 

f5(CEq)=Max(ItemsetOverlap(CEq))−ItemsetOverlap(CEq) 

f6(CEq)=Coverage(CEq) 

 

TABLE II 
THE OPTIMIZATION ALGORITHM FOR SELECTING AN OPTIMAL SUBSET OF 

CONFIDENT ITEMSETS TO PRODUCE A CLASS-WISE EXPLANATION 

1) Input: objective f, set of confident itemsets CIq, parameter δ, 

number of constraints k 

2) Output: class-wise explanation CEq 

3) E1 = CIq 

4) for i ∈ {1, 2, …, k+1} do 

5)     X = Ei, n = |X|, Si = Ø 

6)     Si ← the element with the maximum value for objective f 

7)     while a delete or update operation increases the value of Si 

by a factor of at least (1+δ) / (n^4 ) do 

8)         (delete operation) if there is an element a ∈ Si such that  

f(Si \ ai) ≥ [(1+δ) / (n^4 )]f(Si) then 

9)             Si ← Si \ a 

10)       (update operation) if there is an element b ∈ X \ Si and an 

element aj ∈ Si such that (Si \ aj) ∪ {b} (for 1 ≤ j ≤ k) satisfies 

all the k constrains and f(Si \ {a1, a2, …, ak }∪{b}) ≥ [(1+δ) / 

(n^4 )]f(Si) then 

11)               Si ← Si \ {a1, a2, …, ak} ∪ {b} 

12)    end while 

13)    Ei+1 = Ei \ Si 

14) end for 

15) CEq ← max{f(S1), f(S2), …, f(Sk+1)} 

16) return CEq 
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margins and the separator hyperplane. Using the Scikit-learn 

library [31], we implemented a SVM classifier with RBF 

kernel, and tf-idf weights as the input features. 

We conducted experiments on three biomedical text 

classification tasks. BioText is a dataset for disease-treatment 

information extraction [32], which can be also used as a text 

classification dataset. It contains more than 3,500 text samples 

classified into one of the eight classes DISONLY, 

TREATONLY, TREAT_FOR_DIS, PREVENT, SIDE_EFF, 

TREAT_NO_FOR_DIS, TO_SEE, NONE, and VAGUE, which 

specify the type of semantic relationship between disease and 

treatment entities appearing in the text. The class label 

TO_SEE refers to those samples that contain more than one 

type of relationship between diseases and treatments, in order 

to be further examined by an expert. The black-boxes were not 

trained to identify and extract disease and treatment named 

entities; they were trained to classify each sample into one of 

the eight classes. The AIMed dataset [33] includes more than 

2,000 text segments from PubMed abstracts in which protein-

protein interactions are annotated. We used this dataset for 

text classification such that the annotations were removed and 

a class label added to each sample. The class label specified 

whether the sample conveys a protein-protein interaction or 

not. Again, the black-boxes were trained for the text 

classification task, not for the named entity or relation 

extraction.  The Hereditary Diseases (HD) dataset [34] 

contains more than 550 biomedical articles classified into one 

of the 26 hereditary diseases. We split each dataset into 

separate training and test sets with a ratio of 90:10. The black-

box classifiers were trained on the training sets, and the 

explanations were produced for the outcomes of the black-

boxes on the test sets. TABLE III presents the predictive 

accuracy scores obtained by the black-box classifiers on the 

three biomedical text classification datasets. 

We compared our BioCIE explanation method against four 

baselines, i.e. LIME, MUSE, Greedy, and Random. LIME [9] 

is a publicly-available explanator that relies on random 

perturbations and local linear model approximation. MUSE 

[10] utilizes frequent itemsets to generate predicates that 

define subspace descriptors and decision logics of a model in 

the form of if-then rules. We implemented MUSE according 

to the method described in the respective paper. Words were 

used as itemsets; presence of high-frequent words (frequent 

itemsets) were checked by if-then rules. The Greedy baseline 

was implemented based on the heuristic proposed by Martens 

et al. [35]. It greedily selects N important words that have the 

highest impact on choosing a class label. The Random 

baseline randomly selects N words form the samples assigned 

to a class label as the explanation for the respective class. 

V. RESULTS AND DISCUSSION 

In this section, we present and discuss the experimental 

results that evaluate our BioCIE method and the other 

explanators in terms of fidelity and interpretability of the 

explanations produced for outcomes of the black-box 

classifiers. 

A. Fidelity 

Descriptive accuracy (or fidelity) refers to the ability of an 

explanator in imitating the behavior of a black-box in terms of 

assigning class labels to data instances [7]. It has been widely 

used in evaluating the efficacy of XAI systems [9, 36, 37]. 

The higher the fidelity of the explanations, the more accurate 

the approximation of the black-box’s behavior. 
1) Instance-wise explanation 

For instance-wise explanations produced by LIME, we set 

the number of feature importance scores to 10. MUSE 

produced instance-wise explanations by extracting the 

decision rules that apply to individual text samples. TABLE 

IV presents the fidelity scores obtained by BioCIE and the 

other methods for instance-wise explanation. The explanation 

methods were experimented on every black-box classifier and 

every classification task. 

TABLE IV 
THE FIDELITY SCORES OBTAINED BY THE EXPLANATION METHODS FOR 

INSTANCE-WISE EXPLANATION 

Explanator Black-box 
Dataset 

BioText AIMed HD 

LIME 

BioBERT 0.849 0.852 0.830 

LSTM 0.836 0.855 0.828 

SVM 0.807 0.834 0.793 

MUSE 

BioBERT 0.775 0.788 0.755 

LSTM 0.771 0.783 0.746 

SVM 0.758 0.770 0.761 

Greedy 

BioBERT 0.670 0.653 0.659 

LSTM 0.683 0.664 0.641 

SVM 0.691 0.677 0.665 

Random 

BioBERT 0.482 0.495 0.441 

LSTM 0.495 0.479 0.452 

SVM 0.456 0.494 0.476 

BioCIE 

BioBERT 0.917 0.925 0.889 

LSTM 0.908 0.931 0.915 

SVM 0.922 0.910 0.921 

 

TABLE V 
THE FIDELITY SCORES OBTAINED BY THE EXPLANATION METHODS FOR 

CLASS-WISE EXPLANATION 

Explanator 
Dataset 

BioText AIMed HD 

LIME-10 0.592 0.604 0.588 

LIME-20 0.696 0.700 0.684 

LIME-30 0.783 0.788 0.775 

LIME-40 0.810 0.819 0.807 

LIME-50 0.831 0.843 0.829 

MUSE 0.752 0.771 0.732 

Greedy 0.758 0.749 0.718 

Random 0.493 0.514 0.517 

BioCIE 0.885 0.907 0.881 

 

TABLE III 
THE ACCURACY SCORES OBTAINED BY THE BLACK-BOX CLASSIFIERS ON 

THE THREE BIOMEDICAL TEXT CLASSIFICATION DATASETS 

Black-box classifier 
Dataset 

BioText AIMed HD 

BioBERT 0.917 0.931 0.908 

LSTM 0.892 0.904 0.875 

SVM 0.835 0.810 0.806 
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As the results show, BioCIE outperforms the other 

explanators on all the three datasets and three black-box 

models. This demonstrates that the confident itemsets can 

capture relationships between the inputs and the black-boxes’ 

predictions more accurately than the perturbation and decision 

set methods. Mapping the input text to biomedical concepts, 

BioCIE discovers how the black-box semantically associates 

an input with a class label. In this way, the explanator does not 

need to see a set of particular words in the input in order to 

approximate a specific class label. It can mimic the black-

box’s behavior with respect to the biomedical semantics 

conveyed by the input. 

Examining the explanations produced by MUSE, we 

observed that those words that frequently appear in the 

samples belonging to a class have the most impact on 

assigning the respective class label by the explanator. In fact, 

high-frequent words are used to discriminate between the 

classes. We also observed that LIME sometimes uses 

unrelated words when it approximates a class label, or assigns 

higher importance scores to unimportant words. This may be 

caused by the perturbation method that generates random 

instances that do not reflect the real distribution of inputs. 
2) Class-wise explanation 

We evaluated class-wise explanations to assess the ability 

of the methods in approximating decision boundaries of the 

black-boxes. Given a class label, a class-wise explanation was 

produced for LIME by collecting N words that were assigned 

the highest feature scores in the instance-wise explanations 

belonging to the class. We tested LIME’s class-wise 

explanations for N=10, 20, 30, 40, and 50; each setting is 

referred to as LIME-N. Given a class label, a class-wise 

explanation was produced for MUSE by collecting those 

decision rules that lead to the same class. Each explanator 

approximated the decision boundaries of the black-box 

classifiers by assigning class labels to the samples according 

to the class-wise explanations. TABLE V presents the fidelity 

scores obtained by the explanators for class-wise explanation. 

For brevity reasons, the average of fidelity scores of the 

explanations generated for the outcome of the three black-box 

classifiers is reported for each explanator. 

As the results show, BioCIE can produce more accurate 

class-wise explanations than the other methods. This 

superiority in accurate approximation of the black-box’s 

decision boundaries is attributed to two elements: 1) the 

confident itemsets that accurately capture semantic 

relationships between inputs and predictions in a given 

subspace, and 2) the optimization process that helps to extract 

an optimal subset of itemsets that best approximate the black-

box’s behavior in the given subspace. 

Although visualizing attention weights has been helpful to 

understand how important a word is when computing the next 

representation for other words of an input sequence in a 

transformer model [38], some studies have shown there is no 

correlation between attention weights learned by BERT (and 

its variants such as BioBERT) and feature importance scores 

produced by gradient-based and leave-one-out methods [39]. 

Therefore, it has been suggested not to treat attention as 

justification for a transformer model’s decisions [40]. 

However, the results show that BioCIE can effectively address 

the explainability issue of transformer models; it produced 

accurate approximations of the behavior of BioBERT. 

B. Interpretability 

Interpretability refers to how easily an explanation can be 

understood or interpreted. It can be evaluated by different 

criteria and measures, depending on the task at hand and the 

 

Fig. 5.  The maximum number of explanation units in an instance-wise 
explanation against the descriptive accuracy results. (Experiment 1) 

 

Fig. 6.  The maximum number of explanation units in a class-wise 
explanation against the descriptive accuracy results. (Experiment 2) 

 

Fig. 7.  The maximum number of explanation units in a global 
explanation against the descriptive accuracy results. (Experiment 3) 
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representation used to show explanations. Regarding the 

assumption that smaller explanations are more interpretable 

[37], we conducted a set of experiments to investigate the 

interpretability of the explanators in terms of the trade-off 

between descriptive accuracy and interpretability measures. 

For brevity reasons, we report the average of fidelity scores 

obtained for the explanations produced on outcomes of the 

BioBERT classifier on the three text classification datasets. 

We observed similar results when the other black-box 

classifiers were used. 

Experiment 1: Given a parameter α that specifies the 

maximum number of explanation units in an instance-wise 

explanation, we assessed the ability of the explanators in 

producing as small and accurate explanations as possible. An 

explanation unit refers to an itemset in BioCIE, a feature and 

the respective importance score in LIME, and an if-then rule 

in MUSE. We varied the value of α and measured the 

descriptive accuracy of the instance-wise explanations. Fig. 5 

shows the results. 

Experiment 2: Given a parameter β that specifies the 

maximum number of explanation units in a class-wise 

explanation, we assessed the ability of the explanators in 

producing small and accurate explanations. We varied the 

value of β and measured the descriptive accuracy of the class-

wise explanations. Fig. 6 shows the results. 

Experiment 3: Given a parameter γ that specifies the 

maximum number of explanation units in a global explanation, 

we assessed the ability of the explanators in producing small 

and accurate global explanations. A global explanation was 

generated by selecting an optimal subset of γ explanation units 

that optimize two criteria: 1) as many text samples as possible 

should be covered by the global explanation, and 2) as few 

text samples as possible should be covered by more than one 

explanation units that do not lead to the same class label. We 

varied the value of γ and measured the descriptive accuracy of 

the global explanations. Fig. 7 shows the results. 

As the results of all the three experiments show, our BioCIE 

explanation method achieved higher levels of descriptive 

accuracy (or fidelity) when it used smaller sets of explanation 

units compared with the other explanators, which 

demonstrates that BioCIE produces more interpretable 

explanations. For example, BioCIE used an average of 4, 22, 

and 110 explanation units to achieve a descriptive accuracy of 

80% on instance-wise, class-wise, and global explanations, 

respectively. LIME needed an average of 5.5, 35, and 150 

explanation units to reach a descriptive accuracy of 80% on 

instance-wise, class-wise, and global explanations, 

respectively. MUSE did not reach a descriptive accuracy of 

80% in our experiments; it generally used more explanation 

units than the other explanators to hit the same descriptive 

accuracy score. 

As can be observed from Fig. 5-7, increasing the size of 

explanations led to an increase in the fidelity of the 

explanations. However, this linear relationship between the 

fidelity and the size of explanations did not always exist, and 

there was no improvement in the fidelity (or there was a slight 

improvement) after the size of explanations reached a certain 

threshold. This suggests that adding more explanation units 

can improve the fidelity when the explanation is not large 

enough to approximate the black-box’s behavior in different 

parts of the decision space. However, reaching a certain level 

of descriptive accuracy, larger explanations not only do not 

lead to higher fidelity, but also decrease the interpretability. 

The confident itemset mining phase and the optimization 

procedure played key roles in generating concise, accurate, 

and interpretable explanations by BioCIE. The confident 

itemsets discovered semantic relationships between the input 

text and the class labels in different decision subspaces. The 

confidence property of itemsets enabled the explanator to 

assess the strength of semantic relationships in every subspace 

and produce a concise list of biomedical concepts that 

accurately approximate the target classifier’s behavior when it 

predicted a specific class. This concept-based approach to 

relation extraction and black-box approximation efficiently 

reduced the size of instance-wise explanations and improved 

the descriptive accuracy. Optimizing fidelity, interpretability, 

and coverage properties effectively reduced the size of 

itemsets that defined the decision boundaries within a 

subspace, leading to smaller and more interpretable, yet 

accurate class-wise explanations. It is worth-mentioning that 

the confident itemsets explanation approach obtained higher 

scores than LIME and MUSE in subjective evaluation of 

usability and interpretability by users [26]. 

VI. CONCLUSION 

In this paper, we proposed the BioCIE method for post-hoc 

explanation of black-box machine learning models applied to 

biomedical text classification. The results of evaluations 

showed that BioCIE outperforms the perturbation-based and 

decision set explanators in terms of fidelity and interpretability 

of instance-wise and class-wise explanations. Summing up the 

results, we point out the following concluding remarks: 

 Combining biomedical concepts and confident itemset 

mining is an effective approach to discovering semantic 

relations between inputs and outputs of a black-box 

biomedical text classification model. 

 Concise, accurate, and interpretable explanations can be 

produced by optimizing fidelity and interpretability 

measures on subsets of confident itemsets. 

 The BioCIE method can effectively reveal decision 

boundaries and approximate behavior of black-box text 

classification models in the biomedical domain.  

So far, we have discussed how BioCIE can approximate and 

reveal decision boundaries of a target black-box. It can be also 

beneficial to discuss how BioCIE could help correct decisions 

of the black-box. If there are biases in the data, the black-box 

may learn wrong relations between biomedical concepts and 

class labels. In this case, confident itemsets can reflect these 

wrong relations and disclose the biases. Removing erroneous 

training samples and/or adding more training samples could be 

appropriate corrective strategies in this situation. The black-

box model itself may also lead to wrong classifications. In this 

case, confident itemsets disclose limitations of the model by 

presenting erroneous relations between the input space and 

class-labels. This type of error could be caused by the model’s 

inability to learn semantic, lexical, or even syntactical 

relations. Therefore, changing the model’s architecture or 

hyperparameters, or even choosing other types of nonlinear 

predictive models could properly enhance the black-box’s 
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performance. 

Future work includes applying BioCIE to other biomedical 

NLP tasks. This requires further customization of the itemset 

mining and optimization steps. One more idea for future work 

could be customizing BioCIE to produce task-specific 

explanations. For example, customizing BioCIE for the 

classification task of the BioText dataset, explanations could 

be represented as sentences such as ‘[Procedure X] is a 

treatment for [Disease Y]’ or ‘[Procedure X] is a preventive 

measure for [Disease Y]’. In this way, the explanation shown 

in Fig. 4 can be represented as ‘Combination Chemotherapy is 

a treatment for Small cell carcinoma of lung’.  
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