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Abstract  

Background: In recent years, the brain-computer interface (BCI) based on motor imagery (MI) has been considered as a potential 

post-stroke rehabilitation technology. However, the recognition of MI relies on the event-related desynchronization (ERD) feature, 

which has poor task specificity. Further, there is the problem of false triggering (irrelevant mental activities recognized as the MI 

of the target limb).  

Methods: In this paper, we discuss the feasibility of reducing the false triggering rate using a novel paradigm, in which the steady-

state somatosensory evoked potential (SSSEP) is combined with the MI (MI-SSSEP). Data from the target (right hand MI) and 

nontarget task (rest) were used to establish the recognition model, and three kinds of interference tasks were used to test the false 

triggering performance. In the MI-SSSEP paradigm, ERD and SSSEP features modulated by MI could be used for recognition, 

while in the MI paradigm, only ERD features could be used.  

Results: The results showed that the false triggering rate of interference tasks with SSSEP features was reduced to 29.3%, which 

was far lower than the 55.5% seen under the MI paradigm with ERD features. Moreover, in the MI-SSSEP paradigm, the 

recognition rate of the target and nontarget task was also significantly improved. Further analysis showed that the specificity of 

SSSEP was significantly higher than that of ERD (p<0.05), but the sensitivity was not significantly different.  

Conclusions: These results indicated that SSSEP modulated by MI could more specifically decode the target task MI, and thereby 

may have potential in achieving more accurate rehabilitation training.  

Keywords: brain-computer interface, false triggering, motor imagery, steady-state somatosensory evoked potential, task 

specificity

Background 

Brain-computer interface (BCI) systems based on motor 

imagery (MI) can decode the motion intention of the user using 

electroencephalography (EEG) signals [1]. In clinical 

applications, patients with intact brains but severely impaired 

motor function, resulting from spinal cord injury (SCI) [2] and 

amyotrophic lateral sclerosis (ALS) [3], could use MI-BCI 

directly to control external devices. Recent studies have found 

that the MI-BCI could also be used in brain rehabilitation to 

help stroke patients [4], [5]. This new treatment has achieved 

good efficacy in some reports [6], [7], which fully demonstrates 

the potential of MI-BCI in the field of post-stroke rehabilitation. 

Different limb movements correspond to different activation 

areas in the sensorimotor cortex [8]. It has been confirmed that 

MI and motor execution (ME) have similar neural activities in 

the brain [9], [10]. Therefore, by decoding the EEG signals 

generated by MI, we could infer the actions users want to 

perform and thus control the external devices [11]. Previous 

studies have found that MI could induce event-related 

desynchronization (ERD) in a similar fashion to ME. The 

characteristics of ERD are an energy decrease in alpha (8–13 
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Hz) and beta (13–30 Hz) bands [12], [13]. Different imaginary 

tasks will induce different neural activities in sensorimotor 

areas. That is, there are differences in the location where the 

ERD occurs, by which the specific imaginary task can be 

identified [14], [15]. Spatial filtering methods such as the 

common spatial pattern (CSP) algorithm [16] are generally used 

to strengthen and extract ERD features, and then machine 

learning methods such as support vector machine (SVM) [17] 

are generally used to establish a classifier to identify which 

imaginary task occurred. 

As described above, there are two primary characteristics of 

MI-BCI systems. First, the MI-BCI system assumes that the 

brain will only perform the few tasks that are accurately 

presented. Second, the system judges whether an imaginary 

task is performed by determining whether ERD is induced in 

the corresponding region of the brain. Generally, MI-BCI used 

for post-stroke rehabilitation presupposes that the brain will 

only perform two imaginary tasks (affected limb movement and 

rest). After decoding the motor intention of the affected limb, 

the system drives the peripheral equipment to pull the limb for 

passive movement, which constructs a closed-loop between 

2 Academy of Medical Engineering and Translational Medicine, Tianjin 
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motion intention and affected limb movement. Therefore, this 

type of rehabilitation treatment can potentially form a better 

neuroinductive effect and subsequently achieve better efficacy 

[18], [19]. 

However, the MI-BCI system could not directly identify the 

target task MI, but it could distinguish the target task from other 

imaginary tasks using specific differences. The decoding of MI 

mainly depends on the ERD feature in the corresponding brain 

regions. Therefore, in the imaginary recognition of left/right 

hand, if ERD features in the right sensorimotor areas are 

detected, the BCI system will infer that the subject is 

performing left hand MI, and vice versa. Supposing that the 

right hand is the affected limb, the MI-BCI judges whether the 

stroke patient performs affected limb MI only if there is 

sufficient ERD in the left sensorimotor cortex. Nevertheless, 

ERD is a common phenomenon in cerebral activities. Not only 

could the affected limb MI induce ERD (mainly in the 

contralateral cerebral cortex), but many other mental activities 

(such as learning, memory, and even the MI or ME of the 

contralateral limb) could also induce ERD [20]. Although there 

are some differences in the intensity and spatial distribution of 

the induced ERD in these different tasks (because of the low 

signal-to-noise ratio and diffuse spatial distribution of EEG), it 

is difficult for MI-BCI systems to judge whether the ERD 

detected in the contralateral cortex is induced only by the 

affected limb MI [21]. The phenomenon described above leads 

to false triggering in MI-BCI systems. This is because MI-BCI 

mistakes some irrelevant mental activities for the target task 

(affected limb MI), so that drives peripheral equipment to pull 

the affected limb without the target task MI. For the passive 

movement driven by irrelevant mental activities, the positive 

effect on the rehabilitation of the damaged brain will be 

minimal, and there may also be a wrong neural induction effect. 

So it is clear that the ideal MI-BCI used for post-stroke 

rehabilitation should avoid such false triggering as much as 

possible.  

However, as far as we know, there are few reports on the 

problem of false triggering in MI-BCI, and few papers have 

explored methods to reduce false triggering. As mentioned 

above, the problem of false triggering is mainly caused by the 

low task specificity of ERD features, as many irrelevant tasks 

can also induce ERD in the target cerebral area. Therefore, the 

use of EEG features with greater task specificity is a proper way 

to suppress false triggering. Recently, a novel paradigm with 

steady-state somatosensory evoked potential (SSSEP) 

modulated by MI has received increasing attention in MI 

decoding [22]. Studies have shown that SSSEP induced by 

somatosensory stimulation, which is applied to the target limb 

at a specific frequency, could be influenced by the same limb 

MI, thus forming a new EEG feature associated with motor 

consciousness [23]. MI decoding using the MI-SSSEP feature 

has shown many advantages, such as significantly improving 

the recognition rate of left/right hand MI [24] and increasing the 

recognition rate of adjacent joints in unilateral limb [25]. This 

feature comes from two neural activities: motor intention and 

somatosensory response to the same limb, which theoretically 

should have better task specificity, and thus, could be better 

distinguished from other mental tasks.  

Therefore, the underlying assumption in this paper is that the 

MI-SSSEP feature has better task specificity, which can 

effectively reduce the false triggering in MI-BCI systems. 

Based on this assumption, a comparison experiment between 

the MI and MI-SSSEP paradigm was designed to analyze the 

decoding ability of the target task and false triggering of 

interference tasks in the hybrid (MI-SSSEP) paradigm.  

Methods 

Subjects 

A total of 13 healthy subjects (7 males and 6 females, right-

handed, aged between 21 and 25 years) were involved in the 

experiment. 

 

Experimental Paradigm 

In this paper, a comparison experiment between the MI and MI-

SSSEP paradigm was designed. The difference between the two 

paradigms is that subjects received electrical stimulation at a 

specific frequency to induce SSSEP when performing the task 

under a hybrid paradigm.  

Previous experiments have shown that the stimulation 

frequency at 31 Hz can induce clear SSSEP in the 

corresponding cerebral region [24]. Therefore, under the hybrid 

paradigm, stimulation was applied to the right median nerve 

with biphasic current pulses of 200 µs duration at 31 Hz [26]. 

Two electrode patches, which were about 4 cm apart, formed a 

loop with the electrical stimulator. The amplitude of electrical 

stimulation was adjusted to produce the slight quivering of the 

subjects’ fingers, and varied from 1 to 5 mA for the whole 
experiment. Moreover, none of the subjects felt a sensation of 

pain. Before the formal experiment, an appropriate adjustment 

of both the electrode location and intensity of electrical 

stimulation was made in order to induce a stable and precise 

SSSEP. 

 

Experimental Procedure 

Experimental tasks were divided into modeling and interference 

tasks. There were two kinds of modeling tasks, the target task 

(T-Task) of right hand MI and nontarget task (N-Task) of rest. 

In MI-BCI, data from two tasks are typically used to construct 

a binary classifier. The motor intention of the target limb is 

called the target task, and the one used to build a classifier with 

the target task is called the nontarget task. In MI-BCI used for 

post-stroke rehabilitation, the target task is generally specified 

as the affected limb MI (in this paper, the right hand is assumed 

to be the affected limb), and the nontarget task is specified as 

rest. During the rehabilitation treatment, when the classifier 

judges that the user is performing the target task, it will drive 

the peripheral equipment to pull the affected limb resulting in 

passive movement. This process can be considered as one 

trigger.  

Three interference tasks (I-Task) were designed in this study 

to analyze the false triggering in MI-BCI, including left hand 

MI (I-Task1), left hand ME (I-Task2), and mental arithmetic (I-
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Task3) task. Interference tasks were not included in the 

modeling process but were used to test the built model. The 

ideal MI-BCI should be triggered only by the target task, and 

should not be triggered by any other mental activity that was 

not a target task. Hence, if MI-BCI is triggered by an 

interference task, this phenomenon will be considered as a false 

trigger.  

Each task is described as follows: T-Task requires subjects 

to perform right hand MI, simulating rehabilitation treatment of 

the right hand. N-Task requires subjects to remain calm without 

any mental activity. For the three interference tasks, I-Task1 

requires subjects to perform left hand MI, simulating possible 

contralateral limb MI. I-Task2 requires subjects to perform left 

hand ME to simulate possible contralateral limb ME. The first 

two interference tasks are typical contralateral compensatory 

activities in stroke patients. I-Task3 involves subjects adding 

two random three-digit numbers displayed on the screen in their 

brains. This task simulates mental activities that have a specific 

workload but are irrelevant to the movement. Fig. 1(a) shows 

the fist state during hand MI or ME period, and the relax state 

during the non-hand task or non-task period.  

The task display interface was developed using the 

Psychtoolbox-3 toolbox for MATLAB. The experimental 

process for collecting data on each task is defined as a trial, and 

the total duration of each trial was 10 seconds. At the beginning 

of each trial, a white circle lit up on the center of the screen for 

2 seconds, indicating the start of a new trial. Next, the white 

circle disappeared, and a red circle appeared that lasted for 2 

seconds (to remind subjects that the task was about to begin). 

The task prompt period lasted for 4 seconds, with the text (right 

hand MI/rest/left hand MI/left hand ME/mental arithmetic) 

displayed on the center of the screen. This period required the 

subjects to perform the corresponding tasks according to the 

prompts, followed by 2 seconds, and then the subjects entered 

a relaxed state. The structure of a single trial is shown in fig. 

1(b). In the hybrid paradigm, electrical stimulation was applied 

to the right median nerve when the red circle lit up and reached 

a maximum after 0.5 seconds. In each trial, maximum 

stimulation was between the 2nd and 8th second. During the 

period of the task prompt, subjects performed the corresponding 

task while simultaneously receiving the electrical stimulation. 

Fig. 1(c) shows the workflow of electrical stimulation.  

The whole experiment was divided into 8 randomly-ordered 

sessions (4 sessions for the MI paradigm and 4 sessions for the 

hybrid paradigm). Each session contained 20 modeling trials 

(10 trials each for T-Task and N-Task) and 15 interference trials 

(5 trials each for I-Task1, I-Task2, and I-Task3). The individual 

paradigms had a total of 140 trials (40 trials each for T-Task 

and N-Task, and 20 trials each for I-Task1, I-Task2, and I-

Task3). There was a rest period of 2-5 minutes between each 

session to avoid fatigue during the experiment. 

 

Data Acquisition and Preprocessing 

The Neuroscan SynAmps2 system was used to acquire EEG 

data with 60 channels according to the international 10/20 

system [27]. The ground electrode was placed on the forehead, 

and the reference electrode was placed on the nose. EEG data 

were band-pass filtered between 0.5 and 100 Hz with a 

sampling frequency of 1000 Hz. An additional 50 Hz notch 

filter was used to remove power frequency interference during 

data acquisition. In the preprocessing stage, the raw data were 

spatially filtered using the common average reference (CAR) 

and then downsampled at 200 Hz.  

 

Event-Related Spectral Perturbation 

ERD and SSSEP features were quantified by Event-related 

Spectral Perturbation (ERSP). ERSP was calculated by Short-

time Fourier Transform (STFT) with a Hanning-tapered 

window. Furthermore, to get the baseline-normalized ERSP, 

the mean spectrum in a baseline period (2 s before applying 

electrical stimulation) was subtracted from the original spectral 

estimation [28]. The ERSP value of ERD/SSSEP features could 

be calculated according to equation (1): 𝐸𝑅𝐷/𝑆𝑆𝑆𝐸𝑃 = 1𝑁∑∑(𝐸𝑅𝑆𝑃(𝑓, 𝑡))𝑡∈𝑇𝑓∈𝐹 (1) 
The frequency of electrical stimulation was 31 Hz in the 

experiment, so 30-32 Hz was selected as the frequency band of 

SSSEP. In equation (1), F represents the frequency band of 

ERD or SSSEP, T represents the time interval of task execution, 

and N is the number of all the sampling points in the specific 

frequency band and time interval. 

 

Feature and Classifier 

In this study, we evaluated the recognition performance under 

four conditions, namely M-E (ERD in the MI paradigm), H-E 

(ERD in the hybrid paradigm), H-S (SSSEP in the hybrid 

paradigm) and H-ES (ERD and SSSEP in the hybrid paradigm). 

Taking H-E as an example, it denotes that ERD features are 

selected for classification in the hybrid paradigm. The 

corresponding features under the four different conditions are 

shown in Table 1, where the symbol (√) represents the features 

used in a specific condition. The M-E and H-E were compared 

so that we could determine whether the induced SSSEP under 

hybrid paradigm will affect the existing ERD feature. H-S was 

used to analyze the specificity of the SSSEP feature. Moreover, 

M-E and H-ES were compared to verify whether the proposed 

hybrid paradigm could improve the performance of the MI-BCI 

system.  

In this study, the CSP algorithm was used to extract EEG 

features [29], and SVM was used to build a classifier [30]. For 

each condition, the data in the task prompt period of each trial 

were selected for processing. First, the bandpass filter was used 

to extract corresponding frequency band of different features. 

Then for each frequency band, the CSP algorithm was used for 

spatial filtering where the first N features were selected. Finally, 

the feature vector used for recognition was the combination of 

these features in each frequency band. Target and nontarget task 

data were used to build a linear SVM classifier.  
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Evaluation Index 

In this study, the recognition performance is evaluated using 

three indexes, which are the T-Task/N-Task recognition rate, 

false triggering rate, and AUC value. The predicted results of 

each task were abbreviated, to facilitate expression, as shown 

in Table 2. TT (True Target) represents the number of trials 

whose predicted label is the target task, and the predicted result 

is true. FN (False Nontarget) represents the number of trials 

whose predicted label is the nontarget task, and the predicted 

result is false. And other abbreviations can be deduced by 

analogy.  

The first index is the T-Task/N-Task recognition rate. It is 

necessary to compare the classification performance of the 

target and nontarget task under four conditions. For each 

condition, the modeling trials were divided into training and 

testing sets through a tenfold cross-validation strategy. The kth 

T-Task/N-Task recognition rate was obtained according to 

equation (2). Then the recognition rate for this condition was 

computed, as shown in equation (3).  𝑎𝑐𝑐(𝑘) = 𝑇𝑇 + 𝑇𝑁𝑇𝑇 + 𝐹𝑇 + 𝐹𝑁 + 𝑇𝑁 (𝑘 = 1,2, … ,10) (2) 
𝑎𝑐𝑐𝑎𝑣𝑒 = 110∑𝑎𝑐𝑐(𝑘)10

𝑘=1 (3) 
The second index is the false triggering rate of I-Task1, I-

Task2, and I-Task3 under four conditions. Modeling trials were 

used to build a T-Task/N-Task classifier, and then three types 

of interference trials (I-Task1, I-Task2, and I-Task3) were put 

into the classifier respectively to record the number of trials 

identified as T-Task (𝐹𝑇𝑖). The proportion of 𝐹𝑇𝑖  in the total 

number of such type (𝐹𝑇𝑖 + 𝑇𝑁𝑖) was called the false triggering 

rate 𝑓𝑎𝑙𝑖  (as shown in equation (4)). The average false 

triggering rate 𝑓𝑎𝑙𝑎𝑣𝑒  was obtained by equation (5). 𝑓𝑎𝑙𝑖 = 𝐹𝑇𝑖𝐹𝑇𝑖 + 𝑇𝑁𝑖 (𝑖 = 1,2,3) (4) 
𝑓𝑎𝑙𝑎𝑣𝑒 = 13∑𝑓𝑎𝑙𝑖3

𝑖=1 (5) 
AUC, the area under the curve of Receiver Operating 

Characteristic (ROC), is used to evaluate the overall 

performance of the classifier [31]. Take T-Task as positive 

examples and other tasks (N-Task, I-Task1, I-Task2, and I-

Task3) as negative examples. True Positive Rate (TPR) is 

defined as the proportion of the trials that are predicted to be 

positive in trials that are actually positive, as shown in equation 

(6). False Positive Rate (FPR) is defined as the proportion of 

the trials that are predicted to be positive in trials that are 

actually negative, as shown in equation (7). For 140 trials under 

each paradigm, a series of coordinates (FPR, TPR) were 

obtained to calculate AUC values. 𝑇𝑃𝑅 = 𝑇𝑇𝑇𝑇 + 𝐹𝑁 (6) 𝐹𝑃𝑅 = 𝐹𝑇 + ∑ 𝐹𝑇𝑖3𝑖=1𝐹𝑇 + ∑ 𝐹𝑇𝑖3𝑖=1 + 𝑇𝑁 + ∑ 𝑇𝑁𝑖3𝑖=1 (7) 
 

Specificity Analysis 

Low task specificity of ERD in the MI paradigm is the primary 

cause of false triggering. Therefore, the performance of the 

hybrid paradigm to reduce this phenomenon will depend on 

whether SSSEP modulated by MI has better task specificity, 

that is, whether there is better separability between T-Task and 

I-Task. Therefore, two paradigms need to be analyzed on the 

feature level. Sensitivity and specificity were defined as the 

evaluation indexes of the features, and they were obtained by 

equation (8) and (9), respectively. 

The alpha and beta feature in the MI paradigm and the SSSEP 

feature in the MI-SSSEP paradigm at electrode C3 was used to 

build a Naive Bayes classifier [32] to calculate the feature 

sensitivity and specificity, respectively.  𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑇𝑇𝑇𝑇 + 𝐹𝑁 (8) 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑁 + ∑ 𝑇𝑁𝑖3𝑖=1𝐹𝑇 + ∑ 𝐹𝑇𝑖3𝑖=1 + 𝑇𝑁 + ∑ 𝑇𝑁𝑖3𝑖=1 (9) 
Results 

Fig. 2 presents the average T-Task/N-Task recognition rate, 

false triggering rate, and AUC value across 13 subjects under 

four conditions of M-E, H-ES, H-E, and H-S. The comparison 

shows that the T-Task/N-Task recognition rate obtained under 

H-E is similar to that under M-E (p=0.380), indicating that 

SSSEP induced in the hybrid paradigm does not affect the 

separability of the existing ERD feature. Additionally, the 

recognition rate in H-S can reach the level of that in M-E. 

Moreover, there is no significant difference between the two 

(p=0.462), which indicates that the SSSEP feature could 

distinguish the target task from the nontarget task well. 

Furthermore, compared with the M-E condition, the recognition 

rate under H-ES increases significantly from 74.2% to 82.0% 

(p<0.01), illustrating that the SSSEP in the MI-SSSEP 

paradigm could improve the feature information, and thus, 

enhance the performance of classification.  

Under the condition of M-E, all the interference tasks have 

high false triggering rates, reaching an average of 55.5%. This 

indicates that many interference tasks could cause false 

triggering in MI-BCI, which is a significant problem for MI-

BCI applications. While for the H-S condition using SSSEP, the 

false triggering rate of three interference tasks decreases 

significantly. Specifically, the I-Task1 decreases from 65.8% to 

33.4% (p<0.001), the I-Task2 decreases from 61.5% to 35.7% 

(p<0.001), the I-Task3 decreases from 39.2% to 18.8% 

(p<0.05), and the average false triggering rate decreases from 

55.5% to 29.3% (p<0.001). This result validates a key 

assumption of our research study that the SSSEP feature in the 

MI-SSSEP paradigm has better task specificity. It has both the 

almost equivalent T-Task/N-Task separability and better task 

specificity compared with ERD so that the T-Task/N-Task 

classifier is not easily triggered when the brain performs 

interference tasks.  

The AUC value is used as another evaluation metric to assess 

the overall performance of the classifier. Compared with the M-

E condition, the AUC value under H-ES significantly increases 
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from 0.669 to 0.788 (p<0.01). Meanwhile, the AUC value under 

H-S also increases to 0.771, indicating that SSSEP in the hybrid 

paradigm improves the overall performance of MI-BCI. 

In order to compare the difference between the induced 

features under the MI and MI-SSSEP paradigm, the time-

frequency maps of the target task, nontarget task, and 

interference tasks at electrode C3 are shown in Fig. 3. The red 

dotted line represents the start time of electrical stimulation in 

the hybrid paradigm, the blue dotted line represents the start of 

task execution, and the black dotted line represents the end of 

task execution or the time when the electrical stimulation 

disappears. Under the MI paradigm, it could be seen that, in line 

with our expectation, the target task induced long-term ERD at 

electrode C3. However, interference tasks also produced ERD, 

though it was relatively weaker than that in the target task, it 

still made it difficult for classification in the MI-BCI system. 

Moreover, under the MI-SSSEP paradigm, SSSEP coexisted 

with the ERD feature, and the ERD induced by N-Task and I-

Task was mainly due to somatosensory response. It can be seen 

that SSSEP was induced at the same frequency from the 

beginning to the end of the electrical stimulation, indicating that 

the SSSEP feature was successfully induced by external 

stimulation.  

The ERSP curves of each feature at electrode C3 in the MI 

and MI-SSSEP paradigm are shown in Fig. 4. The blue curve 

represents the target task, the red curve represents the nontarget 

task, and the yellow curve represents the average interference 

task. For alpha and beta features under the two paradigms, there 

was an energy decline on both the target and interference task 

during task execution. It can be seen that the interference task 

could induce ERD features similar to the target task, though the 

intensity was somewhat weaker. This phenomenon partly 

explains why the classifier mistakenly identifies some 

interference tasks as target tasks. For the SSSEP feature in the 

hybrid paradigm, when affected by the target task MI, there will 

be a significant energy drop during the task execution. At the 

same time, there is no such energy change in the interference 

task. This finding indicates that the interference task does not 

affect SSSEP responses in EEG. In terms of features, the 

interference task does not produce similar features compared 

with the target task. Therefore, the feature of SSSEP modulated 

by MI shows fine task specificity, which makes the false 

triggering in MI-BCI well suppressed.  

The sensitivity and specificity histograms of the alpha and 

beta feature in the MI paradigm and SSSEP feature in the MI-

SSSEP paradigm are shown in Fig. 5. For the specificity index, 

the SSSEP feature in the MI-SSSEP paradigm reaches 0.678, 

which is significantly higher than the alpha feature by 0.289 

(p<0.001) and the beta feature by 0.167 (p<0.05) in MI 

paradigm. The result indicates that the SSSEP feature could 

reduce the probability of identifying the nontarget or 

interference task as a target task. It is consistent with the result 

that the H-S condition could significantly reduce the false 

triggering rate (Fig. 2). For the sensitivity index, although the 

SSSEP feature is slightly lower than ERD, it still shows a strong 

ability to distinguish the target task from other tasks. Therefore, 

analysis on the feature level validates the assumption that 

SSSEP modulated by MI has better task specificity.  

Discussion 

To our knowledge, in the field of MI-BCI, very few related 

studies have addressed the influence of irrelevant mental 

activities on classification and proposed methods for reducing 

false triggering. To this end, we have carried out experimental 

studies to explore the causes of false triggering and the methods 

that can reduce the phenomenon. Experimental results 

demonstrate that false triggering does exist in MI-BCI systems, 

which may result in a wrong neural induction effect and thus 

promote irreversible harm during post-stroke rehabilitation. 

Therefore, the problem of false triggering (and its suppression) 

is indeed worthy of attention in clinical applications. 

SSSEP is a feature induced by sensation, while MI is a sense 

of movement, which means that the modulation of SSSEP by 

MI may have a more complicated mechanism. One possible 

mechanism is the resource competition between motor intention 

and sensory awareness because both of them involve the 

primary sensorimotor cortex [33], [34], which may cause MI to 

suppress SSSEP [35]. Specifically, when somatosensory 

stimulation at a fixed frequency is applied to the target limb, the 

SSSEP of the corresponding frequency will be induced in the 

sensorimotor cortex. Therefore, when subjects are receiving 

electrical stimulation while performing MI on the same limb, 

some of the original neurons used to generate SSSEP may be 

forced to process this MI task, thereby changing the existing 

SSSEP feature. Since somatosensory stimulation directly acts 

on the specific target limb, irrelevant mental activities are less 

likely to cause changes on SSSEP than the motor intention of 

this limb, so SSSEP modulated by MI feature may have better 

task specificity. Another possible mechanism may be related to 

attention. As a result of the presence of electrical stimulation, 

subjects may focus their attention on the corresponding limb 

during the experiment, thus affecting the steady-state 

somatosensory response [36]. 

In this study, only the right hand MI was used as the target 

task. In theory, left and right hand MI should be performed as 

the target task respectively in the experiment. However, it is 

costly to do such an experiment, and few studies have shown 

that there is a difference in the performance of right/left hand 

MI. Also, the sensory pathway may be impaired in stroke 

patients, so whether SSSEP could be induced and whether MI 

has a similar modulation effect on SSSEP compared with 

healthy people remains to be studied experimentally. Of course, 

many studies have shown that sensory awareness is retained in 

some stroke patients and is gradually restored during the 

process of stroke rehabilitation [37]. 

In future studies, more types of irrelevant tasks will be 

included to test the feasibility of the hybrid paradigm. 

Additionally, clinical experiments should be carried out to 

evaluate the efficacy of the new paradigm. The current CSP 

algorithm is not the optimal algorithm for narrow-band signals 

such as SSSEP, so a suitable signal processing algorithm needs 

to be introduced to improve the recognition performance. 
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Conclusions 

The ERD feature that MI-BCI decoding relies on has poor task 

specificity, which can easily cause false triggering in the 

system. Therefore, to reduce this phenomenon, the feature of 

SSSEP modulated by MI under the MI-SSSEP paradigm is 

discussed in this paper. Experimental research shows that the 

SSSEP feature in the hybrid paradigm has better task 

specificity than ERD, which can effectively reduce false 

triggering and improve the recognition performance of MI-

BCI. This finding may provide a new way to enhance the 

overall performance of MI-BCI used for post-stroke 

rehabilitation. 
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Fig. 2  The average evaluation indexes across 13 subjects under four conditions of M-E, H-ES, H-E, H-S. A 

significant difference through paired t-test is indicated by an asterisk (p<0.05) or two asterisks (p<0.01) or three 

asterisks (p<0.001).  

 



 9 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SSSEP beta alpha 

MI-SSSEP 

MI 

Time (ms) 

E
R

S
P

 (
d
B

) 

Time (ms) 

E
R

S
P

 (
d
B

) 

Time (ms) 

E
R

S
P

 (
d
B

) 

Time (ms) 

E
R

S
P

 (
d
B

) 

Time (ms) 

E
R

S
P

 (
d
B

) 

T-Task 

N-Task 

I-Task 

Fig. 4  ERSP curves of each feature at electrode C3 under the MI and MI-SSSEP paradigm. 

MI 

MI-SSSEP 

Time (ms) Time (ms) 

I-Task N-Task T-Task 

F
re

q
u
en

cy
 (

H
z)

 
F

re
q

u
en

cy
 (

H
z)

 

Time (ms) 

ERSP (dB) 

8 6 4 2 0 -2 -4 -6 -8 

Fig. 3  Time-frequency maps of different tasks at electrode C3 under the MI and MI-SSSEP paradigm. 

 



 10 

 

 

 

 

 

 

 

 

 

 

 

Table 1  Corresponding Features Under Four Conditions 

 

 

Table 2  Definition Of Predicted Results For Each Task 
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