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Abstract—Researchers seek help from deep learning
methods to alleviate the enormous burden of reading radio-
logical images by clinicians during the COVID-19 pandemic.
However, clinicians are often reluctant to trust deep mod-
els due to their black-box characteristics. To automatically
differentiate COVID-19 and community-acquired pneumo-
nia from healthy lungs in radiographic imaging, we pro-
pose an explainable attention-transfer classification model
based on the knowledge distillation network structure. The
attention transfer direction always goes from the teacher
network to the student network. Firstly, the teacher network
extracts global features and concentrates on the infection
regions to generate attention maps. It uses a deformable
attention module to strengthen the response of infection
regions and to suppress noise in irrelevant regions with
an expanded reception field. Secondly, an image fusion
module combines attention knowledge transferred from
teacher network to student network with the essential infor-
mation in original input. While the teacher network focuses
on global features, the student branch focuses on irregu-
larly shaped lesion regions to learn discriminative features.
Lastly, we conduct extensive experiments on public chest
X-ray and CT datasets to demonstrate the explainability of
the proposed architecture in diagnosing COVID-19.

Index Terms—COVID-19, explainable artificial
intelligence, automatic diagnosis, radiographic imaging,
attention mechanism, knowledge distillation.

I. INTRODUCTION

CORONAVIRUS disease 2019 (COVID-19) has been
widely spread worldwide since the beginning of 2020

[1]. COVID-19 is caused by Severe Acute Respiratory Syn-
drome Coronavirus 2 (SARS-CoV-2), a highly contagious virus.
At present, Reverse Transcription Polymerase Chain Reaction

Manuscript received September 27, 2020; revised February 8, 2021;
accepted February 24, 2021. Date of publication April 21, 2021; date
of current version July 20, 2021. The work was supported by The Wal-
lace H. Coulter Distinguished Faculty Fellow, Amazon Faculty Research
Fellow, Microsoft Azure Cloud Grant, and Petit Institute Faculty Fellow
awards to Professor Wang. The content of this article is solely the
responsibility of the authors. (Corresponding author: May D. Wang.)

Wenqi Shi and Yuanda Zhu are with the School of Electrical and
Computer Engineering, Georgia Institute of Technology, Atlanta, GA
30322 USA (e-mail: wshi83@gatech.edu; yzhu94@gatech.edu).

Li Tong and May D. Wang are with the Wallace H. Coulter
School of Biomedical Engineering, Georgia Institute of Technology,
Emory University, Atlanta, GA 30322 USA (e-mail: ltong9@gatech.edu;
maywang@gatech.edu).

Digital Object Identifier 10.1109/JBHI.2021.3074893

Fig. 1. Examples of X-ray scans (up) and CT scans (bottom) from
the collected dataset: (a) no findings (b) COVID-19 pneumonia (c)
community-acquired pneumonia (CAP). COVID-19 and CAP both cause
the density of the lungs to increase, which can be seen as whiteness
in the lungs on radiography, depending on the severity of pneumonia.
Compared with non-COVID-19 pneumonia, COVID-19 pneumonia was
more likely to have a peripheral distribution, ground-glass opacity, fine
reticular opacity, and vascular thickening [5]. CAP is predominantly as-
sociated with consolidation on chest radiography [6].

(RT-PCR) is the universally applicable and effective method
to diagnose COVID-19 [2]. However, there exists a conflict
between the shortage of equipment for testing environments and
the rapid and accurate screening of suspected subjects. Further,
RT-PCR testing is also reported to be not sensitive enough in the
early stage [3] and suffer from high false-negative rates [4].

As competitive candidates and important complements to
RT-PCR tests, the radiological imaging techniques, e.g., chest
X-ray imaging and chest computed tomography (CT) imaging
(see Fig. 1.), have also demonstrated effectiveness in current
diagnosis. According to existing studies [7], CT scanning serves
as an essential supplement in follow-up assessment and disease
evolution evaluation. Moreover, similar observations [3] also
suggest that the sensitivity of CT for COVID-19 infection is
98% compared to RT-PCR sensitivity of 71%, and radiological
imaging may help support early screening of COVID-19.
In contrast to RT-PCR testing, radiological imaging and the
corresponding diagnosis can be obtained in a much faster
way. However, the manual delineation of lung infections is
tedious and time-consuming work. Besides, infection diagnosis
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Fig. 2. Schematic representation of attention transfer network struc-
ture. The proposed architecture can be divided into a teacher network
and a student network based on the attention transfer direction.

by clinicians and radiologists is a highly subjective task,
often influenced by individual bias and clinical experience. To
alleviate the enormous burden of reading radiological images for
clinicians and improve diagnosis accuracy under the COVID-19
pandemic, automatic diagnosis systems are in great demand.

To improve the efficiency of radiological imaging-based di-
agnosis, automatic diagnostic systems have been developed
with artificial intelligence (AI), which reads patients’ X-ray
or CT images as inputs and output the responding diagnostic
results [7], [8]. However, most of these AI-related COVID-19
clinical decision support systems [9]–[13] are black-box deep
learning models and lack proper explainability. Clinicians often
feel reluctant to trust or understand such models because of
non-transparency risks [14], [15], which is a significant barrier
for broader adoption. Explainable Artificial Intelligence (XAI)
is considered a novel research tool [16] to address some of the
black-box AI system’s restrictions by explaining their predic-
tions and creating reliable models. Furthermore, XAI helps to
improve the quality of predictions by introducing explainability
and mitigating undesired biases [17]. A fully automatic diagno-
sis system without human verification would be unconscionable
and potentially dangerous in piratical settings [18]. Thus, we
aim to develop an explainable COVID-19 diagnosis model to
enable clinical verification.

To solve the problem discussed above, we propose an explain-
able attention transfer network for the COVID-19 automatic
diagnosis system in this study. The proposed network structure
can be divided into teacher network and student network based
on the attention transfer direction, as shown in Fig. 2. The
teacher network extracts global features and concentrates on
the infection regions with the proposed deformable attention
module (DAM) to strengthen the response of infection regions
and to suppress noise in irrelevant regions with an expanded
reception field. Then an image fusion module combines attention
knowledge transferred from teacher network to student network
with the essential information in original input. While the teacher
network focuses on global features, the student branch focuses
on irregularly shaped lesion regions to learn discriminative
features. The main contribution of our work is three-fold:

� An explainable attention transfer classification model
based on the knowledge distillation network structure is
designed to achieve COVID-19 automatic diagnosis with
radiology. In this study, we utilize an attention mechanism

to transfer knowledge from the teacher network to the stu-
dent network to improve model performance and provide
network interpretation.

� We propose a deformable attention module to focus on
irregularly shaped infection regions and their neighbor-
hood in radiological images. Combining with local infor-
mation, it can help deep networks pay more attention to
infection regions and suppress noise in irrelevant regions
with expanded reception fields. Specifically, the proposed
attention module can serve as an interpretation tool, which
can be flexibly inserted into existing convolutional archi-
tectures.

� We conduct extensive experiments on public available
chest X-ray and CT datasets to evaluate the proposed
multi-class classification model differentiating COVID-
19, normal, and CAP cases. Moreover, our algorithm
achieves the-state-of-art performance and improves the
model’s explainability by saliency map, severity assess-
ment, and prediction confidence.

The rest of the study is organized as follows: Section II briefly
introduces the related works; Section III shows the whole model
structure and further explains proposed modules; Section IV
presents experimental results with analysis; and Section V dis-
cusses the insights and future work.

II. RELATED WORKS

A. Computer-aided COVID-19 Diagnosis Research

While reading radiological image in diagnosing COVID-19,
qualitative interpretation accompanied with quantitative anal-
ysis should be conducted to make radiology reporting much
more comprehensive. To this end, investigators look for help
from computer-aided methods to read and analyze X-rays and
CT scans, aiming to diagnose and monitor COVID-19. Besides
relatively high diagnosis accuracy, AI-related techniques can
also play a role in exploring potential infection regions and other
clinical tasks in radiological images.

Motivated by the high demand for rapid interpretation of chest
X-ray images, many researchers seek help from deep learning
models [9], [10], [19]–[21] to diagnose cases infected with
COVID-19. Wang et al. [19] has proposed COVID-Net with a
deep CNN designed to classify COVID-19 infection, pneumonia
viral, pneumonia bacterial, and normal (non-COVID19 infec-
tion) X-ray imaging datasets. COVID-Net achieves an overall
accuracy of 83.5% for four-category classification task and
92.5% of three-category (COVID-19, normal, and non-COVID
pneumonia cases) classification task. Ozturk et al. [21] has
presented a DarkCovidNet for automatic COVID-19 identifi-
cation with DarkNet backbone to provide accurate diagnostics
for multi-class classification and binary classification. Besides
the traditional supervised learning methods, some researchers
also make use of semi-supervised learning techniques [22] under
the consideration that the number of COVID-19 cases is not
abundant enough and is smaller compared to that of normal
cases for traditional supervised learning.

Clinicians and radiologists can also read and analyze CT
slices to identify certain characteristic visual features in the
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lungs related to COVID-19, such as the bilateral and peripheral
ground-glass opacity (GGO) in the early and the pulmonary
consolidation opacity in the late stage [4], [23]. Xu et al. [11] has
established an early screening model to differentiate COVID-19
from pneumonia and healthy cases using 618 pulmonary CT
samples and achieved a total accuracy of 86.7%. Song et al. [12]
has proposed a deep learning based automatic diagnosis system
named DeepPneumonia with an overall accuracy of 86.0% and
94.0% for multi-class and binary classification, respectively.

Aside from the pure diagnosis tasks, there appears more
related applications, like severity assessment [24], [25], large-
scale screening [26], lung infection quantification [27] and
uncertainty related problems in AI-based diagnosis [28], [29].
Among the models and methods mentioned above, we find that
many methods lack comprehensive interpretations towards their
results. Thus, we are willing to propose an explainable diagnosis
system, aiming to form a thorough interpretation from different
angles.

B. Attention Mechanism

To generate more interpretable results and help the model
make more reasonable classifications, we borrow the idea from
the attention mechanism, which is widely used in artificial
intelligence related applications. The attention mechanism is a
crucial aspect of human perception [30], enabling human beings
to selectively focus on essential parts of the image, instead
of processing the whole scene in its entirety. Simulating such
selective attention mechanism of Human Visual System (HVS)
is also vital for understanding mechanisms behind black-box
neural networks. Attention mechanism has been widely applied
to computer vision areas [30]–[34] and plays a gradually impor-
tant role in more applications, equipping the model with some
new characteristics: a) decide which part of the inputs to focus
on; b) allocate limited computing resources to more important
components. The attention modules can be roughly separated
into channel-wise attention module, spatial-wise attention mod-
ule, and self-attention module.

In spatial-wise mechanism [30], [31], [33], attention module
in convolution neural networks localizes key information by
utilizing the inter-spatial relationship from different location
of feature maps. Jaderberg et al. [34] has proposed a spatial
transformer networks (STN) module, which explicitly allows
the spatial manipulation of data and equips the model the ability
to transform feature maps within the network spatially.

In channel-wise mechanism [32], [35], attention module ex-
ploits inter-channel relationship with additional convolution lay-
ers, which represents the correlation between the current channel
and the key information. The larger the weight is, the more
attention we should pay to the channel. Squeeze-and-Excitation
(SE) Networks [32] is proposed to model the importance of
each channel via different learned weights. Furthermore, many
researchers have combined spatial and channel attention mech-
anisms together [36]–[38] to take advantage of both. Fu et al.
[37] has proposed dual attention networks (DANet) to adaptively
integrate local features with their global dependencies in two
types of attention modules.

Vaswani et al. [39] has introduced self-attention in trans-
former to draw global dependencies between input and output
relying entirely on attention mechanism. Then Wang et al. [31]
propose self-attention mechanism to computer vision areas with
a non-local attention module. Non-local operation calculates the
response at a position as a weighted sum of the features at all
positions and implements correlation matrix to obtain the final
attention map.

Attention mechanism has shown its superiority in a variety
of medical image analysis tasks [40]–[42]. In particular, some
state-of-the-art methods have been proposed to leverage the
attention mechanisms to enhance the discriminative capability
of classification models for both X-ray [43] and CT [44] image
analysis task. Although attention has been widely applied in im-
age processing and biomedical tasks, it has fewer applications to
COVID-19 automatic diagnosis. Besides, the non-local attention
module related methods [31] only calculate the pixel-to-pixel
relationship and ignore the context information, which may not
highlight infected regions in radiological images.

C. Visual Interpretability of Deep Networks

While AI-based models are extraordinarily powerful, adopt-
ing these algorithms in the medical domain has been limited [16]:
even if physicians and regulators try to understand the implicit
mathematical principles inside such models, they still need
explicit declarative knowledge representation and explanatory
structures to verify the prediction results. This means we need to
build up systems to make decisions transparent, understandable,
and explainable via XAI methods.

Visualization of deep network is the most direct way to explore
visual patterns hidden in a neural unit [45]. Gradient-based
methods [46]–[48] are widely applied in network visualization,
mainly compute gradients of the score and estimate the image
appearance that maximizes the unit score. In computer vision
tasks, many prominent XAI methods [47], [48] often explain
with a heatmap on input image, which generated from back
propagation to serve as an overlay by building an abstract feature
importance. Specifically, saliency analysis [47] is proposed to
compute the gradient of the class score with respect to the
input image to provide the final data-driven results; Layer-wise
Relevance Propagation (LRP) [48] related methods help iden-
tify where neurons contribute the most to the higher-layer and
generate explainable visualization results with the conservative
relevance redistribution procedure.

In addition, Zhou et al. [49] has proposed Class Activation
Map (CAM) to accurately compute the receptive field of neural
activations in feature maps. It learns quite complete local ab-
straction with a one-to-one correspondence to input space from
the convolutional layers. GradCAM [50] improves the original
CAM method by using gradient information flowing into the last
convolutional layer to understand each neuron for a decision of
interest. The following GradCAM++ [51] provides better visual
explanations in multiple object instances within a single image.
Aside from other global-wise algorithms, Local Interpretable
Model-agnostic Explanations (LIME) [52] uses a linear model
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Fig. 3. Illustration of our proposed explainable COVID-19 classification model. The teacher network extracts global features and concentrates on
the infection regions with the proposed DAM. The outputs of DAMs transfer attention knowledge and combine with essential information in original
input via an image fusion module. Training with teacher network jointly, the student branch with weighted dense connectivity can focus on irregularly
shaped lesion regions to learn discriminative features and improve network performance.

to approximate the black-box model in the vicinity of a specific
input.

Several visualization methods have been adopted to im-
prove the interpretable ability of AI-based COVID-19 mod-
els. Saliency detection methods [53] have been applied to the
COVID-19 diagnosis system to interpret the proposed classi-
fication model. CAM [49] and its improvement models Grad-
CAM [50], GradCAM++ [51] have also been widely utilized
in COVID-19 diagnosis to establish explainable classification
modules [20], [21], [54]. In this study, attention mechanism is
utilized to generate visual explanations for classification model
and it can also serve as an interpretation tool when inserted into
other convolutional architectures flexibly.

III. THE PROPOSED METHOD

In this paper, we propose an explainable classification model
to automatically differentiate COVID-19, CAP from healthy
lungs in radiographic images. Following the original attention
transfer network [55], the proposed network structure can be
divided into teacher network and student network. The teacher
network extracts global features and concentrates on the infec-
tion regions with the proposed deformable attention modules.
Attention knowledge transfers from the teacher network to the
student via an image fusion module. With knowledge borrowed
from the teacher network, the student branch with weighted
dense connectivity can focus on irregularly shaped lesion regions
to learn discriminative features and improve network perfor-
mance. We optimize the two networks jointly by minimizing
the proposed joint loss function. The overall framework of our
method is illustrated in Fig. 3.

A. Teacher Network with Deformable Attention Module

The teacher network extracts global features through a deep
network and concentrates on the infection regions with the
deformable attention modules. Following the basic architecture
of DenseNet-169 [56], the teacher network comprises of four

Fig. 4. Illustration of deformable convolution with learning offsets. The
deformable convolution adds 2D offsets to the regular grid sampling
locations in the standard convolution, enabling free deformation.

dense blocks, two deformable attention modules, and following
transition layers. Dense block is composed of 6, 12, 24, 16
densely connected layers connects each layer to every other
layer in a feed-forward fashion to ensure information reuse. Two
deformable attention modules are inserted to estimate infected
regions and track long-distance dependency information. Each
transition layer does convolution and pooling with a batch nor-
malization layer and a 1×1 convolutional layer followed by a
2×2 average pooling layer to reduce the dimension and channel
of feature maps.

Considering the boundary of infected regions is irregularly
shaped, we propose a deformable attention module to emphasize
features in infection region through calculating the response at
each position and generating a weighted sum of features. We
implement deformable convolution operation [57] to learn a
global spatial weights matrix, where each element indicates the
cross correlation between regions in feature maps. As shown
in Fig. 4, compared with standard convolution, the deformable
convolution adds 2D offsets to the regular grid sampling loca-
tions, which enables free form deformation. In particular, the
offsets are learned from the preceding feature maps via an addi-
tional convolution layer, including both horizontal and vertical
directions. In a basic convolution layer, the sampling location
pk with a basic 3×3 convolution kernel can be expressed as
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Fig. 5. Illustration of proposed deformable attention module. The input
feature map first pass through two deformable convolution in horizontal
and vertical direction separately, and then implemented by a standard
convolution layer. The attention map is calculated by a correlation matrix.

pk ∈ K = {(−1,−1), (0,−1), . . . , (1, 0), (1, 1)}. Unlike uni-
form sampling with fixed pk in normal convolutions, the regular
gridK is augmented with offsetsΔp in deformable convolution,
which enlarges the receptive fields around the infected regions
gradually. Concretely, for a location p in the input feature map
x, the output feature map y(p) of deformable convolution layer
can be expressed as:

y(p) =

|K|∑

k=1

w (pk) · x (p+ pk +Δpk) , (1)

where the summation of sampled values are weighted by w(p).
The proposed deformable attention module implements two

deformable convolution layers to generate the output attention
map, as shown in Fig. 5. The input feature map first pass through
two deformable convolution in horizontal and vertical direction
separately, and then implemented by a 1× 1 standard convolu-
tion. We utilize the deformable convolution layers to generate the
attention mask towards the feature map obtained from convolu-
tion layer. Concretely,the input feature x ∈ RC×H×W of DAM
is transferred into u(x), v(x) ∈ R

C
r ×H×W through deformable

convolution layers in two directions and w(x) ∈ RC×H×W

through a standard convolution layer, with a dimensional reduc-
tion ratio r = 4. The spatial weights matrix can be computed by
a normalized cross correlation (NCC) matrix τ :

τ(i, j) =
1

n

∑

i,j

1

σu′σv′
u′(i, j)v′(i, j), (2)

where u′, v′ ∈ R
C
r ×N is arranged into sequences by u, v; n is

the number of elements in u′(i, j) and v′(i, j) and σu′ , σv′ is
the corresponding standard deviation of u′, v′. We implement
the obtained spatial weights matrix on the feature map w(x)
gathered by a 1×1 convolution layer, and the output attention
map A of the DAM can be formulated by:

A =

N∑

i=1

w(x)τj,i, s.t.
∑

i

τj,i = 1. (3)

Combining context with local information, the proposed at-
tention module helps the teacher network highlight the response
of infection regions and reduce noise in irrelevant regions in an
expanded reception field achieved by deformable convolution.
Compared with the self-attention module in Wang et al. [31],
our deformable attention module can adaptively concentrate on
irregularly shaped infection regions and its neighborhood to

integrate global and local information. Furthermore, the pro-
posed attention module can be flexibly transferred into any
deep neural networks to capture long-distance dependency and
achieve explainable results.

B. Student Network with Attention Transfer

Knowledge distillation with neural networks was pioneered
by Hinton et al. [58], aiming to improve the performance of
a student network through the knowledge borrowed from a
powerful teacher network. In this paper, we aim to improve a
student network’s training by relying on the attention knowledge
borrowed from an instructive teacher network. Therefore, the
original input fuses with the attention map which guides to
infection regions for further improvement in performance in
the student network. Additionally, we propose weighted dense
connectivity in the original dense block to further aggregate the
information flow between layers and improve network perfor-
mance.

In image fusion processing, the prior attention information
borrowed from the teacher network serves as the input of the
student network to train it effectively. Considering the borrowed
attention maps may lose some essential information in the early
stage, we also involve the original input of teacher network IT0
in the fusion module. The fused input image for the student
network IS0 is defined as:

IS0 =
IT0 ⊕ (IT0 �A′

0)⊕ (IT0 �A′
1)

3
, (4)

where A′
0, A

′
1 indicates the average attention map among all

channels of A0, A1 from 1st, 2nd DAM. The ⊕ represents
channel-wise dot addition operation and � indicates element-
wise dot product operation. As the dimension of the attention
maps A0, A1 is reduced by transition layers, we need to first
resize A0, A1 (with resolution 32× 32, 16× 16) to fuse with
original image IT0 .

After fused with output attention map from teacher network,
IS0 is fed to nextγ-dense block with weighted dense connectivity.
For the following DenseNet, it comprises L layers, each of
which implements a non-linear transformation H�(·), where �
indexes the layer. H�(·) consists of a batch normalization, a
Rectified Linear Units (ReLU), and a convolution of �th layer
as in standard dense block. We denote the output and the corre-
sponding weight scalar of �th layer as x� and γ�, respectively.
Consequently, the weighted dense connectivity of the �th layer
can be formulated as:

x� = H�([γ0x0, γ1x1, · · · , γ�−1x�−1]), (5)

where [γ0x0, γ1x1, · · · , γ�−1x�−1] indicates the feature map’s
weighted concatenation generated in layers 0, 1, · · · , �− 1. All
the weights are set to 1 in the initialization and optimized with
iteration. Specifically, we concatenate the multiple inputs of
H�(·) in eq. (5) into a single tensor for ease of implementations.

The obtained attention map works as guider to transfer knowl-
edge from teacher network to student. With input image fusion
module, the outputs of two DAMs in teacher branch combine
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with essential information in original image to help student net-
work focuses on infection regions. Weighted dense connectivity
assists to introduce adaptive connections from any layer to all
subsequent layers. Trained with teacher network jointly, the
student network can pay more attention to irregular shaped lesion
regions to learn discriminative features and improve network
performance.

C. Overall Objective Function

The cross-entropy loss together with softmax activation is
considered as one of the most widely used loss functions in
image classification tasks. The cross-entropy loss function can

be formulated as LCE = − 1
N

∑N
i=1 log

e
WT

yi
xi+byi

∑n
j=1 e

WT
j

xi+bj
, where

xi ∈ Rd denotes the extracted deep feature of the ith sample
and yi represents the Ground Truth (GT). Wj ∈ Rd indicates
the weights for jth class in the Fully Connected (FC) layers,
and bj ∈ Rn is the bias term. The batch size and class number
are N and n, respectively. Despite its simplicity and popularity,
the cross-entropy loss does not explicitly optimize the embed-
ding feature to maximize the inter-class margin distance and
encourage discriminative learning of features.

To address this issue, we modify the cosine loss [59] in
face recognition to propose a Discriminative Cosine (DC) loss
for the separate training of each branch. For simplicity, we
fix the bias bj = 0 as in the following and transfer the logit
as WT

j xi = ‖WT
j ‖‖xi‖cosθj , where θj is the angle between

weight WT
j and feature xi. Then we fix the individual weight

WT
j = 1 and re-scale embedding feature xi = s by l2 normal-

ization. The learned embedding features are thus distributed on
a hypersphere with a radius of s. Besides, the regularization
term is also involved to enlarge the inter-class variances and
enlarge weights discrepancy in fully connected layer. Therefore,
the proposed DC loss can be formulated as:

LDC =
1

N

∑

i

− log
es(cos(θyi ,i)−m)

es(cos(θyi ,i)−m) +
∑

j �=yi
es cos(θj ,i)

+
1

n(n− 1)

n∑

yi=1

n∑

j �=yi

W�
yi
Wj ,

(6)
where cos (θj , i) = WT

j xi and hyper-parameter m indicates the
the angular margin between different classes.

In distillation, knowledge is learnt by the teacher network
and then transferred to the student network by minimizing a loss
function, where the target is the distribution of class probabilities
predicted by the teacher model. Intuitively, prediction results
obtained from either teacher network or student network should
maintain the same. Therefore, we utilize the Jensen-Shannon
(JS) divergence [60] to measure the difference between two
distributions from teacher network and student network. We
denote the probabilities of class j from teacher and student

network as ptj , p
s
j and pavg =

pt
j+ps

j

2 for simplification, where

pj =
escos(θj,i)

∑n
j=1 escos(θj,i)

. Then the JS loss can be calculated by:

LJS =
1

N

N∑

i=1

n∑

j=1

1

2
ptj log

ptj
pavg

+
1

2
psj log

psj
pavg

. (7)

The lower the JS divergence value, the better the two prediction
distributions have matched with each other.

To combine the two loss function terms, we introduce a
time-dependent weighting function w(t) to scale the JS loss. It
assists to effectively train the student when the teacher network
converges to a relatively stable situation. The overall objective
function can be formulated as:

L = LDC + w(t) · LJS . (8)

We freeze and update parameters in teacher/student network
alternatively in turn to optimize both networks simultaneously
until convergence. With DC loss, either network acquires dis-
criminative features with larger inter-class variances. With JS
loss function, the student network is optimized collaboratively
with the teacher network and gradually matches the probability
distribution by minimizing LJS .

IV. EXPERIMENTAL RESULTS AND DISCUSSION

We implement proposed model to COVID-19 related X-ray
and CT dataset to test the effectiveness and provide explainable
results of our method. Due to GPU memory constraints, we
utilize 128×128 dimension images to train the network. General
radiological image pre-processing techniques like histogram
equalization are implemented with python scikit-image library
to enhance image quality. We implement data augmentation with
random flipping and rotation on training data, and no augmen-
tation is performed in test data. We use Adam optimizer [61]
available in TensorFlow with hyperparameter values β1 = 0.5
and β2 = 0.999. Training is performed using a batch size of
16. Hyperparameters in loss function are set to s = 64 and
m = 0.15. Following [62], we ramp up the weight parameter
w(t) and learning rate during the first 50 epochs with weight
w(t) = exp[−5(1− t

50 )
2] and ramp down the learning rate

during the rest epochs with w(t) = exp[−12.5(1− 100−t
50 )2].

A. Data Collection

Our experiments are conducted on both COVID-19 related
chest CT and X-ray image dataset separately. Examples of both
CT and X-ray images from the proposed dataset are shown in
Fig. 1.. In our experiments, each collected dataset is randomly
shuffled into three subsets: 70% for training, 10% for validation,
20% for test.

In this study, CT images from several public datasets are
utilized to train and evaluate our algorithm. We adopt 349
COVID-19 positive CT images and 384 normal class (no find-
ings) CT images in COVID-CT-Dataset [63]. Furthermore, 304
chest CT images labeled as CAP are collected from Radiopaedia
[64] to build a relatively balanced CT image dataset.
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TABLE I
PERFORMANCE COMPARISON WITH STATE-OF-ART METHODS ON CHEST X-RAY DATASET.

TABLE II
PERFORMANCE COMPARISON WITH STATE-OF-ART METHODS ON CT DATASET.

Regarding X-ray data collection, we collect 450 COVID-19
X-ray images diagnosed with COVID-19 from the Italian Soci-
ety of Medical and Interventional Radiology (SIRM) COVID-
19 database [65] and a COVID-19 X-ray dataset developed
by Cohen et al. [66] using images from various open access
sources. Besides, 1800 normal class (no findings) and 1837
CAP class frontal chest X-ray images are randomly adopted
from the National Institutes of Health (NIH) Chest X-ray
Dataset [67].

B. Evaluation Metrics

We make a confirmation and definition of the evaluation
metrics utilized to assess our model’s performance. In this study,
we are targeting to solve a three-category classification problem
separating COVID-19, normal, CAP cases. We utilize precision,
recall, F1-score per class and overall accuracy (OA) to evaluate
the classification performance. Additionally, we also evaluate
the multi-classification results using Cohen’s kappa (CK) score.
Cohen’s kappa statistic measures inter-rater reliability when
faced with imbalanced-class or multi-class classification prob-
lems. It is generally considered as good multi-class classification
algorithm with Cohen’s kappa score (usually ranges from 0 to
1) above 0.8.

C. Comparison with State-of-the-art Methods

To further get to know how our model performs, we offer
Table I and Table II as our multi-classification performances.
The tables also include comparison on different metrics with
other state-of-art methods. More specifically, Table I shows the
main results on chest X-ray dataset and Table II illustrates the
performances of different models on CT dataset. For settings
on chest X-ray dataset, we discuss the following three existing
literature:

� CORONet [68] is a deep CNN model using Xception
architecture for automatic COVID-19 diagnosis focusing
on detecting lung infections in chest X-ray data;

� COVID-Net [19] utilizes a DenseNet-similiar structure to
track long-distance connectivity and applies GSInspire to
achieve the critical factors leading to the classification;

� DeepCOVIDExplaner [20] is constructed based on the
ResNet18 structure to accomplish the classification task
while it also utilize GradCAM for visualization;

On the other hand, we also present the results of three the-
state-of-art method experimented on CT dataset:

� ResNet [69] is a widely applied model and architecture
in computer vision tasks, which is also very popular in
many CT-based COVID-19 diagnosis systems, playing an
important role in classification functional modules;
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Fig. 6. Illustration of proposed γ-dense block with weighted dense
connectivity. All the weights γ are set to 1 in the initialization and
optimized with iterations.

� ResNet+Location attention [11] takes use of location
attention mechanism to make the features learnt from
ResNet18 and ResNet23 explicitly;

� COVID-Net-CT [70] share similar structure with
COVID-Net, only make some small adjustments towards
CT dataset.

Quantitatively, for experiments on chest X-ray dataset, our
proposed method obtains the recall of 0.9231, precision of
0.8904, F1-score of 0.9065, a 93.44% overall accuracy and
a 0.8885 CK-score for the COVID-19 category outperforms
all the other state-of-art methods. For the other classes, our
model performs the best in all the metrics (recall, precision,
and F1-score) on pneumonia and the precision score of normal
people class. For the other experiment setting on CT dataset,
our proposed method achieves highest COVID-19 recall 0.8649,
highest COVID-19 precision 0.9014, highest COVID-19 F1-
score 0.8828, highest overall accuracy 87.98% and highest
CK-score 0.8248 among all the state-of-art methods. So does
our model on pneumonia precision score.

The main misclassification often occurs between COVID-19
positive and CAP cases, which are sometimes challenging for
an experienced clinician. Without pre-trained on large scale
pathological radiography imaging datasets like [19], it is ac-
ceptable for our proposed method does not perform the best on
some of the metrics regarding normal and pneumonia class. The
classification results validate that our method can effectively ex-
tract discriminative features for COVID-19 radiological images
and make relatively high-accuracy predictions for automatic
diagnosis.

D. Explainable Results

1) Model Interpretation and Visualization: The final output
attention map of proposed model can be calculated as A =
A0 +A1, where A0,A1 indicates the output of the 1st, 2nd
DAM. We compare our attention map combining the outputs
of two DAMs with several state-of-art model interpretation
method GradCAM [50], GradCAM++ [51], and LRP [48]. In
general, the more accurate an algorithm is, the more consistent
the visualizations of attention maps will be. Key features can
then easily be identified based on where the attention maps are
overlapping. As shown in Fig. 7, the heat-maps are overlapped on
the original images with the red color highlighting the activation
region associated with the predicted class. The other three model
interpretation methods are implemented on the COVID-Net
[19] with good classification performance to provide explain-
able results. It can be seen that our calculated attention maps
successfully highlight more detailed infection regions while
other approaches sometimes fail to capture key features (e.g. (b)

Fig. 7. Comparison of different network visualization and model in-
terpretation methods. The heatmaps are overlapped on the original
COVID-19 images, the red color highlights the activation region asso-
ciated with the predicted class. The intensity of colors on the heatmap
corresponds to importance of features for the prediction of COVID-19
positivity. (a) Original image (b) GradCAM [50] (c) GradCAM++ [51] (d)
LRP [48] (e) Ours

Fig. 8. Representative chest X-ray images (I) and corresponding
saliency maps (II) of (a) the healthy, (b) COVID-19, and (c) CAP. The
heatmaps are overlapped on the original image, where the red color
highlights the activation region associated with the predicted class.

GradCAM in the 1st row) or get distracted by some irrelative
information outside of lungs area like skeletal structure (e.g. (b)
GradCAM, (c) GardCAM++ in the 3rd row). Moreover, since
our method combining with local information and takes features
around infection regions, the obtained attention maps enlarged
the reception field to expand highlighted infection regions.

From the heatmaps in Fig. 8, we can verify that our model
is not making decisions based on inappropriate regions of the
radiology images. We can observe that the focus area for (b)
COVID-19 and (c) CAP was explicitly different from the one
for (a) the healthy. According to the saliency maps, we also found
that the network focused on different regions when classifying
COVID-19 and CAP. For CAP cases, the model paid more
attention to effusion and consolidation adjacent to the pleura.
On the other hand, the network focused more on GGO rather
than consolidation for COVID-19 subjects.

Consequently, precise decisive feature localization is crucial
for both model interpretation and rapid confirmation of relia-
bility of outcomes [20]. Attention map highlights the critical
regions on the radiological image and provides an explainable
result of a prediction model. It offers insight to clinicians with
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TABLE III
RADIOLOGICAL SCORING PERFORMED BY THREE BLINDED EXPERTS,

INDICATING THE EXTENT OF GROUND-GLASS OPACITY IN EACH LUNG (RIGHT
AND LEFT LUNG).

TABLE IV
COMPARISON OF SEVERITY SCORE PERFORMANCE METRICS OF OUR

METHOD WITH THE-STATE-OF-ART.

the process of making more accurate diagnosis and correcting
the potential misdiagnosis in AI-based model. Besides ensuring
trustworthiness, it will also provide new insights and visual
indicators of potential clinical factors regarding COVID-19.

2) Severity Score: For COVID-19 cases, the proposed X-
ray dataset contains 94 PA chest X-ray images from Cohen et
al. [66] assigned with severity score [24] and lung mask [71].
Each image is assigned with a severity score by three experts,
indicating the extent of GGO or consolidation in each lung (right
and left lung). Calculated by right lung and left lung together,
the final extent score ranges from 0 to 8, as shown in Table III.
Following the definition in [25], we compute the “pneumonia
ratio” for each lung. We divide the “pneumonia ratio” into four
levels following the same GT criterion, and the total score is
summed for both lungs. Pneumonia ratio is calculated by:

Pneumonia Ratio =
Areapneumonia

Arealungs
, (9)

where the Arealungs is computed according to the total number
of pixels involved in the lung mask. Specifically, the attention
map is multiplied by the lung mask to restrict pneumonia in-
fected regions to the lung area. We restrict the attention map in
Arealungs provided by lung mask and discard pixels outside. We
then further define Areapneumonia by the area in the normalized
attention map (re-scale to 1) with a lower bound restricted by
threshold T = 0.5.

As shown in Table IV, we can observe the predicted severity
scores against ground truth with correlation coefficient of the
fitted model being 0.76 and R2 = 0.57. Compared with specific
pneumonia localization algorithm DLNet[25], our attention map
achieves a relatively similar performance which indicates the ef-
fectiveness of our severity assessment method and attention map.
The severity of COVID-19 pneumonia is directly associated with
its extent in the lungs; thus, we can improve the performance with
an accurate segmentation of regions infected with pneumonia in
the future work. Besides, the limitation of sample size prevents
proper cohort selection. It is possible to further improve the
generalization of our model with more radiology data labelled
the same severity score criterion.

Fig. 9. Model confidence towards different sample points. GT stands
for ground truth of corresponding figure. The three chest X-ray images
in the upper line (with GT label in green) are classified correctly by
the proposed model, while images in the bottom (with GT label in red)
indicate misdiagnosed cases. In each case, the predicted label with
highest prediction confidence score is changed to bold text with correct
prediction in green and wrong in red.

3) Prediction Confidence: As is known to all, the COVID-19
diagnosis process is a complicated decision-making system and
it may cause disastrous consequences if incorrect conclusion
is obtained. Thus, the results output from the proposed model
will be more convincing and explainable if an uncertainty or
confidence score is given accompanying the normal classifica-
tion prediction. We utilize a simple Softmax function to form a
primary model confidence score towards each data, which also
represents the probability that the model thinks its answer might
be correct:

Confi = max
j∈[0,K−1]

ezij
∑K−1

k=0 ezik
, i ∈ [0, N − 1]. (10)

where zij represents the j-th class prediction score of the i-th
data obtained from our proposed model; N represents the data
size and K represents the number of classes, which is 3 in this
application. With the confidence score, we can see how confident
the model is towards different given data.

For better understanding, we give a brief view of examples
with the X-ray imaging dataset and offer the corresponding
confidence score in Fig. 9. The figures on the first row with
green ground-truth labels are correctly-classified images and
the figures on the second row with red labels are mis-classified
images. For the mis-classified figures, the labels and scores
in red text are the wrong predictions given by our proposed
model and the green labels and scores are the ground-truth
labels. It can be easily noticed that the mild COVID-19 patients
with smaller shadow area in lungs in the second row can be
classified as normal by mistake. When diagnosing these patients,
the model seems to be not that confidence compared to the
correctly-classified severe patients in the first row.
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TABLE V
ABLATION STUDY METRICS ON CT DATASET.

With the aid of the confidence score, we may avoid mak-
ing wrong decisions and classifications at the early stage of
the disease. If the model confidence score is below certain
threshold (like 0.5 in this three-class classification scenery),
we can consult some experts and clinicians for advise. Besides
misdiagnosed/failure cases, we should also be alert to correct
prediction with relatively low confidence, which may indicate
a random guess of model. The combination of AI automatic
diagnose system and the experience of doctors can both reduce
the uncertainty and risk of making wrong diagnosis and improve
the efficiency of the whole diagnosing process.

E. Ablation Study

To validate the effectiveness of various components in the pro-
posed architecture, we design an ablation experiment based on
DenseNet structure to assess each module’s characteristics. Here
we focus on precision, recall, and F1-score of COVID-19 pos-
itive class in the CT dataset, which is relatively class-balanced
than X-ray. To analyze the contributions of the proposed model,
Table V quantitatively shows the performance of the baseline
models and our proposed method. On the 1st row, we show the
results of the backbone DenseNet-169 [56]. To further verify
each component’s validity, we conducted several comparative
experiments on combining backbone and a single functional
module and the corresponding results are shown from 2nd to 4th
row. At last, to show the validity of the composition method of
these functional methods, we also offer the results of our method
on the 5th row. Specifically, γ-DB in the second row denotes
the γ−dense block with weighted dense connectivity. In general,
it is clear that each proposed single functional module: DAM,
weighted dense connectivity, and DC loss all make contribu-
tion to the promotion of performance. With either component
involving, it achieves relatively better performance compared
with original DenseNet backbone. From the last row in Table V,
we can notice that the proposed model outperforms the other
ablation models. Thus, we may confirm that both components
make improvements and work well with joint network structure.

1) The Effectiveness of DAM: We analyze the effectiveness
of DAM by visualizing the extracted attention maps and learned
offsets fields from two DAMs in the teacher network. In Fig. 10,
column (a) shows the original input CT images, (b),(c) show
the learned offset fields, and (d),(e) represent the obtained at-
tention maps. From (b),(c) in this figure, it can be observed
that the respective fields become larger at infection regions.
Extended reception help to provide comprehensive attention
maps and improve classification performance. From the (d),

Fig. 10. Visualization of proposed deformable attention module. (a)
original input images. (b),(c) learned offset fields of the 1st and 2nd
DAM. (d),(e) attention maps of the 1st and 2nd DAM. (f) the final
attention maps.

Fig. 11. Visualization of features learned with different (a) softmax
loss LCE (b) proposed LDC functions on MNIST dataset. Each color
denotes one class from digit 0 to 9.

(e) columns, it is clear to see that both attention maps are able
to highlight infected regions in original image. The attention
map at large scale includes more detailed context information,
while the smaller one contains more structure information. To
quantitatively evaluate the performance of DAM, we compare
the teacher network (single DenseNet structure with DAM) with
original DenseNet. It is evident that the proposed DAM performs
better with an improvement of 2.41% in overall accuracy.

2) The Effectiveness of DC Loss: We replace the original
softmax cross entropy loss in baseline model with DC loss to
evaluate its performance. The relatively significant improvement
of about 8.11% in recall, 5.11% in F1-score, and 1.93% in overall
accuracy compared with baseline indicates that DC loss can
facilitate the distinction of learned features and strengthen the
proposed model’s robustness. Cosine loss helps further max-
imize the decision margin in the angular space to solve the
original softmax loss lacks the power of discrimination; the
regularization term also gives assistance to enlarge the inter-class
variances. Moreover, visualization of features learned with cross
entropy loss and DC loss on the MNIST dataset in Fig. 11
can also demonstrate the improvement of DC loss. Compared
with softmax loss, converged DC loss can further increase the
inter-class separability and the intra-class compactness. The
quantitative experiment and feature visualization in general
dataset demonstrate the discriminative ability of DC loss.

V. CONCLUSION AND FUTURE WORK

In this paper, we propose an explainable attention transfer
classification model based on the knowledge distillation network
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structure to automatically differentiate COVID-19, CAP from
healthy lungs with radiographic imaging. The teacher network
extracts global features and concentrates on the infection regions
to generate attention maps. We propose a deformable attention
module to reinforce the response of infection regions and reduce
noises in irrelevant regions with expanded reception field. More-
over, combining essential information in original input, attention
knowledge transfers from teacher network to student via an
image fusion module. Trained with teacher network jointly,
the student branch with weighted dense connectivity can focus
more on irregularly shaped lesion regions to learn discriminative
features and improve network performance. Lastly, we conduct
extensive experiments on public chest X-ray and CT imaging
datasets to demonstrate the explainability of the proposed archi-
tecture in diagnosing COVID-19.

In this work, we have applied network visualization to high-
light the potentially infected regions to explain the classification
of CAP or COVID-19 infected regions from non-infected ones.
Our goal is to provide clinicians with explainable AI tools so
that they can diagnose COVID-19 cases more quickly and objec-
tively. In the next phase of this project, we plan to include newly
released data in the teacher network to build a semi-supervision
model[72], which is expected to fully utilize the advantage of
knowledge distillation network structure and further improve
prediction accuracy. Moreover, it remains challenging to quan-
tify correctness of model interpretability as current evaluation
approaches mainly require subjective input from humans [73].
We aim to extend the quantitative evaluation of interpretation re-
sults (e.g., Dice similarity coefficient [74]) when the ground truth
data of infection regions is available in the future. In addition, we
will explore specific image features that can separate COVID-19
from CAP, and will combine the radiology findings with other
data such as epidemiological histories, clinical characteristics,
and hematological analysis to further improve the diagnosis
accuracy in a multi-modality integration framework [75].
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