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JAS-GAN: Generative Adversarial Network Based
Joint Atrium and Scar Segmentations on

Unbalanced Atrial Targets
Jun Chen, Guang Yang, Habib Khan, Heye Zhang, Yanping Zhang, Shu Zhao, Raad Mohiaddin, Tom Wong,

David Firmin, Jennifer Keegan.

Abstract—Automated and accurate segmentations of left
atrium (LA) and atrial scars from late gadolinium-enhanced car-
diac magnetic resonance (LGE CMR) images are in high demand
for quantifying atrial scars. The previous quantification of atrial
scars relies on a two-phase segmentation for LA and atrial scars
due to their large volume difference (unbalanced atrial targets).
In this paper, we propose an inter-cascade generative adversarial
network, namely JAS-GAN, to segment the unbalanced atrial
targets from LGE CMR images automatically and accurately in
an end-to-end way. Firstly, JAS-GAN investigates an adaptive
attention cascade to automatically correlate the segmentation
tasks of the unbalanced atrial targets. The adaptive attention
cascade mainly models the inclusion relationship of the two
unbalanced atrial targets, where the estimated LA acts as the
attention map to adaptively focus on the small atrial scars
roughly. Then, an adversarial regularization is applied to the
segmentation tasks of the unbalanced atrial targets for making
a consistent optimization. It mainly forces the estimated joint
distribution of LA and atrial scars to match the real ones.
We evaluated the performance of our JAS-GAN on a 3D LGE
CMR dataset with 192 scans. Compared with the state-of-the-
art methods, our proposed approach yielded better segmentation
performance (Average Dice Similarity Coefficient (DSC) values of
0.946 and 0.821 for LA and atrial scars, respectively), which indi-
cated the effectiveness of our proposed approach for segmenting
unbalanced atrial targets.

Index Terms—Unbalanced Atrial Targets, Medical Image Seg-
mentation, Adaptive Cascade, Adversarial Regularization.
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I. INTRODUCTION

AUTOMATED and accurate segmentations of left atrium
(LA) and atrial scars from late gadolinium enhanced

cardiac magnetic resonance (LGE CMR) are crucial for the
quantification of atrial scars. The quantification of atrial scars
usually requires the segmentations of the LA and atrial scars
to obtain an accurate estimation of the scar percentage [1],
helping the treatment stratification of patients with atrial fibril-
lation (AF) before and after radio-frequency catheter ablation
[2, 3]. Clinically, LGE CMR imaging allows the visualization
of scar tissues through the amount of contrast agent left due to
differences in interstitial cell structures [4]. Thus, LGE CMR
has emerged as a promising technique to non-invasively detect
and locate atrial scars to further provide the accurate quan-
tification of atrial scars [4]. In clinical practice, this generally
relies on manual segmentations of both the LA and atrial scars
[5], which is time-consuming. Automated segmentations of the
LA and atrial scars from LGE CMR images would facilitate
the rapid and reproducible quantification of atrial scars.

However, automated and accurate segmentations of LA and
atrial scars from LGE CMR images are two very challenging
tasks due to the complexities of the two unbalanced targets
with significant volume contrast as shown in Fig. 1. Firstly,
for the segmentation task of LA, the LGE CMR imaging
technology is generally used to visualize scar tissue by en-
hancing its signal intensity. This gives rise to the attenuated
contrast in non-diseased tissue [6]. The attenuated contrast in
healthy LA reduces the visibility of the LA boundaries, which
limits the usage of edge and region based methods for the
automated and accurate segmentation of the LA. Secondly, for
the segmentation task of atrial scars, atrial scars occupy only
a very small portion of LA volume. They are therefore highly
susceptible to noise interference. Besides, compared with the
voxels in the background, the amount of information available
on the small atrial scars is very limited, which results in
severe class-imbalance problems for hindering the automated
and accurate segmentation of atrial scars. Furthermore, there
are many other nearby tissues (aortic wall, oesophagus and
other tissues) that are enhanced by LGE CMR imaging along
with atrial scars, which also can interfere with the accurate
recognition of the atrial scars. To tackle these difficulties, most
of the work done in this field has focused on a separated two-
phase segmentation framework, where the LA is obtained first
followed by the delineation of the small atrial scars. This two-
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phase segmentation framework is limited to the inefficiency
and error accumulation problem.

Manual delineationRaw image 3D Visualization
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Fig. 1. Examples of transverse LGE CMR slices (left) together with manual
segmentations (middle) and 3D visualization (right) in a pre-ablation scan
(top raw) and a post-ablation scan (bottom raw) from two patients. The red
regions denote the LA while the green ones denote the atrial scars.

In order to overcome the issues mentioned above, we inves-
tigate end-to-end joint learning for two semantic segmentation
tasks of the unbalanced targets of LA and atrial scars. Because
the atrial scars are located in the LA wall, there exists an
inclusion relationship between the large LA and small atrial
scars. We can make full use of the inclusion relationship
to mine the dependent correlation between the segmentation
tasks of LA and atrial scars for their joint learning. However,
the LA and atrial scars are unbalanced targets as shown in
Fig. 1, which can bring the problem of inconsistent target
learning. Hence, we further investigate the adversarial learning
for consistent target learning [7, 8].

In this paper, we propose a Joint Atrium (i.e., LA) and
Scar (i.e., atrial scars) segmentation framework based on an
inter-cascade Generative Adversarial Network, namely JAS-
GAN, from LGE CMR images. In our proposed JAS-GAN, the
inclusion relationship between the unbalanced targets of large
LA and small atrial scars is effectively mined for their accurate
and joint segmentations. Our proposed JAS-GAN consists of
an adaptive attention cascade network and a joint discrimi-
native network: (1) The adaptive attention cascade network
contains an encoder-decoder module for LA segmentation and
a residual network for atrial scars segmentation. The two
modules are cascaded through an adaptive attention connection
to model the spatial correlation of the LA and atrial scars. The
adaptive attention connection makes full use of the segmented
LA as an attention map to further roughly focus on the small
atrial scars in an end-to-end way. (2) The joint discriminative
network further transforms the segmentation problem of pixel-
level classification for the unbalanced targets of LA and
atrial scars into a problem of pixel-level identification, that
is, whether the pixels at the same position in the LA and
atrial scar segmentation maps are produced by the adaptive
attention cascade network or from the ground truth label maps.
It mainly employs an adversarial regularization to force the
estimated joint distribution of LA and atrial scars to match
the real ones, which can provide a consistent optimization for
the segmentation task learning of unbalanced atrial targets.

Finally, the contributions of our framework can be summa-
rized as follows:

1) We propose an end-to-end segmentation framework for
the LA and atrial scars to facilitate the rapid and re-
producible quantification of atrial scars. The framework
can further provide the essential guidance for clinicians
to analyze the structures of LA and atrial scars directly
from 3D LGE CMR images.

2) We propose an inter-cascade adversarial learning
paradigm to mine the relationship of unbalanced targets
automatically by modelling their position and joint dis-
tribution.

3) We have conducted comprehensive experiments on a 3D
LGE CMR dataset with 192 scans for validating our
proposed JAS-GAN. The results demonstrated the better
performance of JAS-GAN over the state-of-the-art and
traditional methods, which indicated the feasibility of
unbalanced atrial targets segmentation framework.

II. RELATED WORK

A. Two-Phase Segmentation Methods for Quantifying Atrial
Scars

Currently, the most related methods to the quantification of
atrial scars rely on a two-phase sequential segmentation of
the LA and atrial scars [2, 9]. These methods are inadequate
to achieve accurate quantification as the segmentations of
the LA and atrial scars are handled separately. There is no
feedback loop existing between them during model learning,
thus leading to the error accumulation problem.

In these methods, segmenting the LA cavity or LA wall is
usually the first step to further locate the atrial scars. Further-
more, instead of directly segmenting the LA cavity or LA wall
from LGE CMR scans, some methods rely on a separately
acquired breath-hold magnetic resonance angiogram (MRA)
study or on a respiratory and cardiac gated 3D Roadmap
acquisition for LA segmentation. Then, they registered the
segmented LA to the LGE CMR acquisition for the delineation
of atrial scars. Previously proposed methods for LA wall
segmentation include (1) manual segmentation [1, 2, 10],
which is tedious and inefficient, (2) segmentation of the LA
cavity followed by some morphological dilations for LA wall
extraction [11], and (3) automated or semi-automatic LA wall
segmentation, e.g., active contour based segmentation [2].
Furthermore, many automated methods have been proposed
for segmenting the LA [12–17]. However, they have not yet
been further applied to the quantification of the atrial scars.

Based on the segmented LA wall, histogram analysis,
thresholding, k-means clustering, and graph-cuts based unsu-
pervised methods have been applied to segment atrial scars [2].
However, these unsupervised learning methods are susceptible
to various image quality and noise conditions. Yang et al. [9]
proposed deep learning and support vector machines based
supervised classification methods to segment atrial scars and
achieved better results. However, it still relies on a two-phase
segmentation for LA and atrial scars.
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Fig. 2. The architecture of our proposed JAS-GAN for the joint segmentations of unbalanced atrial targets. Each 3D input volume is sliced at axial plane
then fed into the JAS-GAN. An adaptive attention cascade network correlates the spatial location of LA and small atrial scars. A joint discriminative network
is designed to regularize the adaptive attention cascade network to produce matched joint distribution of unbalanced atrial targets.

B. Cascade Learning

Cascade is an efficient structure to improve performance for
the deep learning based single task or multiple tasks solver
[18–24], which has been widely used in various applications
including classification, detection and segmentation. For single
task learning, the cascade can be divided into multi-stage
learning. The latter stages can focus on more accurate learning
to improve the performance stage by stage and achieve a
faster inference. For the multiple tasks problem, the tasks are
designed in a cascade manner that the tasks at a later stage
depending on the output of an earlier stage.

III. METHODOLOGY

Goal: Learn unbalanced atrial targets segmentation model
by using LGE CMR images.

Notation: I ∈ <H×W×C represents the input image with
size of H ×W and channel of C. The subscripts of l and s
in notations denote the LA and the atrial scars respectively.
ŷl and ŷs represent the estimated LA and the estimated atrial
scars respectively, while Ŷls = (ŷl, ŷs) represents the both
estimated LA and atrial scars. yl and ys represent the ground
truth of LA and atrial scars respectively, while Yls = (yl, ys)
represents the ground truth of both LA and atrial scars. Fw1

and Fw2 denote the weight maps. A represents the enhanced
map. Mr ∈ [0, 1]H×W×1 and Mf ∈ [0, 1]H×W×1 denote the
real confidence map and the fake confidence map with both
size of H×W and channel of 1. Gl, Gs and Ga represents the
encoder-decoder network (EDN), the residual network (RN)
and the convolutional long short-term memory (convLSTM)
based adaptive attention connection module (AC), respectively.
Gls represents the combination of Gl, Ga and Gs. T represents
the joint discriminative network.

A. An Overview of JAS-GAN

Fig. 2 displays our proposed JAS-GAN. JAS-GAN mainly
comprises of an adaptive attention cascade network Gls and

a joint discriminative network T . Specifically, the adaptive
attention cascade network Gls is designed for the joint seg-
mentations of LA and atrial scars. The Gls consists of an
encoder-decoder network Gl for LA segmentation, a residual
network Gs for atrial scars segmentation and an adaptive
attention connection module Ga for constructing cascade
connection that the Gl and the Gs are cascaded by the Ga.
The joint discriminative network T conditioned on the image is
designed to force the Gls to produce a correct joint distribution
of LA and atrial scars.

B. Adaptive Attention Cascade Network for Unbalanced Atrial
Targets Simultaneous Estimation

We model the inclusion relationship of LA and atrial
scars to build a cascade segmentation network for their joint
segmentation. Firstly, consider an encoder-decoder establishes
a mapping Gl : I → ŷl to estimate ŷl from I directly. We
notice that small atrial scars are located in the LA wall, the
LA can be taken as prior knowledge to constrain the learnable
area of atrial scars, which reduces the interference of external
noise of LA for atrial scar identification. Therefore, we model
their inclusion relationship to leverage the LA to focus on
the small atrial scars roughly. Because the voxel values of
predicted ŷl range from [0, 1], the ŷl can be used as an attention
map that 1 represents the full attention while the 0 denotes
no attention to pay attention to atrial scars roughly on I .
However, atrial scars distributed beside the border of the LA
as shown in Fig. 1. If the Gl produces an under-segmented
LA, the general attention operation may weaken the atrial
scars partially or completely. Therefore, we further investigate
an adaptive attention module Ga : (I, ŷl) → A to estimate
an enhanced map A for scar identification by mining the
relationship of ŷl and corresponding I for adaptively adjusting
the attention operation. In detail, Ga firstly establishes a
mapping (I, ŷl)→ (Fw1, Fw2) based on a convLSTM to learn
the relationship of I and ŷl and estimate two weight maps of
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Fw1 and Fw2. The two weight maps of Fw1 and Fw2 are then
used to adaptively adjust the attention operation:

A =(Fw1 + I) · (Fw2 + ŷl)

=I · ŷl + I · Fw2 + ŷl · Fw1 + Fw1 · Fw2

(1)

where the · denotes the element-wise product. As shown in
Equation (1), the terms of I · Fw2 + ŷl · Fw1 + Fw1 · Fw2

adaptively adjust the general attention operation of I · ŷl.
Based on the obtained A, we can separate atrial scars from the
surrounding enhanced tissues and organs with highly similar
intensities to scars. Then we consider a residual network to
establish an another mapping Gs : A → ŷs to estimate ŷs.
The residual network discards the downsampling operation to
avoid information loss of small atrial targets.

Therefore, to achieve the joint estimation for ŷl and ŷs, we
directly concatenate Gl and Gs by establishing a function:
Gls : I → Ŷls, defined by Gls = Gs ◦ Ga ◦ Gl. In this
case, Gl firstly estimates the ŷl from input image I . Then
Ga produces an adaptive attention map A from the estimated
ŷl and the input image I . Finally, Gs estimates the ŷs from
A. The adaptive attention cascade network Gls integrates the
segmentations of LA and atrial scars into one step by the
seamless cascade connection. Such connection results in an
optimal model learning to leverage the large LA to catch
the small atrial scars. It further can automatically relieve the
error accumulation and noisy interference for the accurate
segmentation of small atrial scars.

C. Joint Discriminative Network for Adversarial Regulariza-
tion

The adaptive attention cascade network Gls is optimized
to produce the right class label at each voxel location inde-
pendently. We further investigate an adversarial learning to
transform the unbalanced target segmentation that classifies
large LA and small atrial scars to identify whether the pixels
at the same position in the LA and atrial scar segmentation
maps are produced by the Gls or from the ground truth. The
adversarial learning regularizes the adaptive attention cascade
network to force the estimated joint distribution of LA and
atrial scars to match the real ones. Specifically, consider a
joint discriminative network T conditioned on I establishes
a mapping T : (Yls, I) → Mr and T : (Ŷls, I) → Mf .
Each pixel (M (i,j)

r and M (i,j)
f , where (i, j) denotes the spatial

position of the map with i ∈ [0, H] and j ∈ [0,W ]) of
the confidence map represents whether that the pixels at the
same position in the LA and atrial scar segmentation maps are
sampled from the ground truth label or produced by the Gls.
The prior distributions on the two atrial targets and image are
denoted as the p(Yls) and p(I), respectively. Then, we consider
the following objectives:

min
Gls

max
T

EYls∼p(Yls)

∑
i,j

[log σ(T (Yls, I)
(i,j))]

+ EI∼p(I)
∑
i,j

[1− log σ(T (Gls(I), I)
(i,j))]

(2)

where σ denotes the sigmoid function. T (Yls, I)(i,j) is the
confidence map of Mr at location (i, j) while T (Gls(I), I)

(i,j)

is the confidence map of Mf at location (i, j). The Equation
(2) makes the learning of Gls and T a dynamic adversarial
process to regularize the Gls to produce the estimated joint
distribution of LA and atrial scars to match the real ones.
Specifically, on the one hand, the T tries to distinguish the
estimated LA and atrial scars from the ground truth by

max
T

Ld = EYls∼p(Yls)

∑
i,j

[log σ(T (Yls, I)
(i,j))]

+ EI∼p(I)
∑
i,j

[1− log σ(T (Gls(I), I)
(i,j))]

(3)

On the other hand, the mismatches between the estimated joint
distribution and the real joint distribution can be penalized by

min
Gls

Lg = EI∼p(I)
∑
i,j

[1− log σ(T (Gls(I), I)
(i,j))] (4)

Beyond the optimization of Gls that encouraging model to
estimate the right class label at each voxel location indepen-
dently, this part is taken as the regularization term to regularize
the cascade segmentation network to drive it to approximate
the real joint distribution of unbalanced atrial targets.

D. Objective Function for Model Learning

The objective function of JAS-GAN designs for effectively
generating reliable results on both the segmentation process
and the adversarial training process. Beyond the adversarial
training, the adaptive attention cascade network is optimized
independently by minimizing the following objective:

min
Gls

Ls =EI∼p(I)`(Yls, Gls(I))

=λ1EI∼p(I)`c(yl, ŷl)

+λ2EI∼p(I)`d(ys, ŷs)

(5)

where `c denotes the voxel-wise cross-entropy function while
`d denotes the Dice-like loss function [25] for addressing
the segmentation of small atrial scars. λ1 and λ2 are weight
parameters used to balance the segmentation losses of the LA
and atrial scars.

Then, an adversarial learning is applied to the Gls and
T to further regularize the segmentations of LA and atrial
scars. We integrate the adversarial learning into the voxel-wise
estimations of LA and atrial scars. In this case, the Gls can
be learned by minimizing the following objective:

min
Gls

Ls + λ3Lg (6)

where λ3 is the weight parameter used to balance the segmen-
tation loss and the adversarial loss. The T can be learned by
directly maximizing Ld.

E. Network Configuration

The framework of our proposed JAS-GAN mainly consists
of a cascade segmentation network Gls and a joint discrim-
inative network T (Please see the detailed structure of our
proposed network architecture in the Appendix). The cascade
segmentation network contains three modules of Gl, Ga and
Gs. Gl is based on the 2D U-Net [26] but uses bilinear
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interpolation for upsampling. Ga is based on a convolutional
LSTM network with 32 kernels. Gs is based on the residual
structure [27]. It comprises three residual blocks. Each residual
block contains three convolution blocks that each convolution
block consists of a 5 × 5 convolution layer with 32 filters, a
batch normalization layer and a ReLU layer. Finally, a 1× 1
convolutional layer with sigmoid function is used to predict
atrial scars.

The structure of the joint discriminative network T is similar
to [8]. It comprises of 4 convolution layers with 5× 5 kernel
and {32, 64, 128, 256} channels in the stride of two. Each
convolution layer is followed by a batch normalization layer
and a ReLU layer. Then, a sub-pixel convolution with kernels
of 3072 to rescale the output of the last convolution layer to
the size of I . Finally, a 1×1 convolutional layer with a sigmoid
function is used to predict the confidence maps.

IV. EXPERIMENTS AND RESULTS

A. Data Description
CMR data were acquired in patients with longstanding

persistent AF on a Siemens Magnetom Avanto 1.5T scanner
(Siemens Medical Systems, Erlangen, Germany). Transverse
navigator-gated 3D LGE CMR [28] was performed using
an inversion prepared segmented gradient echo sequence
(TE/TR 2.2ms/5.2ms) 15 minutes after gadolinium adminis-
tration (Gadovistgadobutrol, 0.1mmol/kg body weight, Bayer-
Schering, Berlin, Germany) [29]. The inversion time (TI)
was set to null the signal from normal myocardium and
varied on a beat-by-beat basis, dependent on the cardiac cycle
length [30]. Detailed scanning parameters are: 30-34 slices
at (1.4 − 1.5) × (1.4 − 1.5) × 4mm3, reconstructed to 60-
68 slices at (0.7 − 0.75) × (0.7 − 0.75) × 2mm3, field-of-
view 380× 380mm2. For each patient, prior to contrast agent
administration, coronal navigatorgated 3D Roadmap (TE/TR
1ms/2.3ms) data were acquired with the following parameters:
72-80 slices at (1.6 − 1.8) × (1.6 − 1.8) × 3.2mm3 , recon-
structed to 144-160 slices at (0.8−0.9)×(0.8−0.9)×1.6mm3,
field-of-view 380×380mm2. LGE CMR was acquired during
free-breathing using a crossed-pairs navigator positioned over
the dome of the right hemi-diaphragm with navigator accep-
tance window size of 5mm and CLAWS respiratory motion
control [31, 32]. LGE CMR data were collected from 2011-
2018 as a retrospective study. In total, 192 scans from 115
subjects including 97 pre-ablation and 95 post-ablation scans
were used in this study (All subjects gave their informed
consent for inclusion before they participated in the study
with approval from the local institutional review board in
accordance with the Declaration of Helsinki (Ethics approval
reference number: 10/H0701/112, CMR Unit, Royal Brompton
Hospital)). Manual segmentations of the LA and proximal
PVs and atrial scars had been done by a physician with > 3
years of experience and specialized in LGE CMR. A second
senior radiologist (>25 years of experience and specialized in
cardiac MRI) confirmed the manual segmentations. The results
confirmed by the radiologist were chosen as the ground truth
for experiments. The LA label is the LA epicardium (LA wall
and LA cavity). Because the atrial scars are located in LA
wall, the atrial scars label is encapsulated in the LA label.

TABLE I
QUANTITATIVE RESULTS OF UNBALANCED ATRIAL TARGETS SEGMENTATION ON

PRE-ABLATION, POST-ABLATION AND PRE-&POST-ABLATIONS IN TERMS OF DSC,
JI, ASD AND NMI. RESULTS ARE PRESENTED IN THE FORM OF MEAN ± STANDARD

DEVIATION. ABBREVIATIONS: DSC, DICE SIMILARITY COEFFICIENT; JI, JACCARD

INDEX; ASD, AVERAGE SURFACE DISTANCE; NMI, NORMALIZED MUTUAL

INFORMATION.

Target Pre-/Post-ablation DSC JI ASD (mm) NMI

LA and PVs

Pre-ablation 0.948± 0.012 0.901± 0.022 0.869± 0.381 0.847± 0.026

Post-ablation 0.944± 0.017 0.893± 0.029 0.966± 0.522 0.841± 0.034

Pre-&Post-ablations 0.946± 0.015 0.897± 0.026 0.918± 0.460 0.844± 0.030

Atrial scars

Pre-ablation 0.809± 0.064 0.684± 0.087 0.483± 0.280 0.703± 0.077

Post-ablation 0.832± 0.051 0.716± 0.073 0.394± 0.158 0.722± 0.067

Pre-&Post-ablations 0.821± 0.059 0.700± 0.082 0.439± 0.232 0.713± 0.073

B. Implementation Details

We performed data normalization on the whole 3D volume
for all experiments. In addition, because of the small propor-
tion of positive pixels per axial slice, it is very ineffective
to train the segmentation model on the entire LGE-MRI data
directly. To relieve this, smaller patches of 256 × 256 which
contained positive and negative pixels centered on the raw
LGE CMR image were generated as inputs.

We randomly divided our dataset into a training set (116
scans from 77 patients) and a testing set (76 scans from 38
patients with 38 pre-ablation and 38 post-ablation scans) for
all experiments. The divided strategy for the dataset was that
all scans from each unique patient were only in one of the
training or testing sets.

We used the Adam method to perform the optimization for
the cascade segmentation network with a decayed learning rate
(the initial learning rate was set to 0.001 with a decay rate of
0.99). The optimizer used for the joint discriminative network
was Adam with a fixed learning rate of 0.0001. We used the
current statistics of batch normalization for the both training
and testing. In addition, to stabilize the training of GAN,
we used the feature matching [33] for adversarial loss. The
coefficients of λ1 and λ2 used to balance the two segmentation
losses, were automatically learned based on the strategy of
uncertainty [34]. The coefficient of λ3 used to balance the
segmentation loss and adversarial loss, was set to a fixed value
of 0.1.

Our deep learning model was implemented using Tensor-
flow 1.2.1 on an Ubuntu 16.04 machine and was trained and
tested using an Nvidia RTX 8000 GPU (48GB GPU memory).

C. Evaluation Criteria

To evaluate the segmentation performance of our proposed
JAS-GAN, we used region-based metrics [35, 36], e.g., the
Dice Similarity Coefficient (DSC) and the Jaccard Index
(JI), to validate the predicted segmentation map against the
manually defined ground-truth. We also used a surface-based
metric called Average Surface Distance (ASD) to provide the
distance in mm to quantify the accuracy of the predicted mesh
(S) compared to the ground-truth mesh (S′) [36]. We further
adopted the Normalized Mutual Information (NMI) to measure
the similarity between the estimated segmentation maps and
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Fig. 3. Qualitative visualization of the segmentation for the LA in pre-
ablation and post-ablation cases. Each estimated segmentation is represented
as a dashed green counter while the red contour denotes its corresponding
manually delineated ground truth.
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Fig. 4. Qualitative visualization of the segmentation for the atrial scars in pre-
ablation and post-ablation cases. Each estimated segmentation is represented
as a dashed green counter while the red contour denotes its corresponding
manually delineated ground truth.

Slice 1 Slice 2 Slice 1 Slice 2

(a) (b)

Fig. 5. Qualitative visualization of the segmentation for LA and atrial scars
in worst cases. Each estimated segmentation is represented as a dashed
green counter (bottom raw) while the red contour denotes its corresponding
manually delineated ground truth (top raw). (a) Qualitative visualization of the
segmentation for atrial scars. (b) Qualitative visualization of the segmentation
for LA.

the ground truth [36]. In addition, the segmentation perfor-
mance of our proposed JAS-GAN was further evaluated by
the over-segmentation rate (OSR) and the under-segmentation
rate (USR), which are defined as USR = FN/(TP + FN)
and OSR = FP/(TP + FN) [37], where TP, FP and FN
denote the True Positive, the False Positive, and the False
Negative, respectively. They are defined as the number of
voxels correctly identified as positive for target, the number
of voxels incorrectly identified as positive for target, and the
number of voxels incorrectly identified as negative for target,
respectively. TP, FP and FN were calculated while considering
all voxels in a 3D volume.

TABLE II
ABLATION RESULTS COMPARISON FOR JAS-GAN IN TERMS OF DSC, JI, ASD AND

NMI. THE RESULTS ARE PRESENTED IN THE FORM OF MEAN ± STANDARD

DEVIATION. ABBREVIATIONS: EDN, BASELINE BASED ON ENCODER-DECODER

NETWORK FOR LA SEGMENTATION; RN, BASELINE BASED ON RESIDUAL NETWORK

FOR ATRIAL SCARS SEGMENTATION; AC, ADAPTIVE ATTENTION CASCADE; T: JOINT

DISCRIMINATIVE NETWORK; DSC, DICE SIMILARITY COEFFICIENT; JI, JACCARD

INDEX; ASD, AVERAGE SURFACE DISTANCE; NMI, NORMALIZED MUTUAL

INFORMATION.

Target Methods DSC JI ASD (mm) NMI

LA and PVs

EDN 0.930± 0.023 0.870± 0.039 1.20± 0.567 0.812± 0.046

EDN + AC 0.936± 0.021 0.881± 0.036 1.09± 0.703 0.823± 0.040

EDN + AC + T (JAS-GAN) 0.946± 0.015 0.897± 0.026 0.918± 0.460 0.844± 0.030

Atrial scars

RN 0.778± 0.074 0.643± 0.092 0.654± 0.347 0.660± 0.083

RN + LA 0.784± 0.064 0.649± 0.084 0.567± 0.270 0.667± 0.075

RN + AC 0.810± 0.061 0.686± 0.082 0.489± 0.251 0.701± 0.072

RN + AC + T (JAS-GAN) 0.821± 0.059 0.700± 0.082 0.439± 0.232 0.713± 0.073

D. Segmentation Performance of JAS-GAN.

Quantitative analysis: Table I summarizes the quantitative
segmentation results of JAS-GAN grouped by the pre-ablation,
post-ablation and pre-&post-ablations. Despite the challenges
in segmenting the LA and atrial scars from LGE CMR scans,
our proposed JAS-GAN still achieved high segmentation ac-
curacy in terms of DSC, JI, ASD and NMI for both LA
and atrial scars in pre-ablation, post-ablation and pre-&post-
ablations. We had further performed the statistical tests (t-test)
to show the statistical differences between the pre-ablation
and the post-ablation. The calculated lowest P-values of 0.248
and 0.093 in terms of DSC, JI, ASD and NMI for LA and
atrial scars demonstrated there were no significant differences
between pre-ablation and post-ablation. Furthermore, we had
investigated the inter-observation variability and the inter-
observer agreement from two manual segmentations of LA
and atrial scars. We provided 12 cases selected from the
testing data (6 pre-ablation scans and 6 post-ablation scans)
for two experts to manually label the LA and atrial scars
independently. We had followed the [38] to use the mean (1-
DSC) and mean DSC with ranges to measure the inter-observer
variability and the inter-observer agreement based on the mean
volume overlap variability values and the mean volume overlap
values, respectively. The inter-observer variabilities for the LA
and atrial scars are 0.082 [-0.009,0.007] and 0.291 [-0.072,
0.063], respectively. The inter-observer agreements for the LA
and atrial scars were 0.918 [-0.007,0.009] and 0.709 [-0.063,
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0.072], respectively. Compared with the inter-observer agree-
ments, JAS-GAN has achieved higher segmentation accuracies
for the unbalanced atrial targets. These results indicated the
ability of JAS-GAN in handling the automated and accurate
segmentations of LA and atrial scars.

Qualitative analysis: Fig. 3 and Fig. 4 show the qualitative
segmentation results of JAS-GAN compared to the ground
truth for the selected slices of pre-ablation and post-ablation.
One can see that our proposed JAS-GAN has the ability to
handle the shape and size variations of the LA and small
atrial scars. We also provided the qualitative segmentation
results of LA and atrial scars for the worst cases. The studied
cohort is a difficult AF cohort that the patients have severe
arrhythmia during the MRI scanning, the blurry LA boundary
and indistinguishable atrial scars are major reasons for the
worst segmentation results as shown in Fig. 5 (a) and (b).
However, one also can see that our proposed JAS-GAN still
achieves general segmentation results in visual. We will collect
more LGE CMR data for model learning to overcome the
blurry LA boundary and indistinguishable atrial scar.

(a) (b)

(c) (d)

Fig. 6. Analysis of over-segmentation rate (OSR) and under-segmentation rate
(USR) for LA and atrial scars (Black bars denote standard deviation). (a) and
(b) denote under-segmentation rate and over-segmentation rate comparison
for the LA segmentation with/without using cascade connection. (c) and (d)
denote under-segmentation rate and over-segmentation rate comparison for
the atrial scars segmentation with/without using cascade connection. Abbre-
viations: EDN, baseline based on a encoder-decoder for LA segmentation;
RN, baseline based on a residual network for atrial scars segmentation; AC,
adaptive attention cascade.

E. Ablation Analysis of JAS-GAN.
The effectiveness of the adaptive attention cascade network

and the joint discriminative network was extensively analysed
with ablation experiments. Firstly, the baselines based on the
encoder-decoder network Gl (EDN) and the residual network
Gs (RN) were performed for the LA and atrial scars seg-
mentations, respectively. Then, we used the LA segmentation

results of EDN to further define a region of interest (ROI)
in the input image for further RN-based scar segmentation
(RN+LA). Next, we constructed a cascade network that EDN
and RN were cascaded by the adaptive attention cascade (AC)
to perform the joint segmentations of LA and atrial scars in
an end-to-end manner (EDN + AC for LA, RN + AC for atrial
scars). Finally, based on the cascade network, we added the
joint discriminative network T for adversarial regularization
(EDN + AC + T for LA, RN + AC + T for atrial scars).

1) Effectiveness of adaptive attention cascade network:
Adaptive attention cascade network leverages an adaptive
attention cascade to automatically correlate the segmentation
tasks of LA and atrial scars for their joint segmentations. The
adaptive attention cascade makes the segmentation model try
to produce the over-segmented LA rather than to produce the
under-segmented LA for focusing on the small atrial scars
roughly. As the results are shown in Table II, adaptive attention
cascade can both improve the segmentation performance of
LA and atrial scars in terms of DSC, JI , ASD and NMI
(EDN + AC vs. EDN, RN + AC vs. RN). One also can see
that the improvement of segmentation accuracy for atrial scars
was limited while using the LA segmentation output to define
ROI in the image for further scar segmentation (RN + LA vs.
RN). The reason is that the under-segmented LA can weaken
the atrial scars partially or completely while using two-stage
segmentation. The improvements of adaptive attention cascade
had been demonstrated to be statistically significant based on t-
tests (P-values < 0.05). Fig. 6 summarizes the over-segmented
and under-segmented results for estimated LA and atrial scars.
The Fig. 6 (a) and (b) show that EDN with AC achieved lower
USR and higher OSR compared to EDN for the estimated
LA, which illustrated that EDN with AC tries to produce over-
segmented LA to pay attention to the small atrial scars. Fig.
6 (c) and (d) show that RN with AC achieved the lower USR
and OSR compared to RN for the segmentation of small atrial
scars, which indicated that adaptive attention cascade leverages
estimated LA to constrain the learnable area of small atrial
scars for their accurate identification.

2) Effectiveness of the joint discriminative network: As the
experiment results are shown in Table II, compared with EDN
+ AC and RN + AC, JAS-GAN achieved better segmentation
results for LA and atrial scars across all evaluation metrics,
which indicated that the adversarial regularization achieved
by the joint discriminative network is effective to improve the
segmentation performance of adaptive attention cascade net-
work. In addition, the improvements of the joint discriminative
network had been demonstrated to be statistically significant
(P-values < 0.05) based on t-tests.

F. Analysis of Adaptive Attention Cascade Connection.

To analyse the feasibility of adaptive attention cascade
connection, we performed extra experiments to validate the
effectiveness of our used cascade information (LA proba-
bility map) and cascade operation (adaptive attention). In
our proposed cascade framework, we used the estimated LA
probability map, which represents complete decoding for the
LA feature information, as the cascade information to correlate
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6.60% 5.30% 19.7% 2.6% 3.90%

93.4% 15.8% 59.2% 26.3% 10.5%

94.7% 84.2% 75.0% 59.2% 21.0%

80.3% 40.8% 25.0% 18.4% 17.1%

97.4% 73.7% 40.8% 81.6% 25.0%

96.1% 89.5% 79.0% 82.9% 75.0%

(a) (b)

Fig. 7. Analysis of different cascade information for correlating the seg-
mentation tasks of unbalanced atrial targets. (a) Pairwise tournament matrix
for measuring the superiority of one cascade information relative to others
for the correlation extent between the segmentation tasks of LA and atrial
scars. C1 obtains the best superiority for the correlation extent between the
two segmentation tasks. (b) First-order task affinity matrix for measuring
the correlation between the two segmentation tasks for different cascade
information. C1 achieves the best correlation between the two segmentation
tasks. Abbreviations: C1, LA probability map; C6, C5, C4, C3 and C2,
information output by the encoder, the first up-sampling block of decoder, the
second up-sampling block of decoder, the third up-sampling block of decoder
and the fourth up-sampling block of decoder in LA segmentation network,
respectively; TLS: segmentation tasks of LA and atrial scars

TABLE III
PERFORMANCE COMPARISON OF DIFFERENT CASCADE OPERATIONS FOR ATRIAL

SCARS SEGMENTATION IN TERMS OF DSC, JI, ASD AND NMI. THE RESULTS ARE

PRESENTED IN THE FORM OF MEAN ± STANDARD DEVIATION. ABBREVIATIONS:
DSC, DICE SIMILARITY COEFFICIENT; JI, JACCARD INDEX; ASD, AVERAGE

SURFACE DISTANCE; NMI, NORMALIZED MUTUAL INFORMATION; Oa ,
ELEMENT-WISE ADD OPERATION; Op , ELEMENT-WISE PRODUCT OPERATION; Oc ,

CONCATENATION OPERATION; Oac , OUR USED ADAPTIVE ATTENTION OPERATION.

Methods DSC JI ASD (mm) NMI

Oa 0.799± 0.071 0.670± 0.093 0.456± 0.232 0.687± 0.080

Op 0.810± 0.064 0.685± 0.086 0.447± 0.249 0.700± 0.075

Oc 0.813± 0.061 0.689± 0.083 0.461± 0.258 0.703± 0.072

Oac 0.821± 0.059 0.700± 0.082 0.439± 0.232 0.713± 0.073

the segmentation tasks of LA and atrial scars. To demonstrate
the superior of the LA probability map, we further investigated
the influence of LA information with different decoding levels
for correlating the segmentation tasks of LA and atrial scars.
In our experiment, in addition to the LA probability map (C1),
we also used extra five kinds of LA information with different
decoding levels from the LA segmentation network (encoder-
decoder) as feedforward information to correlate the segmen-
tation tasks of LA and atrial scars. They were the information
output by the encoder (C6), the first up-sampling block of the
decoder (C5), the second up-sampling block of the decoder
(C4), the third up-sampling block of the decoder (C3) and the
fourth up-sampling block of the decoder (C2). We followed the
[39] to construct a pairwise tournament matrix to measure the
superiority of each information to correlate the segmentation
tasks of LA and atrial scars compared to other information. As
the constructed pairwise tournament matrix are shown in Fig.
7 (a), the element at (i, j) of pairwise tournament matrix is the

percentage of data in a test set Dtest, on which Ci correlates
the segmentation tasks of LA and atrial scars (TLS) better
than Cj did (i.e. DCi→TLS(I) DCj→TLS(I)). Based on the
pairwise tournament matrix, we further obtained the affinity
matrix as shown in Fig. 7 (b), where each value represents
the correlation between the two segmentation tasks achieved
by the corresponding cascade information. As the results are
shown in Fig. 7 (b), the cascade information of the estimated
LA probability map obtained the best correlation for the two
segmentation tasks.

To demonstrate that our used cascade operation of adaptive
attention (Oac) is effective to segment small atrial scars, we
further compared it to the pixel-wise add operation (Oa)
which tries to use the LA segmentation output to enhance
the LA region of image for subsequent segmentation of atrial
scars, general attention operation with pixel-wise product (Op)
which tries to use the LA segmentation output to define ROI
in input image for atrial scars segmentation with end-to-end
model optimization, and direct concatenation operation (Oc)
of the estimated LA and the input image. As the summarized
results are shown in Table III, our used adaptive attention
cascade achieved better segmentation results. Furthermore,
the improvements had been demonstrated to be statistically
significant based on t-tests (P-values < 0.05). Those indicated
the effectiveness of adaptive attention for the segmentation of
small atrial scars.

G. Analysis of Joint Discriminative Network.

In our proposed JAS-GAN, the joint discriminative network
is used to further transform the semantic segmentation of
pixel-level classification for the unbalanced targets into the
joint pixel-level identification of unbalanced targets. It mainly
utilizes the adversarial regularization to force the estimated
joint distribution of LA and atrial scars produced by the
cascade segmentation network to match the real ones. To
demonstrate that the joint discriminative network has the
ability to improve the consistency of joint distribution for LA
and atrial scars, we had made a visualization of the estimated
joint distribution (EJD) and the real ones (RJD) based on the
principal components analysis (PCA) for visually assessing the
matching degree of EJD and RJD as shown in Fig. 8, where
the data points in the estimated joint distribution and the data
points in the real ones were in a one-to-one correspondence.
We also provided a quantitative distance between the EJD
and the RJD based on the mean Euclidean distance of the
corresponding points in the 2-dimensional coordinate system
(Fig. 8). The calculated distance between the EJD by JAS-
GAN with joint discriminative network and the RJD was
0.211 while the calculated distance between the EJD by
JAS-GAN without joint discriminative network and the RJD
was 0.304. The qualitative visualization and the quantitative
distance both denoted the JAS-GAN with joint discriminative
network achieved a more consistent joint distribution between
the estimated results and the real ones compared to JAS-GAN
without joint discriminative network.
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(a)

(b)

Fig. 8. Principal components analysis (PCA) based visualization of joint
distribution for LA and atrial scars. The x-axis represents the direction with the
largest variance of the data before PCA operation while the y-axis represents
the direction orthogonal to the x-axis with the largest variance of the data
before PCA operation. (a) The joint distribution estimated by JAS-GAN
with joint discriminative network and real ones. (b) The joint distribution
estimated by JAS-GAN without joint discriminative network and real ones.
Abbreviations: EJD, estimated joint distribution; RJD: real joint distribution).

TABLE IV
LA SEGMENTATION PERFORMANCE COMPARISON BETWEEN THE DIFFERENT

ARCHITECTURES (SEGNET, 3D DENSENET, 2D U-NET, 3D U-NET, MTL, MVTT
AND JAS-GAN) AND THE METHODS AIMING TO TACKLE THE IMBALANCE ISSUE

(TVERSKY LOSS AND SURFACE LOSS) IN TERMS OF DSC, JI, ASD AND NMI. THE

RESULTS ARE PRESENTED IN THE FORM OF MEAN ± STANDARD DEVIATION.
ABBREVIATIONS: DSC, DICE SIMILARITY COEFFICIENT; JI, JACCARD INDEX; ASD,

AVERAGE SURFACE DISTANCE; NMI, NORMALIZED MUTUAL INFORMATION.

Methods DSC JI ASD (mm) NMI

Segnet 0.915± 0.023 0.844± 0.039 1.61± 0.615 0.779± 0.044

3D Densenet 0.921± 0.017 0.855± 0.029 1.48± 0.554 0.790± 0.032

2D U-Net 0.928± 0.021 0.867± 0.036 1.21± 0.553 0.806± 0.041

3D U-Net 0.926± 0.018 0.863± 0.032 1.29± 0.715 0.803± 0.036

MTL 0.934± 0.020 0.876± 0.035 1.10± 0.413 0.818± 0.039

Tversky Loss 0.936± 0.021 0.881± 0.035 1.12± 0.667 0.825± 0.040

Surface Loss 0.938± 0.020 0.884± 0.034 1.17± 0.825 0.829± 0.038

MVTT 0.938± 0.023 0.884± 0.039 1.07± 0.612 0.827± 0.047

JAS-GAN 0.946± 0.015 0.897± 0.026 0.918± 0.460 0.844± 0.030

TABLE V
SCAR SEGMENTATION PERFORMANCE COMPARISON BETWEEN THE DIFFERENT

ARCHITECTURES (SEGNET, 3D DENSENET, 2D U-NET, 3D U-NET, MVTT AND

JAS-GAN), THE TWO-PHASE METHODS (2SD AND OSTU) AND THE METHODS

AIMING TO TACKLE THE IMBALANCE ISSUE (TVERSKY LOSS AND SURFACE LOSS) IN

TERMS OF DSC, JI, ASD AND NMI. THE RESULTS ARE PRESENTED IN THE FORM

OF MEAN ± STANDARD DEVIATION. ABBREVIATIONS: DSC, DICE SIMILARITY

COEFFICIENT; JI, JACCARD INDEX; ASD, AVERAGE SURFACE DISTANCE; NMI,
NORMALIZED MUTUAL INFORMATION.

Methods DSC JI ASD (mm) NMI

2SD 0.405± 0.210 0.278± 0.179 2.37± 1.75 0.317± 0.183

Ostu 0.442± 0.232 0.313± 0.203 7.01± 22.3 0.351± 0.204

Segnet 0.537± 0.119 0.376± 0.107 1.63± 0.839 0.403± 0.106

3D Densenet 0.625± 0.119 0.464± 0.117 0.979± 0.598 0.486± 0.111

2D U-Net 0.772± 0.078 0.635± 0.098 0.602± 0.298 0.653± 0.085

3D U-Net 0.754± 0.083 0.612± 0.110 0.631± 0.406 0.633± 0.089

Tversky Loss 0.780± 0.070 0.645± 0.088 0.616± 0.290 0.664± 0.079

Surface Loss 0.792± 0.070 0.661± 0.090 0.589± 0.329 0.678± 0.078

MVTT 0.811± 0.061 0.687± 0.083 0.502± 0.289 0.701± 0.074

JAS-GAN 0.821± 0.059 0.700± 0.081 0.439± 0.232 0.713± 0.073

H. Performance Comparison with Other Methods.

The performance of JAS-GAN had further been demon-
strated by comparing it with the widely used methods and
the state-of-the-art methods. For the segmentations of LA and
atrial scars, we compared the segmentation performance of
JAS-GAN to the 2D U-Net [26], 3D U-Net [40], 3D DenseNet
[41], SegNet [42], the method (MVTT) proposed by yang et
al.[43] and two methods aiming to tackle the imbalance issue
(Tversky loss [44] and surface loss [45]). We also compare
the LA segmentation performance of JAS-GAN to the method
(MTL) proposed by Chen et al.[46]. Table IV and Table V
summarizes the experiment results.

For the LA segmentation, as the experiment results are
shown in Table IV, JAS-GAN achieved higher segmentation
performance with improved DSC, JI , NMI and reduced
ASD compared to other methods. The reason behind this is
that we make full use of adaptive attention cascade connection
and adversarial regularization to promote the performance of
the encoder-decoder structure.

For the segmentation of atrial scars, as the experiment
results are shown in Table V, our proposed JAS-GAN outper-
formed the compared methods in terms of DSC, JI , NMI
and ASD. The segmentation accuracy obtained by the widely
used deep learning methods was limited. This is because
they have no suitable mechanism to segment very small atrial
scars. The Tversky loss and the Surface loss can effectively
deal with imbalance problems. However, only relying on the
loss function to deal with the problem of unbalanced target
segmentation is still limited to the improvement of segmenta-
tion accuracy. The evaluation metrics also illustrated that our
proposed JAS-GAN resulted in a more effective architecture
for atrial scars segmentation compared to MVTT.

I. Analysis of Atrial Scars Quantification.

The quantification of the atrial scars is associated with
scar percentage which is defined by the ratio of the scar
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(a) (b)

(d)(c)

Fig. 9. The correlation analysis for JAS-GAN. (a) and (b) The high
correlations between estimated scar volume and ground truth for pre-ablation
and post-ablation, respectively. (c) and (d) The high correlations between
estimated scar percentage and manual segmentation for pre-ablation and post-
ablation, respectively. Abbreviations: r, pearson correlation coefficient; EV,
estimated scar volume; MV, ground truth for scar volume; ESP, estimated
scar percentage; MSP, ground truth for scar percentage.

volume to the LA wall volume. To measure the quantification
results of atrial scars, we firstly reported scatter plots for
the estimated scar volume and ground truth. As the linear
regression results are shown in Fig. 9 (a) and (b), the Pear-
son correlation coefficients represented excellent correlation
between the ground truth and our estimated results (0.974
for pre-ablation and 0.987 for post-ablation). Besides, As the
agreement results based on Bland-Altman plots are shown in
Fig. 10 (a) and (b), our JAS-GAN was capable of estimating
the scar volume with consistently low error. We then reported
scatter plots for the estimated scar percentage and ground
truth. As the linear regression results are shown in Fig. 9
(c) and (d), the Pearson correlation coefficients also showed
the excellent correlation between the ground truth and our
estimated results (0.969 for pre-ablation and 0.971 for post-
ablation). Furthermore, Fig. 10 (c) and (d) show the difference
in calculated scar percentage against the scar percentage by
manual segmentation. It is observed that the calculated scar
percentage had a high agreement with manual delineation.
These results indicated the ability of JAS-GAN for quantifying
atrial scars.

V. DISCUSSION

In this study, we have developed a JAS-GAN framework for
the joint segmentations of unbalanced atrial targets of LA and
atrial scars. The JAS-GAN framework consists of an adaptive

(a) (b)

(d)(c)

Fig. 10. The agreement analysis based on Bland-Altman plots for JAS-GAN.
(a) and (b) The high agreement between estimated scar volume and ground
truth for pre-ablation and post-ablation, respectively. (c) and (d) The high
agreement between estimated scar percentage and manual segmentation for
pre-ablation and post-ablation, respectively. Abbreviations: EV, estimated scar
volume; MV, ground truth for scar volume; ESP, estimated scar percentage;
MSP, ground truth for scar percentage.

attention cascade network and a joint discriminative network.
In addition to the reported improvements by the ablation
studies presented in Table II, extra analysis experiments were
performed to further justify the rationale and the effectiveness
of our used architecture illustrated in Section IV. F and Section
IV. G. It is of note that the joint discriminative network only
participates in the model training, thus will not increase the
complexity of the final model in the testing phase or the
practical applications.

Our proposed JAS-GAN framework is trained in an end-
to-end manner based on the cascade connection with full
supervision for the segmentations of unbalanced atrial targets,
which provides an effective learning manner for the small
atrial scars. We performed comprehensive experiments in the
current study—comparing segmentation results of JAS-GAN
with a two-phase segmentation for atrial scars with supervised
learning (The automated segmented LA was used to define the
ROI for the automated scar segmentation), and two two-phase
methods with unsupervised learning (The manual segmented
LA wall was used to define the ROI for the scar segmenta-
tion based on a classical method of the standard deviations
thresholding (2SD) [2] and a state-of-the-art method of Ostu
[1]). As the results are shown in Table I and Table V, the two-
phase segmentation for atrial scars with supervised learning
(RN+LA) improved the segmentation accuracy compared to
the two-phase methods with unsupervised learning (2SD and
Ostu), while our proposed JAS-GAN framework trained in
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TABLE VI
COMPARE THE SCAR QUANTIFICATION AND SEGMENTATION IN LA ON MICCAI 2018 ATRIAL SEGMENTATION CHALLENGE DATASET. THE RESULTS ARE PRESENTED IN THE

FORM OF MEAN ± STANDARD DEVIATION. ABBREVIATIONS: DSC, DICE SIMILARITY COEFFICIENT; JI, JACCARD INDEX; ASD, AVERAGE SURFACE DISTANCE; NMI,
NORMALIZED MUTUAL INFORMATION

Methods
LA and PVs Atrial scars

DSC JI ASD (mm) NMI DSC JI ASD (mm) NMI

2D U-Net 0.898± 0.034 0.817± 0.052 3.38± 4.53 0.752± 0.057 0.526± 0.118 0.366± 0.109 1.83± 0.891 0.396± 0.112

3D U-Net 0.895± 0.032 0.812± 0.051 3.81± 3.89 0.748± 0.053 0.508± 0.106 0.347± 0.096 1.90± 0.837 0.383± 0.093

Tversky loss 0.904± 0.025 0.826± 0.041 2.55± 3.14 0.764± 0.046 0.546± 0.093 0.381± 0.090 1.88± 0.838 0.412± 0.091

Surface loss 0.901± 0.039 0.822± 0.057 2.73± 4.17 0.758± 0.063 0.581± 0.114 0.418± 0.113 1.51± 0.686 0.448± 0.112

MVTT 0.902± 0.037 0.823± 0.057 2.25± 1.39 0.760± 0.070 0.613± 0.131 0.454± 0.132 1.39± 1.03 0.484± 0.134

JAS-GAN 0.913± 0.027 0.841± 0.044 2.24± 2.73 0.782± 0.049 0.621± 0.110 0.460± 0.115 1.24± 1.04 0.489± 0.116

the end-to-end manner with full supervision achieved the
best segmentation accuracy. This is because that thresholding
based 2SD and Ostu are the unsupervised methods, which are
susceptible to noise. Because the atrial scars are very small,
the noise hinders the accurate recognition of 2SD and Ostu
for small atrial scars. Compared with unsupervised learning,
deep learning based supervised learning can extract the high-
level features to reduce the interference of noise for atrial
scars identification. Furthermore, compared with the two-phase
segmentation, the end-to-end learning manner is effective
to relieve the problem that the inaccurate LA segmentation
further leads to the inaccurate identification for atrial scars.

One limitation of our work is that our proposed method
may not be applied directly to the external data if there
are significant differences between our training data and the
external testing data. This is a common issue while applying
the deep learning algorithm to medical images in real clinical
environment. Because the domain gaps widely exist between
the training data and the external testing data if they come
from different scanners or centres [47, 48]. This problem may
also be more severe for MRI based study because routinely
used structural MRI (e.g., LGE MRI) are not quantitative
acquisitions. Standardisation and normalisation of LGE MRI
data can be problematic and an open question for research that
is beyond the scope of our current study. To demonstrate that
our proposed segmentation framework can be generalized to
the data from different centres, we performed the experiments
on the data from the MICCAI 2018 Atrial Segmentation
Challenge with re-training model. The MICCAI 2018 Atrial
Segmentation Challenge provided 100 scans with the labels of
the LA wall and LA endocardium [6] (We directly combined
the labels of LA wall and LA endocardium to obtain the label
of LA epicardium. Then we automatically obtained the labels
of atrial scars based on the protocol of Cardiac MRI Toolkit
Slicer Extension from the National Alliance for Medical Image
Computing). We randomly divided the data into a training set
with 60 scans and a testing set with 40 scans for experiments.
Then we compared our proposed JAS-GAN with the widely
used methods and the state-of-the-art methods (2D U-Net,
3D U-Net, Tversky loss, Surface loss and MVTT). As the
experiment results are summarized in Table VI, our proposed

JAS-GAN still achieved better segmentation accuracy for the
LA and atrial scars, which indicated the application of our
proposed JAS-GAN.

VI. CONCLUSION

Automated and accurate segmentations of LA and atrial
scars from LGE CMR images can provide great clinical sig-
nificance for further quantifying atrial scars. In this study, we
proposed a JAS-GAN model for the automated and accurate
segmentations of the LA and atrial scars from LGE CMR
images directly based on an adaptive attention cascade network
and a joint discriminative network. The adaptive attention
cascade network automatically captures the correlation of two
segmentation tasks by building the relationship of LA and
atrial scars. The joint discriminative network employs an
adversarial regularization to force the estimated joint distri-
bution of LA and atrial scars to match the real ones. The
experimental results demonstrated that our proposed JAS-
GAN enabled the accurate segmentations of the LA and atrial
scars simultaneously. Therefore, our proposed JAS-GAN can
provide an effective way in clinical practice to quantify the
atrial scars for patients with AF.
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Fig. 11. Architecture of the adaptive attention cascade network with
corresponding kernel size (k), number of feature maps (n) and stride (s)
indicated for each convolutional layer. Abbreviations: B, batchsize; BN, batch
normalization.
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