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Abstract— Automatic and accurate detection of anatom-
ical landmarks is an essential operation in medical image
analysis with a multitude of applications. Recent deep
learning methods have improved results by directly en-
coding the appearance of the captured anatomy with the
likelihood maps (i.e., heatmaps). However, most current
solutions overlook another essence of heatmap regression,
the objective metric for regressing target heatmaps and
rely on hand-crafted heuristics to set the target precision,
thus being usually cumbersome and task-specific. In this
paper, we propose a novel learning-to-learn framework for
landmark detection to optimize the neural network and the
target precision simultaneously. The pivot of this work is
to leverage the reinforcement learning (RL) framework to
search objective metrics for regressing multiple heatmaps
dynamically during the training process, thus avoiding set-
ting problem-specific target precision. We also introduce an
early-stop strategy for active termination of the RL agent’s
interaction that adapts the optimal precision for separate
targets considering exploration-exploitation tradeoffs. This
approach shows better stability in training and improved
localization accuracy in inference. Extensive experimental
results on two different applications of landmark localiza-
tion: 1) our in-house prenatal ultrasound (US) dataset and
2) the publicly available dataset of cephalometric X-Ray
landmark detection, demonstrate the effectiveness of our
proposed method. Our proposed framework is general and
shows the potential to improve the efficiency of anatomical
landmark detection.

Index Terms— Anatomical landmark detection, heatmap
regression, reinforcement learning, adaptive loss
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Fig. 1. Illustration of differences between our method and current
heatmap regression methods. Current methods tend to use fixed Gaus-
sian distributions for ground truth heatmap, while adaptive standard
deviations of Gaussian distributions are utilized in our proposed method.

I. INTRODUCTION

Accurate anatomical landmark detection is essential in
many medical image applications, e.g., for registration or bio-
metric measurements. The data-driven deep neural networks
(DNNs) have revolutionized many medical image analysis
tasks by effectively exploiting large annotated medical im-
age databases [1]–[4]. Anatomical landmark localization has
also seen tremendous progress in recent years due to the
widespread availability of deep learning models. The advent
of these automated solutions brings opportunities for landmark
localization in medical images to achieve fast and accurate
diagnostic biometric measurements [5]–[11], obviating the
time-consuming and subjective manual identification.

Most current solutions formulate the problem as a structured
output regression problem to localize the landmark directly
from the images [12], [13]. Some of them directly regress the
image coordinates where the map from the input appearance to
the image coordinates is learned. However, this complicated
mapping makes the direct regression of coordinates usually
difficult to train [14]–[16]. Moreover, a single target output
for each landmark location instead of several candidate loca-
tions might cause missing landmarks. As a result, regressing
landmarks directly is less usable as a pre-processing step of
more complex vision tasks [14]. Some reinforcement learn-
ing (RL) methods directly explore the landmark location by
learning to generate navigation trajectories that point towards
the sought-for landmarks with a multi-scale strategy [6], [17]
or a dedicated reward design [18]. Nonetheless, these RL-
based methods require huge datasets and computationally

ar
X

iv
:2

10
5.

09
12

4v
1 

 [
cs

.C
V

] 
 1

9 
M

ay
 2

02
1



2 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. XX, NO. XX, XXXX 2020

extensive training. Recent works tend to regress the likeli-
hood maps (i.e., heatmaps) to encode semantics and spatial
context information for inferring landmark locations, showing
effectiveness in multiple domains [8], [13], [19]–[24]. For
instance, Newell et al. [13] employ a stacked encoder-decoder
convolutional neural network (CNN), called the Hourglass
network to regress heatmaps at the pixel level for landmark
inference by consolidating features across multiple scales.
These DNN models usually exploit high-resolution feature
maps for the heatmap regression to improve landmark local-
ization performance. Payer et al. [23], [24] combine the local
appearance with the global spatial configuration for multiple
landmark localization in medical images. A set of parallel or
cascaded multi-scale subnetworks is also connected to fuse
multi-scale representations, leading to high-resolution feature
maps [21], [22]. Similarly, Chen et al. [8] incorporate the self-
attention mechanism into pyramid architecture to get a high-
resolution and semantically enhanced fusion feature for the
heatmap regression. On the other hand, the heatmaps ground
truth of each landmark is another essence since it determines
the accuracy of estimating pixel intensity and could cause
inaccurate landmark localization. However, previous works
rarely studied this objective metric against the heatmap of each
landmark.

As is shown in Fig. 1, current heatmap regression methods
employ the multivariate Gaussian distributions centered at each
landmark location as the ground truth of the heatmaps in train-
ing. These models widely use the Mean Square Error (MSE)
loss to estimate pixel intensity at the mode of the Gaussian
as the target precision to predict the landmark localization.
Thus, the objective metric for evaluating the ground truth
heatmap based on Gaussian distributions during training plays
a vital role in locating landmarks, significantly influencing
landmark detection accuracy and convergence. Nevertheless,
there is a tradeoff to appropriately set the variance of Gaussian
distributions to define these target heatmaps in training [14],
[24]. Firstly, there is an inherited uncertainty and inconsistency
among landmarks during the training [25]. However, all target
landmarks usually set the same variance or standard deviation
of Gaussian during training in previous literature. Moreover, a
small standard deviation in Gaussian mode could contribute to
localizing landmarks accurately, but it is challenging to train
the network due to the highly sparse output distributions. By
contrast, a large variance is more comfortable to train with
the cost of prediction errors, resulting in a blurry and dilated
predicted heatmap with low intensity. Recently, an application-
independent Adaloss indirectly manipulates landmark localiza-
tion objectives by gradually decreasing the variance for each
target separately throughout the training [14]. This strategy
has a substantial limitation since it only decreases the standard
deviation using the MSE loss variances rate without consid-
ering the impact of standard deviations changes on MSE loss
explicitly. The non-increasing update restriction with a coarse
step used in Adaloss might also lead to a sub-optimal solution.
The larger the MSE loss variances rate, the bigger the decrease
step, might further harm the detection performance.

In the last two years, meta-learning has become the most
promising research field in deep learning as it can acquire

knowledge versatility for various computer vision tasks, such
as image recognition [26], [27]. Automating meta-parameters,
such as the standard deviation of Gaussian distributions, is
highly desired to improve anatomical landmark detection
accuracy in medical images. This paper introduces a novel
learning-to-learn framework to optimize the objective metrics
together with the network parameters for landmark localiza-
tion. In this new framework, we equip the bottom-up and top-
down CNN structures that are the most common backbone
for the heatmap regression network. We advance an RL-based
approach to refine the objective metric for each landmark. The
RL-based approach can optimize the multivariate Gaussian
distributions adaptively, improving the accuracy and efficiency
of the localization system concurrently. The right of Fig. 1
shows the difference between the standard deviation obtained
with fixed Gaussian distributions and our proposed method.
Also, instead of passively terminating the agent inference,
we introduce an early-stop strategy to get a balance between
exploration and exploitation, terminating the RL agents with
the optimal target precision for each landmark separately. The
proposed method is trained and validated on two different
landmark localization applications, including our in-house
prenatal ultrasound (US) dataset and the publicly available
dataset of cephalometric X-Ray landmark detection supported
by the IEEE International Symposium on Biomedical Imaging
(ISBI) [5]. Experiment results demonstrate the effectiveness of
our proposed method. Our proposed framework is general and
has great potentials to improve the efficiency of anatomical
landmark detection.

II. METHODS

Fig. 2 illustrates the schematic view of our proposed frame-
work. We intend to localize multiple anatomical landmarks
in medical images with a learning-to-learn framework. This
framework progressively interacts with data information and
learns about the optimal network parameters and the corre-
sponding objective metrics. Specifically, we equip the state-of-
the-art bottom-up and top-down U-Net [28] with an RL-based
framework [29] to adaptively tune the network parameters
and Gaussian heatmap variance, thus optimizing the target
precision for each landmark. We also design an early-stop
strategy for active termination of the interaction procedure to
improve its accuracy and efficiency.

A. Landmark-Aware Objective Metric Learning
The encoder-decoder model is the most common archi-

tecture for the heatmap regression network, which regresses
heatmaps generated from landmark coordinate using MSE
loss. The substance of the network is the multivariate Gaussian
distributions centered at the ground truth landmark locations,
determining the objective metric of estimating pixel intensity
against heatmap. The variance of the Gaussian distributions
is, therefore, critical to the accuracy of landmark localization.
Although the heatmap regression prefers a small possible stan-
dard deviation for better localization accuracy, it generates the
target heatmaps (foreground pixels) with highly sparse output
distributions. This sparse distribution might be attributed to



ZHOU et al.: LEARN FINE-GRAINED ADAPTIVE LOSS FOR MULTIPLE ANATOMICAL LANDMARK DETECTION IN MEDICAL IMAGES 3

Fig. 2. Schematic view of our proposed learning-to-learn framework. The neural network parameters and the target precision are optimized
simultaneously. An RL framework with an early-stop strategy is leveraged to search optimal standard deviation of Gaussian for the generation of
ground truth heatmap.

background pixels (pixels with zero values) that dominate fore-
ground pixels on a heatmap, significantly increasing network
training difficulty. Larger variances can alleviate this problem
with a blurry and dilated heatmap with low intensity. However,
it hurts the ability to locate landmarks accurately. Besides,
there is an inherited uncertainty and inconsistency among
landmarks in medical images. It is almost impossible to ex-
plore specific Gaussian distributions for various landmarks and
tasks with hand-crafted heuristics, especially when the number
of landmarks increases. Inspired by the work [30], we can
consider the variances or standard deviations of the Gaussian
distributions as the network hyperparameters to determine the
distance metric between the predicted values and the ground
truth. We propose a learning-to-learn framework equipping U-
Net with an RL-based approach, which can steadily optimize
the network parameters and the Gaussian standard deviations
of the heatmap ground truth simultaneously.

It is challenging to tune the standard deviations of multi-
variate Gaussian distributions dynamically due to the agnostic
landmark deviation. This intricate task can be well modeled
under an RL framework, where an agent, in its current state
S, interacts with the environments E by making successive
actions a ∈ A that maximizes the expectation of reward.
We, therefore, advance an RL-based landmark-aware objective
metric learning method (Fig. 2), denoted as LaOML. The
details of each component are defined as below:

Agent: Each landmark has a certain agent for heatmap
optimization, where each agent samples from the multinomial
distribution to achieve the appropriate action by employing
the Multi-Layer Perceptron (MLP) consisting of 4 layers of
nodes, including 5 inputs, 3 outputs, and two hidden layers
containing 64 and 32 hidden units. Since the MLP interacts
with the environment to seek the optimal objective metric for
tuning the Gaussian distributions of each landmark, we name

it the controller. To be specific, each MLP controller takes the
MSE loss for the relevant landmark calculated in the latest
few epochs as the input and predicts the corresponding action
probability for heatmap optimization.

Environment and State: we take medical images as the
environment and define states as the multivariate Gaussian
distributions.

Action: Action is defined as a cumulative adjustment to
the value of the standard deviation. Like Adaloss [14], we
optimize the standard deviation, σi, for the target of ith
landmark with a simple additive equation σt

i+∆σt
i . The action

space ∆σt
i is then defined as [−1, 0,+1], whose probabilities

are determined with softmax to the MLP controller outputs,
which indicates the decrement, preserving, or increment of the
standard deviation. For example, given the output probability
{0.7, 0.2, 0.1}, the agent has a likelihood of 0.7 to select the
’-1’ action. The softmax operation is performed for normal-
ization to the MLP controller outputs.

Reward: The reward signal evaluates the actions to indicate
what policy the agent should adopt to select the appropriate
action. In this study, the reward is calculated based on the
localization accuracy. The smaller the localization error is, the
higher the reward is. Each valid action gets its scalar reward to
indicate whether the controller is moving towards the preferred
target. As the controller interacts with E to maximize the
rewards using localization accuracy, the system can adaptively
adjust the corresponding standard deviation σi.

This optimization task is a standard bilevel optimization
problem, in which we aim to both maximize the reward w.r.t.
the controller parameters {α}, and minimizing the loss of the
network w.r.t. network parameters {ω}. We then define the
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bilevel optimization problem as below:

max
α

R (α) = r
(
Mω∗(α);Dv

)
s.t. ω∗ (α) = argmin

ω
Lα (Mω;Dt) (1)

where r
(
Mω∗(α);Dv

)
means the reward calculated on the

validation dataset Dv with model Mω∗(α) and Lα (Mω;Dt)
indicates the MSE loss function calculated on the training
dataset Dt. Both parameters {α} and {ω} are updated al-
ternately. As illustrated in Fig. 2, at the inner level, at the tth
epoch, we sample K times with the corresponding

{
σt,1:K

1:N

}
of N landmarks to generate K parallel identical heatmap
regression networks, and train these networks independently
on the training set for t′ epochs to optimize their network
weight parameters, respectively. We then identify the model
with the best localization accuracy as the initial U-Net network
at the (t+ t′)th epoch. Meanwhile, at the outer level, the con-
trollers exploit the reward of the above K parallel optimized
networks on the validation set to update the corresponding
controller parameters {αi}. We assume that each controller
is independent, and then use the REINFORCE rule [29]
to iteratively update the ith controller with the localization
accuracy rewards as follows:

αt+t′

i ≈αt
i + ηi

1

K

K∑
j=1

R
(
σt,j

)
· ∇αlog

(
g
(
σt,j

))
,σt,j ∼ g

= αt
i + ηi

1

K

K∑
j=1

R
(
σt,j

)
· ∇α

N∑
i=1

log
(
p
(
σt,j
i

))
,σt,j ∼ g

(2)

where ηi is the learning rate, and g
(
σt,j

)
=

N∏
i=1

p
(
σt,j
i

)
is

the joint probability distribution of N landmarks. R
(
σt,j

)
is

the reward of trajectory σt,j . In this study, instead of com-
bining the outputs of all the controllers as a joint probability
distribution, we heuristically update each controller only with
their own reward R

(
σt,j
i

)
as follows:

αt+t′

i = αt
i + ηi

1

K

K∑
j=1

R
(
σt,j
i

)
· ∇αlog

(
p
(

∆σt,j
i

))
R
(
σt,j
i

)
= C − εi,j (3)

where αt
i is the weight parameters of the ith controller at

the tth epoch, and R
(
σt,j
i

)
denotes the reward of the ith

controller in the jth sample. C is a constant, and εi,j is the
localization error of the landmark i for the jth network on
the validation set. Based on the upper bound of the mean
localization error in pixel on the validation dataset under the
fixed Gaussian heatmap, we empirically set C as 25 to punish
those standard deviations whose localization error was larger
than 25 pixels with a negative reward. We alternately train
this bilevel model, finally achieving the optimal objective
metric without additional training, and reducing the size of
the search space from 3N as a total to 3 for each landmark.
It is worth noting that we update α and σ at the same
frequency, implying the consistency between the inputs to the

RL-based controller and the multivariate Gaussian distribution.
This mechanism avoids the influence of the ∆σi on the MSE
loss calculation, thus obviating the undesired bias that is one
of the shortcomings of adaptive loss [14].

B. Sampling and Broadcasting in LaOML

Fig. 3 shows the proposed LaOML. The sampling and the
broadcasting are the two most critical components for parallel
models in LaOML to alleviate the exploitation-exploration
dilemma that is general in the RL-based framework. In this
study, broadcasting the model and actions with the highest
validation performance is a kind of exploitation while using
K samples can sustain necessary exploration for other ac-
tions during training, thus acquiring the well-learned policy.
Therefore, considering action space consists of [−1, 0,+1], we
employ the multinomial distribution instead of the binomial
distribution to model the controller output in the sampling
process, indicating the probability of each action to be se-
lected. After one sampling for all the controllers, we get a
set of standard deviations

{
σt,j

1:N

}
, which corresponds to the

corresponding heatmap of each landmark at the tth epoch in
the jth sample. Thus, we can acquire

{
σt,1

1:N , σ
t,2
1:N , · · · , σ

t,K
1:N

}
after K samples for generating K identical U-Net networks,
with each U-Net outputting N heatmaps for N landmarks.

Moreover, another essential concern is to train and synchro-
nize identical U-Net networks with different sets of Gaus-
sian distributions. Specifically, we initialize all independent
networks with the same weights. Simultaneously, we assign
different heatmaps,

{
σt,K

1:N

}
, to train these U-Net networks

separately. After training, all parallel models duplicate the
model that achieves the best localization performance on the
validation set. This broadcast strategy ensures all parallel U-
Net networks with the same weights for the next iteration
of searching. Moreover, we seek the highest reward among
different sample settings and choose the corresponding σ as
the initial value for each landmark in the next iteration. This
sampling and broadcasting procedure is repeated until the end
of the whole LaOML training.

C. Early-Stop Strategy

The continuous change in the multivariate Gaussian dis-
tributions is conducive to accurately localizing landmarks. It
alleviates the training problem with highly sparse output dis-
tributions by dynamically balancing the background pixels and
foreground pixels on a heatmap. Nonetheless, an appropriate
standard deviation, σ, is still crucial for the more stable and
effective landmark localization. We prefer to stop searching
the standard deviations in the proper time, thus fully exploiting
the knowledge learned by the RL approach and reducing the
search space to optimize. However, there are no well-defined
criteria to terminate the iterative inference of RL learning. We
propose an early-stop strategy to tell the controller when to
immobilize the standard deviation of Gaussian mode during
the training, precluding the exploration-exploitation dilemma
and realizing an efficient interaction of the RL controller.
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Fig. 3. Illustration of RL-based landmark-aware objective metric leaning. In each optimization iteration (t′ epochs), we sample K times according
to the output probabilities of each controller to get K sets of standard deviations. K identical U-Net with the same initial parameters are then
trained under one standard deviation set in parallel. After that, the best model for initialization in the next iteration is selected and the controllers are
updated according to the model performances evaluated on the validation set.

An essential issue of an automatic early-stop is to choose
an indicator that can accurately reflect the training progress of
each landmark. In this study, we select the variance of distance
error between the predicted position and the ground truth as a
reliable indicator to restrain the change in Gaussian distribu-
tion. A small enough variance suggests that the optimization
in Gaussian distributions achieves a local extremum and has
little effect on the corresponding landmark localization. We,
therefore, should stop the search in Gaussian distributions
space, vice versa. Specifically, we will record the distance error
of each landmark and calculate their variances vDE, i on the
validation set using the latest M epochs. As illustrated in the
bottom right part of Fig. 2, the early-strop indicator Si is then
determined for the ith landmark with a predefined threshold
Ts, using:

Si =

{
True vDE, i < Ts

False otherwise
(4)

If the variance is smaller than Ts, the indicator is set to
true for immobilizing σi for the Gaussian centered at the
ith landmark coordinate. Otherwise, the RL-based controller
continues to tune the corresponding standard deviation. In this
study, the M is set to be 30 epochs. Also, we empirically
determine the threshold Ts to be 0.01 by calculating the
variance from distance errors within 30 epochs achieving the
stable landmark localization in our pre-experiment. Moreover,
to sufficiently explore a higher probability of finding the proper
σ, we employ the early-stop strategy after the first 100 epochs.

III. EXPERIMENTS

A. Datasets

We assessed the localization performance of the proposed
method on two different datasets. The first one is an in-house

prenatal ultrasound dataset of 511 fetal midsagittal plane im-
age with a size of 400×400. All images were anonymized and
obtained by experts from 3D fetal ultrasound volumes acquired
from three ultrasound scanners (GE, Philips, and Mindray). A
clinical expert provided ground truth of 8 landmarks for all
the images, including crown, diencephalon, thalamus, nasal
bone, inferior alveolar bone, back neck point, anterior third
of the chest wall, and rump. The local Institutional Review
Board approved this study. The second dataset is a publicly
available dataset from the Automatic Cephalometric X-Ray
Landmark Detection Challenge (ACXRLDC) supported by the
ISBI in 2015 [5]. The ACXRLDC dataset consists of 400
lateral cephalograms with 1935×2400 and a resolution of 0.1
mm/pixel, which is split randomly into three subsets: 150
Training images, 150 Test1 images, and 100 Test2 images.
Two experts manually marked 19 cephalometric landmarks
for all images in the ACXRLDC dataset. The mean value of
the manual annotations is used as the ground truth of each
landmark.

We split the in-house prenatal ultrasound dataset into 60%
training, 20% validation, and 20% test, randomly. By contrast,
we follow dataset usage in [8] to use Training images, Test1
images, and Test2 images for training, validation, and test,
respectively. Different augmentation strategies were applied
for both datasets, including flipping, shifting scaling, rotation,
and changing brightness and contrast. All images were resized
to 256×256 for the prenatal ultrasound dataset and 800×640
for the ACXRLDC dataset, respectively. During testing, the
locations of landmarks were rescaled back to the original
resolution for the metric evaluation.

B. Implementation details

We evaluated our proposed method based on the U-Net
backbone, denoted as the baseline model (Fig. 2). We com-



6 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. XX, NO. XX, XXXX 2020

pared our proposed LaOML with two other different strategies
of refining the predicted output, generative adversarial learning
(GAN) [31], [32], and recurrent neural network (RNN) [33].
Moreover, we also explore the method [34] to extract the exact
pixel’s coordinate directly from the predicted heatmap.

We reimplemented all these methods using the same U-
Net backbone and MSE loss in our codes with Pytorch to
make them compatible with our experiments. A ResNet34
was utilized as a discriminator to distinguish the predicted
heatmaps and the ground truth in the GAN method, where
the heatmaps and the original image were taken as the input
of the discriminator branch. By contrast, in the RNN method,
a convolutional RNN layer was added on top of the back-
bone to explore the dependencies among different landmarks’
heatmaps. According to [34], the predicted heatmap can be
renormalised to a probability distribution via (spatial) Softmax
and condensed to exact coordinate as below:

ui =

∑
u∈Ω u · eSu(i)∑
u∈Ω e

Su(i)
(5)

where Ω represents the image domain. ui denotes the predicted
coordinate, and Su (i) means the heatmap output for the ith
landmark. The MSE loss between the predicted coordinates
and ground truth is then used to train the backbone. We denote
our baseline model as the BASE, while denoting the baseline
model equipped with LaOML, GAN, and RNN as the BASE-
LaOML, the BASE-GAN, and the BASE-RNN, respectively.
The method based on direct coordinate regression is denoted
as BASE-C. Moreover, we also evaluated the proposed method
with the results in state-of-the-art literature about the public
ACXRLDC dataset [8], [20], [35]–[37].

We ran all experiments on a machine with an NVIDIA
TITAN X(PASCAL) GPU. We ensured to set the initial pa-
rameters appropriately. We trained U-Net network parameters
using Adam optimizer with learning rate 2e-4 while updating
the controller weights of LaOML with Adam optimizers and
learning rates 1e-3. We set the sample number K = 10 and
update the controllers with C = 25 every 5 epochs when
employing LaOML. The vector length of the controller input
was set to be 5 as well correspondingly, which is equal to the
update interval of the controller. We searched σ ranged from
1 to 20 and stopped the search with the early-strop indicator
Si < 0.01. After 40 epochs for the in-house ultrasound
dataset and 30 epochs for the ACXRLDC dataset, we began
to search parameters initialized with 5 for all landmarks,
improving the training stability. Moreover, we achieved the
best performance of the BASE-C method with a learning
rate of 1e-3 and 1e-2 on the prenatal ultrasound dataset and
ACXRLDC dataset. By contrast, we updated the RNN model
using Adam optimizer with a learning rate of 2e-4 and 2e-
5 on the prenatal ultrasound dataset and ACXRLDC dataset,
respectively. On the other hand, we trained the GAN model
using Adam optimizers with learning rates of 1e-4 and 4e-
4 to update the heatmap regression model and discriminator,
respectively, for the prenatal ultrasound dataset, while the
corresponding learning rates for the ACXRLDC dataset are 2e-
5 and 8e-4 to get better performance. We trained all models
for 250 epochs. Following the optimization configuration of

previous meta-learning methods [30], [38], [39], we employ
the training dataset and validation dataset to optimize the
network parameters and the corresponding network hyperpa-
rameters (i.e. the Gaussian distributions’ standard deviations),
respectively. During inference, the pixel with the highest value
on each channel of the output heatmap was selected as the
final predicted position of each landmark through an argmax
function.

C. Evaluation criteria
We adopt two frequently used metrics to quantitatively

evaluate landmark localization accuracy, mean radial error
(MRE), and the standard Percentage of Correct Keypoints
(PCK) metric.

MRE (j) =

∑
∆Xi,j

#Dtest
(6)

where ∆Xi,j is the Euclidean distance (mm) between the
predicted position and the ground truth for the jth landmark
in the ith testing image, and #Dtest is the total number of
the testing images. We also calculate the Mean (±S.D.) MRE
of all landmarks when evaluating our methods.

The PCK, also, namely success detection rate (SDR), reports
the percentage of detections with Euclidean distance below
a threshold. It identifies how many target landmarks can be
successfully localized considering a certain margin of error

PCKr =
# {(i, j) : ∆Xi,j < r}

N ×#Dtest
× 100% (7)

with N ×#Dtest is the number of all the localized landmarks,
and # {·} denotes the amount of the localized landmarks
which satisfy the condition {·}. We follow the suggestion in
the previous literature about the public ACXRLDC dataset [8],
[20], [35]–[37] to use 2mm, 2.5mm, 3mm, and 4mm as the
margin of errors when calculating PCK for the ACXRLDC
dataset.

IV. RESULTS

A. Evaluation on the prenatal ultrasound dataset
Table I presents the landmark detection results when differ-

ent strategies are employed on the BASE network. Our pro-
posed BASE-LaOML significantly outperforms BASE, BASE-
GAN, BASE-RNN, and BASE-C, achieving a good improve-
ment in mean MRE of all landmarks. The LaOML attains
the lowest MRE average and STD and achieves the greatest
improvements of MRE on 6 of 8 landmarks, while GAN
and RNN only enhance the baseline to a certain extent.
Moreover, the direct usage of the exact pixel’s coordinate
deteriorates the localization accuracy compared to the heatmap
regression methods. Fig. 4 shows the curve between PCK
and the threshold ranging from 2 to 8 mm for the heatmap
regression methods. The BASE-LaOML also tops the task and
achieves the highest PCK result, outperforming BASE by 2%
under almost all the thresholds. Both BASE-GAN and BASE-
RNN also show some improvements in PCK. Nevertheless,
the BASE-LaOML still outperforms these two methods in both
MRE and PCK (Table I and Fig. 4). We also visualize some ex-
amples of the localized landmarks for the prenatal ultrasound
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(Fig. 5). The results suggest that using LaOML restrains the
extreme errors of landmarks’ localization. However, GAN or
RNN cannot suppress these errors effectively, though they can
alleviate this problem. Moreover, Fig. 6 presents the process
of optimizing σ using our proposed LaOML method, imply-
ing the inherited uncertainty and inconsistency in landmark
heatmap. These qualitative and quantitative results suggest that
our proposed method is comparatively more robust to speckle
noise and achieves proper localization in ultrasound images.

Fig. 4. PCK curve on the prenatal ultrasound dataset.

TABLE I
COMPARISON OF MRE (MM) ON THE PRENATAL ULTRASOUND DATASET.

Methods L1 L2 L3 L4 L5 L6 L7 L8 Mean±S.D.
BASE 3.04 2.28 1.73 1.52 1.22 2.65 2.99 2.31 2.22±3.58

BASE-GAN 2.87 2.02 1.43 1.38 1.02 3.26 2.77 2.71 2.18±4.39
BASE-RNN 3.13 2.03 1.20 1.40 0.99 2.77 2.60 1.86 2.00±2.67

BASE-C 3.03 2.37 1.92 2.14 1.80 3.10 3.04 2.92 2.54±1.98
BASE-LaOML 2.65 1.35 1.20 1.39 0.98 2.36 2.66 1.79 1.80±1.55

Fig. 5. Examples of extreme situations on the prenatal ultrasound
dataset. The images in each column represent different prediction
results using a specific method. Each row shows the predictions using
different methods on the same image, including BASE, BASE-GAN,
BASE-RNN, and BSAE-LaOML. The green and red points represent
ground truth and predicted position, respectively.

B. Evaluation on the ACXRLDC dataset
We show the results of comparing our BASE-LaOML to

BASE-RNN, BASE-GAN, BASE-C, and other state-of-the-
art methods on the Test2 subset of the ACXRLDC dataset
in Table II. We offer the PCK under 2 mm, 2.5 mm, 3

TABLE II
COMPARISON OF MRE (MM) AND PCK ON THE ACXRLDC DATASET.

Methods Mean±S.D. ↓ PCK2↑ PCK2.5↑ PCK3↑ PCK4↑
Ibragimov [36] - 62.74 70.47 76.53 85.11
Lindner [37] - 66.11 72.00 77.63 87.42

Arik [20] - 67.68 74.16 79.11 86.63
Chen [8] 1.48 75.05 82.84 88.53 95.05
Song [35] 1.54 74.0 81.3 87.5 94.3

BASE 1.57±3.30 73.16 81.26 86.42 93.89
BASE-GAN 1.49±1.31 74.16 81.89 87.58 94.26
BASE-RNN 1.47±1.34 74.16 81.63 87.26 94.42

BASE-C 2.68±2.26 47.11 57.74 66.95 79.11
BASE-LaOML 1.39±1.32 76.11 84.21 88.79 94.84

mm, and 4 mm threshold and the Mean (±S.D.) MRE. Our
baseline model obtains only a little worse result than most
state-of-the-art methods, although it does not make additional
network constraints. As illustrated in Fig. 7, landmarks in
Cephalometric X-Ray images prefer the different σ to generate
the heatmap ground truth. We conjecture that choosing an
appropriate σ instead of a commonly small σ can improve
the model. We validate this assumption in the following
ablation studies by using different σ. Compared to the BASE,
the BASE-LaOML method performs preferably in landmark
localization with MRE improvement of 0.18 mm in average
and 2 mm in standard deviation. When comparing with other
state-of-the-art algorithms, it is clear that the average MRE
for most of the other results is above 1.45mm. Also, in
line with the prenatal ultrasound dataset results, the Base-
C method has the worst localization performance among all
the compared methods. Fig. 8 presents some examples from
different patients of the ACXRLDC dataset. Most predicted
landmarks correspond to the positions where they are supposed
to be. Also, the results support that the proposed LaOML
alleviates the extreme errors in landmarks’ localization.

In terms of PCK to evaluates the distribution of predicted
landmarks around ground truth, the BASE-LaOML achieves
the best performance on other metrics, although our methods
are only slightly less than the results in [8] when the threshold
of PCK is set to 4.0 mm. Additionally, Payer et al. [24] present
results under the other arrangement by combining two test
datasets. Nevertheless, the attentive feature pyramid fusion
(AFPF) introduced in [8] has achieved much higher accuracy
under the same configuration. These results suggested that
our BASE-LaOML is more accurate in localization and the
same robust to mislocalization as the AFPF [8]. Moreover,
all localization improvements can be attributed to additional
geometric constraints for the anatomically ill-defined land-
marks, such as attention mechanism [8], local patches [35],
and learnable σ. However, both GAN and RNN methods
gain fewer improvements in comparison with other constraints
methods. This can be partly explained as GAN makes the
heatmap output more consistent with the prior heatmap, but it
poses no localization constraints directly to reduce localization
error. On the other hand, the RNN-based model might prefer a
more complicated and task-specific relation among landmarks
to fully explore the dependence among different landmarks,
restricting the positioning accuracy.

C. Ablation experiments
We run a number of ablation studies to analyze the lo-

calization performance of different fixed σ and the effect of
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Fig. 6. The dynamic change of Gaussian σ on the prenatal ultrasound dataset. The text ’Ln-σ’ indicates the σ change curve of the nth landmark.
In the left three columns, we show the overall Gaussian distributions of all the landmarks on a single image (Row 1) and the specific distribution of
the first (Row 2) and the eighth landmark (Row 3) in a 3D visualization along with training epoch. In the right part, the dynamic standard deviation
curve for each landmark is presented.

Fig. 7. The dynamic change of Gaussian σ on the ACXRLDC dataset. The text ’Ln-σ’ indicates the σ change curve of the nth landmark. The
dynamic standard deviation curve for each landmark is presented.

initial values of the learnable σ on the learning process and
model performance. Besides, we investigate the efficiency of
our proposed early-stop strategy. The results are discussed in
detail next.

1) Fixed standard deviation parameters σ: The ablation
study in Table III and Table IV shows the BASE model results
with different fixed σ from 3 to 20. It is clear that varying σ
results in the difference in localization accuracy, reaching more
than 0.5 mm discrepancy for some landmarks such as L1, L4,
L16, L17, and L19 (Table IV). These landmarks are usually
anatomically ill-defined (e.g., L16, the anterior landmark at
the chin in Fig. 8). As shown in Table III and Table IV, it is
uncorrelated between the localization accuracy and the value
of σ. Each landmark prefers to independent heatmap with
specified peak widths σ, suggesting the need for learnable σ to
adapt to the data by encoding network prediction uncertainty.
It is interesting to notice that larger fixed σ outperforms the
results with smaller σ. As demonstrated in Fig. 6 and Fig. 7,
most landmarks prefer σ larger than 5, though one or two
landmarks learn the σ to 3. Thus, we develop the BASE
model initialized with σ=5 in other experiments, making a
comprehensive and fair comparison of the learnable σ using

LaOML.

TABLE III
COMPARISON OF MRE (MM) FOR THE BASE MODEL WITH DIFFERENT

FIXED σ ON THE PRENATAL ULTRASOUND DATASET.
Methods L1 L2 L3 L4 L5 L6 L7 L8 Mean±S.D.
BASE-σ3 3.77 2.75 1.22 1.56 1.06 3.50 3.56 3.69 2.64±5.32
BASE-σ5 3.04 2.28 1.73 1.52 1.22 2.65 2.99 2.31 2.22±3.58
BASE-σ8 2.69 1.47 1.25 1.38 1.01 2.36 2.61 2.35 1.89±2.30

BASE-σ10 2.56 1.50 1.23 1.34 1.08 2.39 2.60 2.09 1.85±1.55
BASE-σ15 2.77 1.57 1.21 1.41 1.06 2.47 2.44 2.01 1.87±1.45
BASE-σ18 2.69 1.57 1.35 1.38 1.19 2.36 2.47 1.99 1.88±1.37
BASE-σ20 2.64 1.66 1.31 1.39 1.26 2.29 2.48 2.17 1.90±1.46

BASE-LaOML 2.65 1.35 1.20 1.39 0.98 2.36 2.66 1.79 1.80±1.55

2) RL-based LaOML with different initial σ: The results show
that our RL-based LaOML helps our model improve the
detection accuracy. Our LaOML method achieves the smallest
mean MRE. As shown in Table IV, learning σ independently
get the most accurate localization for six landmarks, and only
worse by over 0.1 mm than the best result of fixed σ for one
landmark, L10. Similar observations are presented in Table
III of the prenatal ultrasound data set. On the other hand, the
ablation study shows that the discrepancy in localization is
small (Table V and Table VI), though the initial value of σ
affects our RL-based approach. Also, all learnable σ methods
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TABLE IV
COMPARISON OF MRE (MM) FOR THE BASE MODEL WITH DIFFERENT FIXED σ ON THE ACXRLDC DATASET.

Methods L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 L13 L14 L15 L16 L17 L18 L19 Mean±S.D.
BASE-σ3 1.43 0.87 2.30 4.81 1.15 2.64 0.67 0.66 0.55 1.77 0.74 0.46 2.62 2.03 0.88 6.06 1.60 1.03 3.67 1.89±7.28
BASE-σ5 1.84 0.94 2.18 1.68 1.15 2.90 0.61 0.62 0.52 1.87 0.87 0.47 2.75 1.96 1.04 4.72 1.23 1.19 1.23 1.57±3.30
BASE-σ8 0.53 0.90 2.22 1.59 1.09 2.72 0.64 0.63 0.47 1.82 0.83 0.50 2.61 1.93 0.89 4.42 1.00 1.09 1.07 1.42±1.41
BASE-σ10 0.55 0.94 2.14 1.56 1.13 2.65 0.59 0.65 0.49 1.64 0.85 0.53 2.60 1.90 0.90 4.66 1.04 1.03 1.17 1.42±1.35
BASE-σ15 0.62 0.96 2.23 1.66 1.16 2.60 0.63 0.64 0.51 1.41 0.95 0.62 2.67 1.94 0.89 4.52 1.01 1.18 1.22 1.44±1.29
BASE-σ18 0.57 0.90 2.22 1.73 1.17 2.69 0.69 0.68 0.50 1.55 0.90 0.63 2.57 1.95 0.87 4.51 1.01 1.13 1.19 1.45±1.29
BASE-σ20 0.56 0.96 2.22 1.74 1.08 2.81 0.65 0.65 0.54 1.47 0.95 0.69 2.56 2.02 0.87 4.48 1.04 1.24 1.18 1.46±1.27

BASE-LaOML 0.55 0.86 2.17 1.63 1.07 2.67 0.64 0.63 0.50 1.59 0.78 0.44 2.48 1.93 0.84 4.49 1.00 1.11 1.11 1.39±1.32

Fig. 8. Examples of extreme situations on the ACXRLDC dataset.
The images in each column represent different prediction results using
a specific method. Each row shows the predictions using different
methods on the same image, including BASE, and BSAE-LaOML. The
green and red points represent ground truth and predicted position,
respectively.

still surpass other state-of-the-art methods. These results prove
that it is essential to predict the heatmap with learnable σ,
making the model easy to train and robust to misidentification.

TABLE V
COMPARISON OF MRE (MM) FOR BASE-LAOML WITH DIFFERENT

INITIAL σ ON THE PRENATAL ULTRASOUND DATASET.
Methods L1 L2 L3 L4 L5 L6 L7 L8 Mean±S.D.

BASE-LaOML-σ5 2.65 1.35 1.20 1.39 0.98 2.36 2.66 1.79 1.80±1.55
BASE-LaOML-σ8 2.65 1.43 1.16 1.33 1.07 2.46 2.52 1.76 1.80±1.42
BASE-LaOML-σ10 2.68 1.43 1.19 1.38 1.00 2.44 2.49 1.87 1.81±1.39
BASE-LaOML-σ15 2.72 1.55 1.23 1.36 1.05 2.39 2.49 1.92 1.84±1.43

3) The early-stop strategy: The early-strop indicator is de-
pendent on the variance of distance error. Fig. 9 and Fig.
10 presents the reward curve with and without the early-stop
strategy. These results demonstrate that the early-stop tends
to a more stable reward with smaller variances. Note that
even without the early-stop strategy, our RL-based method also
results in the upward trend of the reward curve, implying the
effectiveness of our LaOML method.

V. DISCUSSION

Our proposed learning-to-learn framework provides a novel
and fundamental heatmap regression model to optimize the

(a) (b)

Fig. 9. Comparison of reward without and with the early-stop strategy
on the prenatal ultrasound dataset. (a) reward curves of the method
without early-stop strategy; (b) reward curves of the method with early-
stop strategy. The reward curve of the nth landmark is labeled as
’reward n’.

(a)

(b)

Fig. 10. Comparison of reward between methods without and with
early-stop strategy on the ACXRLDC dataset. (a) reward curves of the
method without early-stop strategy; (b) reward curves of the method
with early-stop strategy. The reward curve of nth landmark is labeled
as ’reward n’.

objective metrics for landmark localization in medical images
with an RL method. Most current works focus on improving
architectures for acquiring high-resolution features and high-
level semantic information, neglecting another essence of
heatmap regression for landmark localization. In this frame-
work, we devise an RL-based objective metrics learning
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TABLE VI
COMPARISON OF MRE (MM) FOR BASE-LAOML WITH DIFFERENT INITIAL σ ON THE ACXRLDC DATASET.

Methods L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 L13 L14 L15 L16 L17 L18 L19 Mean±S.D.
BASE-LaOML-σ5 0.55 0.86 2.17 1.63 1.07 2.67 0.64 0.63 0.50 1.59 0.78 0.44 2.48 1.93 0.84 4.49 1.00 1.11 1.11 1.39±1.32
BASE-LaOML-σ8 0.58 0.93 2.23 1.61 1.20 2.71 0.60 0.61 0.50 1.54 0.82 0.53 2.61 1.93 0.91 4.55 1.01 1.07 2.00 1.47±2.31
BASE-LaOML-σ10 0.60 0.92 2.17 1.56 1.15 2.72 0.70 0.64 0.52 1.58 0.84 0.52 2.60 1.93 0.91 4.58 1.08 1.07 1.12 1.43±1.33
BASE-LaOML-σ15 0.63 0.98 2.15 1.65 1.17 2.74 0.66 0.66 0.53 1.50 0.87 0.59 2.62 1.97 0.91 4.62 0.99 1.16 1.29 1.46±1.33

method with an early-stop strategy to take the localization
accuracy as weakly supervision to tune variances of each
landmark as the hyperparameters, thus improving localiza-
tion accuracy and efficiency. We have evaluated our pro-
posed framework on two datasets that contain 2D radiographs
and 2D ultrasound images of different anatomical structures,
demonstrating the generalization of our LaOML method. The
experimental results reveal that our method outperforms the
state-of-the-art approaches.

The key in the proposed model is to incorporate our novel
learnable heatmap into heatmap regression in a unified frame-
work. Improvements in localization accuracy mainly come
from our RL-based LaOML method. By concurrently optimiz-
ing landmark localization and refining target precision, we ob-
viate to make the tradeoff between a blurry and dense response
and an accurate but highly sparse heatmap. This method is
different from the learnable heatmap of the regularization [24]
and Adaloss [14], where each of their networks manipulates
the objective function to adjust the σ for each landmark.
However, the Adaloss only gradually decreases σ for each
target independently without considering the impact of ∆σ
on MSE loss. It can also make the training difficult when
dramatically changing in MSE loss variances. By contrast,
Payer et al. [24] optimize σ and network parameters together
using a unified objective function. The regularization term in
the objective function tends to smaller σ, leading to weight
sparsity and making the model hard to train. The unified ob-
jective function also introduces other hyperparameters to unite
the landmark localization and heatmap refinement implicitly,
increasing the difficulty of getting proper localization heatmap.
Previous literature [8], [24] reveals that the regularization
method only achieves limited improvement compared to the
methods with fixed σ [20], [36], [37]. On the other hand,
our RL-based LaOML method can decouple the optimization
of the landmark localization and target precision explicitly
in an end-to-end framework. It is easy to train on the target
task without tunning the additional hyperparameter for refining
heatmap ground truth. Extensive experiments illustrate that our
proposed method can achieve good localization performance
with a better balance between heatmap regression and heatmap
refinement.

The variance decrease in loss suggests that the current task
is close to convergence, which would help to indicate the
optimal predication. Inspired by using the loss variance as
the task convergence factor, in our proposed early-stop strat-
egy, the constraints on RL agents are automatically obtained
from the MRE metric variance on the validation dataset and
integrated inside the heatmap refinement. We can see that
the early-stop strategy has impacted on our proposed LaOML
method from the experiments. Previous approaches in medical
image analysis [40] introduce the RNN to map between the

Q-value sequence and optimal step in value-function-based
deep Q-Network (DQN) [41]. Nevertheless, differently to
the complicated DQN methods, we employ policy gradient
methods [29] to the fundamental heatmap refinement problem,
improving its accuracy and efficiency directly.

The experimental results demonstrate that our learning-
to-learning framework outperforms other state-of-the-art ap-
proaches on the publicly available ACXRLDC datasets. In-
terestingly, the baseline model using U-Net for heatmap re-
gression shows competitive localization performance in the
experiments. We think that this is due to the robust encoding
and decoding ability of the multi-scale U-Net to extract salient
high-resolution structures. Moreover, our baseline U-Net has
much better performance than the Localization U-Net in [24].
The main difference between these two U-Net lies in the total
channel number among all intermediate convolution layers.
The Localization U-Net only uses 128 channel numbers,
whereas we follow the state-of-the-art U-Net with the max-
imum 1024 channel number. A recent study suggests that
the network width also plays a vital role in capturing more
fine-grained features [42]. In line with the previous report
in [24], this finding demonstrates the hypothesis that a high-
resolution feature map is critical to landmark detection when
using heatmaps [19].

The RNN and GAN based refinement methods bring some
improvements in MRE over the BASE. These two refinement
methods are also robust towards landmark misidentification
by exploring dependencies among feature maps of different
landmarks. Nonetheless, our LaOML surpasses them in both
MRE and PCK, especially regarding localization accuracy. A
possible explanation is that the RNN-based method requires a
more complicated and task-specific relation among landmarks,
whereas the GAN-based method adopts the shape prior instead
of localization constraints. On the other hand, the BASE-C
method shows worse localization performance than heatmap
regression methods in the experiments. We conjecture that
this result can be attributed to the fact that the MSE loss
used in BASE-C is only calculated at the final coordinates,
causing a small gradient for each pixel on the image. By
contrast, the heatmap regression method directly applies MSE
on each pixel, even though introducing the Gaussian distri-
butions’ spiny standard deviation parameters. Moreover, like
coordinate regression methods, the BASE-C method directly
learns a map from the landmark’s appearance to its image
coordinates, increasing the training difficulty and leading to
limited performance, which has been reported in previous
literature [14]–[16].

We employ the same additive update for all landmarks,
in which σ is only updated based on its current value and
the predefined exploration range. However, landmarks that
are detected unambiguously prefer smaller steps than those
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that show more ambiguity in the training dataset. In this
study, the fixed exploration range to tune σ overlooks these
landmark-specific differences, restricting the search space.
Therefore, this additive update might result in the local minima
of heatmap refinement, making our heatmap ground truth
prediction dependent on the initial value. The landmark-
specific update, similar to the dynamic learning rate, should be
further investigated in future studies with better capturing prior
anatomical knowledge. Moreover, MSE loss is insensitive to
small standard deviation compared to large σ, which hurts the
capability to locate landmarks correctly. A possible solution
is to design a novel loss function to amplify the influence of
small σ to localization.

VI. CONCLUSION

This paper proposes a general learning-to-learn framework
to optimize the localization and target precision of multiple
landmarks simultaneously in medical images with an RL
method. We leverage the RL-based LaOML strategy to use
the localization accuracy as weakly supervised to predict the
target heatmap of each landmark. An early-stop strategy is also
advanced for active termination of the RL agent’s interaction
to balance the exploration-exploitation. Extensive experiments
on the in-house prenatal US dataset and the publicly available
ACXRLDC dataset prove the feasibility and effectiveness of
our proposed learning-to-learn framework. In the future, we
will extend the proposed learning-to-learn framework to more
general landmark-detection tasks. More effort will be involved
to further improve the localization, especially in exploring the
landmark-specific update strategy and novel loss functions.
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