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Combating Ambiguity for Hash-code Learning in Medical Instance
Retrieval

Jiansheng Fang, Huazhu Fu, Dan Zeng, Xiao Yan, Yuguang Yan, and Jiang Liu

Abstract— When encountering a dubious diagnostic case, med-
ical instance retrieval can help radiologists make evidence-based
diagnoses by finding images containing instances similar to a
query case from a large image database. The similarity between
the query case and retrieved similar cases is determined by
visual features extracted from pathologically abnormal regions.
However, the manifestation of these regions often lacks speci-
ficity, i.e., different diseases can have the same manifestation,
and different manifestations may occur at different stages of the
same disease. To combat the manifestation ambiguity in medical
instance retrieval, we propose a novel deep framework called Y-
Net, encoding images into compact hash-codes generated from
convolutional features by feature aggregation. Y-Net can learn
highly discriminative convolutional features by unifying the pixel-
wise segmentation loss and classification loss. The segmentation
loss allows exploring subtle spatial differences for good spatial-
discriminability while the classification loss utilizes class-aware
semantic information for good semantic-separability. As a result,
Y-Net can enhance the visual features in pathologically abnormal
regions and suppress the disturbing of the background during
model training, which could effectively embed discriminative fea-
tures into the hash-codes in the retrieval stage. Extensive experi-
ments on two medical image datasets demonstrate that Y-Net can
alleviate the ambiguity of pathologically abnormal regions and its
retrieval performance outperforms the state-of-the-art method by
an average of 9.27% on the returned list of 10.

Index Terms— Medical Instance Retrieval, Convolutional
Features, Deep Hashing Methods, Content-based Image
Retrieval

I. INTRODUCTION

Content-based image retrieval (CBIR) has been mostly tackled
as the problem of instance-level image retrieval [1] and has been
a long-standing research topic in the computer vision society [2].
When encountering a dubious diagnostic case, CBIR systems can
help radiologists search for similar cases in their decision-making
process. Instance-level image retrieval is to hunt for images with
the same instance as a query image in a large image database [3].
The benefit of instance-level retrieval for medical image screening
and diagnosing can be witnessed in an observer study [4]. Five
participating radiologists were given the task of querying nodules,
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for which they were required to infer the likelihood of malignancy.
The task was performed twice: once with the aid of the search engine
and once not. The search engine returned 3 instances of the most
similar malignant images and 3 instances of the most similar benign
images to help these radiologists making the inference. The average
performance of the five radiologists was shown to increase from 0.56
to 0.63 with the aid of similar nodules.

The relevancy of instance-level retrieval is mainly grounded on
the visual similarity of instances rather than the whole image [5], so
the features of a region-wise instance residing in a retrieved image
should be explored effectively. Recently, many existing works on
instance-level retrieval typically extracted visual features by using
convolutional neural networks (CNN) to prevent the visual features
unique to an instance from drowning in the global image. Early works
[6], [7] focused on replacing traditional hand-crafted descriptors with
features from fully-connected layers. The second generation of works
[8], [9] achieved significant gains by encoding the activations of
convolutional layers as region-wise feature descriptors. Among CNN-
based approaches of instance-level retrieval, deep hashing methods
[10], [11] have arisen as a promising solution because of their efficient
data storage and fast searching.

Deep hashing methods can preserve the information of high-
dimensional images by jointly learning image descriptors and hash-
codes in an end-to-end framework [12]–[14]. The image descriptors
from fully-connected layers or convolutional layers are mapped into
compact hash-codes for similarity comparison. Existing deep hash
methods for instance-level retrieval have been shown to be effective
and efficient [15], [16]. However, generating hash-codes in medical
instance retrieval is challenging due to the manifestation ambiguity of
pathologically abnormal regions. Such an issue plagues radiologists
in the clinically routine screening and largely affects medical instance
retrieval performance. It can be varied in two kinds: different diseases
can have the same pathological abnormalities (SPDD), while different
pathological manifestations may occur at different stages of the same
disease (DPSD). As Fig. 1 shows, 1) SPDD problem: it is difficult
to interpret chest X-ray images and recognize the subtle difference
between malignant and benign nodules, the lesion region of both
images is on the left lung’s upper lobe and has similar manifestations.
However, the malignant image is diagnosed as lung cancer, and the
benign image is pulmonary hematoma. Only professional radiologists
can find the difference between benign and malignant nodules. 2)
DPSD problem: cup to disk ratio (CDR), which is the ratio of cup
diameter to disc diameter and often be employed as the main clue of
glaucoma diagnose, varies at different stages.

The ambiguity of pathologically abnormal regions may prevent the
assimilation of medical instance retrieval into an assistant tool for
medico-decision [17]. One solution is to provide ground-truth fine-
grained labels to combat the ambiguity of pathologically abnormal
regions. However, medical annotations remain highly dependant on
manual expert feedback with high inter-observer variability [18].
Generally, medical image datasets can provide class labels for clas-
sification and pixel-wise masks for segmentation. Hence, a feasible
solution is to effectively exploit the visual contents of pathologically
abnormal regions based on class labels and pixel-wise masks [19].
Following this way, we present a novel deep framework, called Y-
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Fig. 1. Illustration of ambiguity in medical image diagnosis. The upper
row is two chest X-ray images labeled benign and malignant nodule.
The down row is two glaucoma fundus images with a cup to disk ratio
(CDR).

Net, to learn deep representations from image spaces by unifying
segmentation and classification losses. During the training stage, the
spatially subtle differences and class-aware semantic information of
pathological regions are simultaneously learned into convolutional
features. In the test stage, the learned convolutional features are
aggregated into the hash-codes to preserve visual features unique to
pathologically abnormal regions.

There are two main motivations to present the Y-Net framework for
alleviating the specificity shortage in medical instance retrieval. First,
traditional deep hashing networks are to learn the global descriptor in
an end-to-end way. They are prone to make the discriminative regions
drown in the global descriptor. On the contrary, our Y-Net aims to
explore the pixel-wise discriminative information by segmentation
guidance, which pays more attention on the pathologically abnormal
regions. Second, existing instance retrieval methods using local
aggregation usually locate local regions in an unsupervised or weakly-
supervised manner, which ignores the label information, while our
Y-Net exploits class labels to locate the discriminative regions. The
main contributions of this work are summarized as follows:

1) To combat ambiguity of pathologically abnormal regions in
medical instance retrieval, we present a novel Y shape deep
network, named Y-Net, encoding images into compact hash-
codes. Our Y-Net can improve the differentiating ability of
the hash-codes by exploiting the visual features unique to
pathologically abnormal regions.

2) Y-Net unifies classification and pixel-wise segmentation training
to learn good semantic-separability and spatial-discriminability
convolutional features. The segmentation branch learns subtle
spatial differences to avoid the SPDD problem while the classi-
fication branch locates the discriminative regions by class-aware
semantic information to overcome the DPSD problem.

3) Extensive experiments on two public medical datasets demon-
strate that our proposed Y-Net can further improve the retrieval
performance compared to the state-of-the-art instance retrieval
methods. Our code and model have been released in https:
//github.com/fjssharpsword/YNet.

The rest of this work is organized as follows: Section II discusses

related works. Section III describes our methodology in detail.
Section IV extensively evaluates the proposed method on two medical
images datasets. Section V gives concluding remarks.

II. RELATED WORKS

This section gives some related works that have contributed to
instance-level retrieval and discuss current research progress of
medical instance retrieval.

A. Instance-level Retrieval
Hashing methods can be divided into data-independent methods

and data-dependent methods. The data-independent methods [20],
[21] learn hashing functions in a two-stage manner from hand-
crafted features such, and the hash-codes learning procedure is
independent of the image features, which may lead to sub-optimal
performance. The data-dependent methods, also called learning-
based hashing methods, can be further categorized into [22]: (1)
shallow learning-based hashing methods, like metric hashing forests
[23], and kernel sensitive hashing [24]; (2) deep learning-based
hashing methods, like image inpainting-based compact hash-code
learning [25], and deep hashing network [26]. In contrast to the
data-independent methods, they extract global features for hashing
in an end-to-end manner. Early works [27], [28] for instance-level
retrieval rely on hand-crafted local descriptors such as SIFT [29]
and SURF [30]. Prior to deep learning, these works based on local
features extraction, then aggregated into a global vector [31], [32].
The instances relevant to a query are discovered in the candidate
images for similarity search by matching local descriptors. However,
hand-crafted local features are vulnerable to non-rigid deformations
and heavy viewpoint changes. Due to the promising performance
in computer vision, CNN-based approaches have been introduced
to instance-level retrieval. Instead, the global vector is extracted by
a single forward-pass through a CNN, in which the extraction and
aggregation steps are not separated. Existing deep hashing methods
[33], [34] can be grouped into this category using feature embedding
tailor features from fully-connected layers for hash-codes generating.
The representative methods include deep pairwise-supervised hashing
(DPSH) [7], deep supervised hashing (DSH) [35], and deep residual
hashing (DRH) [36]. Since convolutional features have been found
to be reasonably discriminative [37], recent CNN-based approaches
have shifted to concentrate on feature aggregating rather than feature
embedding. CNN-based approaches aggregating convolutional feature
maps as global image representation can be roughly divided into two
categories.

The first category is the works encoding the activations of a con-
volutional layer by weighted aggregation. These works’ key idea is
to assign different weights to different regions’ activations in feature
maps after global convolutional layers generate. SPoC [8] showed
that a simple spatial pooling on the convolutional layer outperformed
fully-connected layers, and the power of this representation could be
enhanced by applying the Gaussian center prior scheme to weight the
contribution of the activations before aggregation. Following a similar
idea, CroW [38] proposed a non-parametric spatial- and channel-wise
weighting method for focusing on salient regions. Unlike the spatial
weighting scheme, class activation maps (CAMs) [39] are employed
for calculating semantic-aware weights of a convolutional feature
map. Based on the bags of local convolutional features (BLCF)
[40], BLCF-SALGAN [41] build an efficient image representation
by saliency weighting.

The second category is the works performing region analysis using
convolutional features. Unlike the first category, this category first
generates regions’ convolutional features after region proposal, then

https://github.com/fjssharpsword/YNet
https://github.com/fjssharpsword/YNet
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aggregates them into global features. The representative work is
regional maximum activation of convolutions (R-MAC) [42], which
generated a set of regional vectors by performing spatial max-pooling
within a particular region and aggregates features from several local
regions into a single compact feature. Gordo et al. [43] improved
over the original R-MAC encoding by explicitly learning a region
proposal network [44] and training in an end-to-end framework with
a triplet loss. Laskar et al. [45] used a saliency measure directly
derived from the convolutional features to weigh the contribution
of the regions of R-MAC before aggregation. Similar to R-MAC,
Cao et al. [46] proposed a method to derive a set of base regions
directly from the convolutional layer, followed by a query adaptive re-
ranking strategy. DeepVision [47] extracted region-level features from
the bounding boxes generated by the object detection framework.
Regional attention [37] proposed a context-aware regional attention
network that weighs an attentive score of a region considering global
attentiveness.

B. Medical Instance Retrieval
Recently, deep hashing methods using feature embedding on the

fully-connected layer have also been widely proposed for medical
instance retrieval, such as deep multiple instances hashing for tumor
assessment [11], deep residual hashing for chest X-ray images [36],
order-sensitive deep hashing method for multi-morbidity medical
image retrieval [22], deep disentangled momentum hashing for Neu-
roimage Search [16], etc. Although the prior works have facili-
tated medical instance retrieval’s prosperity, pathologically abnormal
regions’ manifestation ambiguity is challenging for current deep
hashing methods. Recent studies [37], [39], [46] have shown that
using feature aggregating on the convolutional features achieves
promising performance in instance-level retrieval. Following this
direction, our work improves the current deep hashing method
to combat pathologically abnormal regions’ ambiguity in medical
instance retrieval.

In this work, the improvement for the current deep hashing
methods includes:

• Unlike the current deep hashing methods jointly learning image
descriptors and hash-codes, our work first learns convolutional
features from image spaces by supervised training, then aggre-
gates them as hash-codes. The learned convolutional features
and following generated hash-codes can effectively preserve the
differentiating information of pathologically abnormal regions.

• Inspired to CAMs [39] and R-MAC [42], we endow the class-
aware information to the R-MAC descriptors by classification
training. The R-MAC descriptors related to classes can enhance
their differentiating ability and help to avoid the SPDD problem.

• Motivated by regional attention [37], we adopt feature pyramid
networks (FPN) [48] to exploit multi-scale pathologically ab-
normal regions by pixel-wise segmentation training. The subtle
differences are encoded into the convolutional features to over-
come the DPSD problem.

We detect if pathologically abnormal regions are presented in each
image with classification training, and we locate pathologically
abnormal regions using activations with the help of segmentation
training. In the end, the convolutional features, having learned class-
aware information and subtle spatial differences, are mapped into the
hash-codes. Based on the class labels and pixel-wise masks, we argue
that our work is a beneficial exploration to combat pathologically
abnormal regions’ ambiguity in medical instance retrieval.

III. METHODOLOGY

Our Y-Net aims to generate highly distinctive hash-codes from
the learned convolutional features. The hash-codes should meet three

requirements: (a) the query image should be encoded close to positive
images with the same instance and far from negative images without
the same instance in the hashing space; (b) the class-aware semantic
information and subtle differences of pathologically abnormal regions
should be effectively encoded in convolutional features; (c) The con-
volutional features should be effectively aggregated to the compact
hash-codes to preserve the learned visual cues. This section will
elaborate on our Y-Net, including the main branch, R-MAC branch,
FPN branch, and the coupled loss function.

A. Framework Overview
Each image is represented by an instance-invariant feature vector,

i.e., hash-code. As shown in Fig.2, we present a deep learning
framework, called Y-net, to generate distinctive hash-codes from
convolutional features. Our Y-Net contains three parts, main branch,
R-MAC branch (right), and FPN branch (left). In the training stage
(double arrow), we input an image into the main branch and feed-
forward to the core node (red rectangle). The core node is a
convolutional layer, followed by the R-MAC branch and the FPN
branch. In the R-MAC branch, the classification loss minimizes
intra-class distance and maximize inter-class distance. The inter-class
separation can help avoid SPDD problem. But, to overcome the
DPSD problem, the intra-class distance needs to be preserved but
not minimized. The FPN branch can locate intra-class differences
by pixel-wise segmentation training to balance the reduction of
intra-class distance in the R-MAC branch. The core node learns
the class-aware semantic information of pathological regions from
the R-MAC branch for differentiating the same manifestation of
different diseases. Simultaneously, the spatially subtle differences of
pathological regions from the FPN branch are encoded into the core
node to locate the same disease’s subtle differences at different stages.
After the core node absorbing the visual cues from the R-MAC branch
and the FPN branch in the training stage, we can generate hash-codes
from the learned core node by feature aggregation in the test stage
(single arrow).

B. Main Branch
The image encoding pipeline of the main branch is depicted as

follows:
• Training Stage. The input image I with a resolution 3×256×

256 is feed-forwarded into the main branch. The main branch
computes a feature hierarchy consisting of a bottom-up block
at three scales with a scaling step of 2. At each scale, we
use the feature activations output of bottom-up block [49] to
get a receptive field. The three bottom-up blocks are merged
into the FPN branch by addition. In the core node of the main
branch, the convolutional feature maps X ∈ RC×H×W can be
arranged in a tensor of the size C ×H ×W , where H and W
denote the height and width of each feature map, and C denotes
the number of feature maps (or channels) in the convolutional
layer. In a convolutional layer, the activations at the same
spatial location across all feature maps can be composed into
a C-dimensional local descriptor for a certain image region.
Compared to the activations of the fully-connected layer, the
convolutional features retain the spatial information of local
image descriptors and are essentially similar to the traditional
hand-crafted local features [50], [51]. The convolutional feature
maps X are further feed-forwarded into the R-MAC branch and
the FPN branch. Based on the classification and segmentation
training, the semantic and spatial information of pathological
regions is encoded into the convolutional feature maps in the
feedback process.
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Fig. 2. A novel deep framework for medical instance retrieval. We feed an image to the main branch, followed by the R-MAC branch (right) for
classification training and the FPN branch (left) for segmentation training. The class-aware semantic information of pathological regions from the
R-MAC branch and the spatially subtle differences of pathological regions from the FPN branch is effectively learned in the convolutional feature
maps in the core node (red rectangle). The convolutional feature maps are mapped into the hash-codes via feature aggregating in the test stage.
Our framework’s shape is similar to a Y shape, including the main branch, the R-MAC branch, and the FPN branch, called Y-Net.

• Test Stage. Based on the pre-trained Y-Net, an image with
a resolution 3 × 236 × 256 is feed-forwarded into the main
branch and terminated in the core node. The core node is
the conjunct point of a Y shape and is the core component
in the framework of Y-Net. We apply feature aggregation to
generate a k-bits hash-code from the learned convolutional
feature maps X with C × H × W in the core node. Based
on the existing works, the feature aggregation does not take
part in the training and has been found to be more capable
of preserving the discriminative information than the feature
embedding. Considering the convolutional feature maps X with
C×H×W have learned the visual cues of pathological regions
effectively, we convolute the size of C ×H ×W into the size
of c × h × w without any weighting strategy. Then the three
dimensions vectors further are squeezed into one dimension; its
size equals the hash-code size of k-bits. Such a convolution
process can aggregate feature maps of various sizes in three
dimensions, such as 1×8×8 and 128×1×1. Lastly, we apply the
hyperbolic tangent function to generate the value between −1
and 1, following by signed as binary hash-code. At this step, we
do not introduce any weighting strategy on feature aggregation
because the convolutional feature maps have learned the visual
cues of pathological regions effectively.

C. R-MAC Branch

The R-Mac branch contains a convolutional layer using 3 × 3
filters and followed by batch normalization [52], then an R-MAC
block generating a feature vector of length 512. The feature vector is
mapped into a linear layer after the L2 normalization. The length of
the linear layer is the number of classes. The R-MAC block generates
a compact representation by aggregating multiple regions at different
scales. By classification training, the highly activated regions can
correspondingly respond to the semantic information of the belonging

class. The pipeline of the R-MAC block is summarized as follows:

• Based on a convolutional layer with 512 × 8 × 8, we sample
square regions with a region size, Rs, of a specific scale s
in a sliding window manner of 0.4 overlap between neighbor
windows, for all s = 0, ..., S. The region size at a specific scale
can be calculated as:

Rs = 2×min(Wr, Hr)/(s+ 2), (1)

where Wr and Hr are width and height of the feature map in the
convolutional layer. In our Y-Net, with Wr = 8 and Hr = 8,
we set S = 3, then we totally get sample region of 14.

• After sampling the regional feature maps, we perform a max-
pooling for all regional feature maps of 14. Each regional
feature maps generate a feature vector with 512, the same as the
channel’s size. Last, we aggregate all feature vector of sample
regions in the whole image as a global feature vector with 512
dimensions, named R-MAC descriptor used as a discriminative
image representation.

In the pipeline of R-MAC, the local features from a certain convo-
lutional layer are max-pooled across several multi-scale overlapping
regions, obtained from a rigid grid covering the whole image, similar
in spirit to spatial pyramids, producing a single feature vector per
region. Then these region descriptors are sum-aggregated and L2−
normalized into a global image representation. The discriminative
global image representation is a compact vector whose size is
independent of the size of the image and the number of regions.
The region pooling is different from a spatial pyramid. The latter
concatenates the region descriptors, while the former sum-aggregates
them. Comparing the R-MAC descriptors of two images with a dot-
product can then be interpreted as a many-to-many region matching.

R-MAC has been known for effective and efficient performance
in image retrieval. Nonetheless, the main issue of R-MAC is that
all sampled regions are equally treated without considering their
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Fig. 3. Feature maps of the R-MAC branch. We calculate the mean
value along the channel axis of the convolutional features with 512 ×
8 × 8, then visualize the mean value: (a) the feature map with 8 × 8,
(b) the color map resized to the size of the mask image with 256×256,
and (c) the overlay map combined the color map with the mask image.

varying importance. When aggregating their regional feature vectors,
all regions construct their equal attentiveness to the last R-MAC
descriptor. To overcome this problem, we integrate R-MAC in our
Y-Net for supervised training to avoid the class-agnostic problem
of the descriptors in R-MAC. We argue that the convolutional layer
activations before the R-MAC block can respond to the semantic
information during classification training. The class-based semantic
information is conveyed to the sample regions in the R-MAC block.
Thus the different regions responding to the classification devote their
varying contribution to generating the R-MAC descriptor. The learned
R-MAC descriptor containing class-based semantic information can
help address the SPDD problem by differentiating regions with a
similar texture. Put an example of a chest X-ray, although two
chest nodules with different sizes are the same texture, they are
labeled benign and malignant and diagnosed with different diseases,
respectively. As shown in Fig. 3, the two chest nodules that belonged
to different classes vary differently in the learned feature maps of
the convolutional layer. By training the R-MAC branch, the R-MAC
descriptor can exploit the class-based semantic information of chest
nodules and feedback to the convolutional layer in the R-MAC block,
then the core node of the main branch.

D. FPN Branch

Pixel-wise segmentation help extract features that emphasize the
pathological abnormal regions. Beneficial from the segmentation
training, the FPN branch explores the multi-scale subtle differences
of pathological regions at different stages and then give feedback
to the core node in the main branch. FPN leverages the convolu-
tional features from low to high levels to extract multi-scale spatial
information by building a pyramidal feature hierarchy. FPN has been
a criteria component in the network of object detection and shows
its powerful feature extraction capability to achieve higher accuracy
[53], [54]. The multi-scale spatial information of pathological regions
helps generate differentiating features in medical instance retrieval.
In our Y-Net, we leverage the FPN components to extract multi-scale
spatial information from medical images for semantic segmentation
by setting the label of mask images semantically. The structure of
the FPN branch is introduced as follows:

• Following the core node in the main branch, the FPN branch pro-
vides two convolutional layers and three top-down blocks. Last,
the FPN branch generates a predicted mask image for pixel-wise
segmentation training. The segmentation loss is feedback to the
FPN branch and the main branch to help exploit the multi-scale
subtle differences of pathological regions at different stages.

• In the feed-forwarding process, corresponding to the three
bottom-up blocks {32 × 64 × 64 as b1, 64 × 32 × 32 as b2,
128×16×16 as b3} in the main branch, three top-down blocks
{32×16×16 as t3, 32×32×32 as t2, 32×64×64 as t1} in the
FPN branch merge them by element-wise addition. The outputs
of two bottom-up blocks {b2, b3} convolute into 32-dimensions
channel. The output of the convolutional layer before block
{t3} and two top-down blocks {t2, t3} are resized into twice
times their width and height by bi-linear up-sampling. Then, the
convolutional layer before top-down block {t3} and the bottom-
up block {b3}, the top-down block {t3} and the bottom-up block
{b2}, the top-down block {t2} and the bottom-up block {b1},
these pairs with the same spatial size are merged by element-
wise summation. The addition operation of these three pairs
generate the top-down blocks {t3, t2, t1} successively. Last, the
top-down block {t3} convolutes into the size of the mask image.

In the main branch, the features of bottom-up blocks with lower-
level information are more accurately localized by sub-sampling. In
the FPN branch, the features of top-down blocks with higher-level
information have a stronger spatial resolution by up-sampling. The
features of top-down blocks can be enhanced by merging the features
from bottom-up blocks. Based on the segmentation training, the
learned pyramidal features can learn multi-scale spatial information
and are feedback to the main branch’s core node. As shown in Fig.
4, the subtle CDR differences between two glaucoma images can be
observed on the learned feature maps. The minor difference reflects
the different information on different CDRs of same glaucoma, and
the difference is encoded into the core node. Based on the pixel-wise
segmentation training, we argue that the multi-scale subtle differences
of pathological regions at different stages can be learned by the FPN
branch to tackle the DPSD problem.

Fig. 4. Feature maps of the FPN branch. We calculate the mean value
along the channel axis of the features of the three top-down blocks {t3,
t2,t1}, then visualize the mean value: (a) the feature map of the top-
down block {t3} with 16×16, (b) the feature map of the top-down block
{t2} with 32 × 32, and (c) the feature map of the top-down block {t1}
with 64 × 64.

E. Coupled Loss

In Y-Net, we integrate the classification task in the R-MAC branch
and the segmentation task in the FPN branch to learn the semantic
and spatial information of pathological regions simultaneously. To
balance the two tasks’ loss, we design a coupled loss to unify the
classification and segmentation learning. In general, the gradient size
is different in the convergence process of different tasks, and the
sensitivity to different learning rates is also different. Unifying the
scale of different loss functions can prevent the loss items with small
gradients from being covered by the loss items with large gradients.
Unifying the losses to the same order of magnitude can help improve
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the generalization of the learned features [55]. The coupled loss
function is defined as:

L = ωLl + (1− ω)Lr, (2)

where Lr is the circle loss [56] for the classification training, Ll
denotes the cross-entropy (CE) loss for the pixel-wise segmentation
training, and ω is the weight factor. In the circle loss, each similarity
score is given different penalties according to its distance to the
optimal effect. In the R-MAC branch, instead of the CE loss, we adopt
the circle loss to preserve the class-aware similarity of pathological
regions and help prevent minimizing intra-class distance.

Based on the coupled loss unifying the classification loss and
segmentation loss, the main branch’s core node can effectively retain
the multi-scale spatial information from segmentation training and the
class-aware semantic information from classification training simulta-
neously. The convolutional feature maps from a certain convolutional
layer can be viewed as an array of local features sampled from a
dense sampling grid. In Fig. 5, the pathological region is the cup and
disk of glaucoma. By observing the core node’s feature maps, the
FPN branch focuses on exploring the pathological region (cup and
disk), and the R-MAC branch concerns the highly activated region
of the whole image (glaucoma). With the help of the coupled loss
balancing the two losses, the Y-Net row’s feature maps confirm the
effectiveness of preserving the information from the R-MAC branch
and the FPN branch. Hence, the learned convolutional features of the
core node can be used to generate hash-codes to combat pathological
regions’ ambiguous manifestations.

Fig. 5. Feature maps of the core node in the main branch. We calculate
the mean value along the channel axis of the convolutional features with
256 × 8 × 8, then visualize the mean value: (a) the feature map with
8 × 8, (b) the color map resized to the size of the input image with
256 × 256, and (c) the overlay map combined the color map with the
input image.

IV. EXPERIMENTS AND ANALYSIS

To evaluate the performance of our proposed Y-Net, we conduct
extensive experiments on two public medical image datasets to verify
our method’s effectiveness in combating the ambiguous manifestation
of pathological regions. In this section, we will introduce the exper-
imental details and analyze the experimental results.

A. Datasets

Fundus [57] contains 650 annotated retina images. Each image
is tagged with classification information and manually segmented
the result of optic disc and cup. This dataset is obtained from
a population-based study and is therefore suitable for evaluating
glaucoma screening performance. In this dataset, 168 images from
glaucomatous eyes and 482 images from normal eyes are classified.
Manual CDR computed from the manually segmented disc, and cup
boundaries are necessary for segmentation training. Based on the
classification and segmentation labels, we split this dataset into the
train set and the test set by ratio 9 : 1. The test set of 65 consists of
16 glaucoma images and 49 normal images, and the train set of 585
images covers 152 glaucoma images and 433 normal images.

JSRT [58] provides 154 nodule and 93 non-nodule chest X-ray
images. Each nodule case contains a nodule only, which is rated as
benign or malignant by 20 different radiologists. A detailed delin-
eation of the segmentation’s nodule is publicly available to train a
lung segmentation [59]. This dataset annotates the lesion position and
responding diagnosis. For example, the lesion region of a malignant
image is located on the left lung’s upper lobe and diagnosed as
lung cancer. The annotation images for segmentation tasks are binary
images in which pixels are either 255 for the foreground or 0 for the
background. We sample 138 images containing 89 malignant nodules
and 49 benign nodules to form a train set and 16 images containing
11 malignant nodules and 5 benign nodules to form a test set. The
ratio of the train set and the test set is 9 : 1.

B. Experimental Setups

We mainly use mean average precision (mAP) for quantitative
evaluation. In the returned list, mAP averages the ranks of images
similar to the query image to measure the rank quality. The mAP is
usually adopted for evaluating the retrieval performance [1], [2], and
is calculated as follows:

AP =

∑n
k=1 P (k) · rel(k)

R
, (3)

where R denotes the number of similar results for the current query
image, P (k) denotes the precision of top-k retrieval results, relk is
a binary indicator function equaling 1 when the k-th retrieved results
is similar to the current query image and 0 otherwise, and n denotes
the total number of retrieved results. Based on the class labels and
the aim of instance retrieval assisting the clinician’s own decision-
making by reviewing similar cases, the success criteria of similar
images are defined as that the two images have similar pathological
patterns.

Y-Net is compared against several representative approaches of
instance-level retrieval. The comparative approaches are categorized
as: weight feature aggregating on convolutional features, regional
feature aggregating on convolutional features, and feature embedding
from a full-connected layer.

• Weight feature aggregating. CroW [38] estimates a spatial
weighting of the features as a combination of convolutional fea-
ture maps across all channels of the layer. Features at locations
with salient visual content are boosted while weights in non-
salient locations are decreased. To explicitly leverage semantic
information, CAM [39] obtains semantic-aware weights for
convolutional features by exploiting the predicted classes. CAM
generates a set of spatial maps highlighting the contribution of
the regions within an image. Each map is used to weigh the
convolutional features and generate a set of class vectors that are
aggregated as the region vectors over the fixed region strategy
of R-MAC. CAM inspires our R-MAC branch of Y-Net. BLCF
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[41] builds an efficient image representation by combining
saliency weighting over convolutional features aggregated by
using a large vocabulary with a bag of words (BoW) model [60].
SOLAR-Local [61] focuses on second-order spatial information
to learn local patch descriptors without extra supervision. Based
on the feature weighting strategy [62], it combines the second-
order spatial attention and the second-order descriptor loss to
improve image features for retrieval and matching.

• Regional feature aggregating. R-MAC [42] is an aggregation
method for convolutional features to generate a set of regional
vectors by performing spatial max-pooling within a particular
region. Building on the R-MAC descriptor, R-MAC + RPN
[43], [62] can enhance the ability to focus on relevant regions
in the image by replacing the rigid grid with a region proposal
network (RPN) trained to localize regions of interest in images.
Regional Attention [37] presents a context-aware regional at-
tention network for tackling the problem of region-based feature
aggregation suffering from the background clutter and varying
importance of regions, especially in R-MAC, by weighting an
attentive score of a region. Deep Vision + SOLO [47] is
trained for instance-level retrieval of image- and region-wise
representations pooled from an object detection CNN. In this
experiment, we take advantage of the object proposals learned
by SOLO [63] and their associated convolutional features to
build an instance search pipeline.

• Feature embedding. Three deep hashing methods using fea-
ture embedding are used to build benchmarks for our Y-Net,
including DPSH [7], DSH [35], DRH [36], DDMH [16]. DPSH
performs simultaneous feature learning and hash-code learning
with deep neural networks by maximizing pairwise similarities.
Inspired by DPSH, DSH proposes a triplet label-based deep
hashing method to maximize the given triplet labels’ likelihood.
DRH offers good separability of classes in hashing space while
preserving semantic similarities in local embedding neighbor-
hoods for supervised hashing of medical images through residual
learning. DPSH and DSH use AlexNet [64] as the backbone.
Recently, the residual block [49] has been used popularly as the
backbone in deep hashing methods such as DRH and shows
the advantage of feature extraction. In our Y-Net, the main
branch also uses the residual block as the backbone. DDMH
proposes a unique disentangled triplet loss to effectively push
positive and negative sample pairs by desired Hamming distance
discrepancies for hash-codes with different lengths.

Our Y-Net is implemented under the PyTorch framework, and ex-
periments are run on Geforce RTX 2080 Ti. In our work, the indexing
and similarity calculation for evaluation uses Faiss [65], a library
for efficient similarity search and clustering of dense vectors. We
use the mini-batch stochastic gradient descent with 0.9 momentum.
The mini-batch size of images is fixed as 32, and the weight decay
parameter is 0.001. All deep models are trained from scratch with
500 epochs. It spends approximately 3 hours for training our Y-Net.
The pixel-wise cross-entropy loss is used in the segmentation task.
The circle loss [56] is used for classification training by using cosine
similarity and setting a scale of 32, a margin of 0.25. The weight
factor ω in the coupled loss is initially set as 0.5. We use the 5-
fold cross-validation to select the best classification and segmentation
model. The parameters of comparative methods are set according
to their implementation details in the corresponding papers, and the
best performance is reported. Based on top-10 retrieval results, we
investigate our Y-Net’s performance over hash-code with lengths
of 36, 64, 128, 256, respectively. According to Table I, with the
hash-code lengthen, the performance can correspondingly improve

TABLE I
MAP OF Y-NET OVER THE VARYING LENGTH OF HASH-CODES ON THE

FUNDUS AND JSRT DATASETS.

Datasets mAP@36 mAP@64 mAP@128 mAP@256
Fundus 0.5903 0.6102 0.6266 0.6308
JSRT 0.5361 0.5518 0.5732 0.5809

at the cost of storage and search efficiency. As a trade-off between
performance and search cost, we report all the performances over
64-bits hash-code for our Y-Net.

C. Experimental Results

The following research questions will be answered by analyzing
experimental results:

RQ1 Does our proposed Y-Net outperform the state-of-the-art
methods on retrieval performance in medical instance re-
trieval?

RQ2 Can our proposed Y-Net help to combat the ambiguity of
pathological regions in medical instance retrieval?

RQ3 What are the effectiveness of the R-MAC branch, the
FPN branch, and the coupled loss in our proposed Y-Net
framework?

RQ4 How is the retrieval efficiency of our proposed Y-Net?
1) Quantitative Analysis (RQ1): The performance of the mAP

over the returned list of 5, 10, 20, and 50 on Fundus and JSRT
datasets are reported in Table II, respectively. On the whole, when
the returned list lengthens, all methods’ performance declines to some
extent. Our Y-Net all achieves significant gains of mAP over the
varying returned list on the two datasets. Experimental results on
the Fundus dataset show that Y-Net outperforms the second-highest
methods (underline) by 7.60%, 11.18%, 9.35%, 7.26% correspond to
the different number of the returned list. Y-Net also achieves the best
performance on the JSRT dataset compared to the other methods.
For the methods obtaining the second-highest performance, CAM
is a weighing feature method aggregating on convolutional features,
and DRH is a method of feature embedding. This demonstrates
that the methods of regional feature aggregating on convolutional
features may lose related information between regions after region
proposals. This loss prevents them from obtaining better performance.
Among methods of weight feature aggregating, SOLAR-Local yields
good performance by exploiting the second-order spatial informa-
tion. CAM can achieve better performance than SOLAR-Local by
exploiting class semantic information. The retrieval performance on
the Fundus dataset is higher than that on the JSRT dataset by 10.58%
on the returned list of 10. The reason for this gap has two points. The
shortage of specificity is the main challenge for chest X-ray image
analysis tasks. The JSRT dataset only provides lung masks but not
lesion masks; those non-lesion regions in the lung mask may affect
the discriminative information learning.

Compared to DRH, CAM acquires a better performance over the
returned list of 5 and 10. This demonstrates that it effectively explore
pathological regions and weigh their activations by exploiting the
correlation between class labels and pathological regions. Inspired
to CAM, the R-MAC branch in our Y-Net contributes to increasing
the retrieval performance by focusing on the pathological regions
and weights these regions with class activations. Benefiting from
adopting the residual block as the backbone, DRH is superior to
CAM over the returned list of 20 and 50. To further improve
the performance over the longer returned list, we need to exploit
spatially subtle differences of pathologically abnormal regions with
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TABLE II
MAP OVER THE VARYING NUMBER OF THE RETURNED LIST ON THE FUNDUS AND JSRT DATASETS.

Methods Dim Fundus JSRT
top-5 top-10 top-20 top-50 top-5 top-10 top-20 top-50

CroW [38] 512 0.5223 0.4681 0.4471 0.4366 0.4993 0.4705 0.4396 0.4189
CAM [39] 2048 0.5917 0.5488 0.4982 0.4609 0.5611 0.5124 0.4497 0.4187
BLCF [41] 1000 0.4890 0.4793 0.4463 0.4216 0.4701 0.4356 0.4096 0.3903

SOLAR-Local [61] 1024 0.5701 0.5274 0.4766 0.4482 0.5443 0.4987 0.4264 0.4051
R-MAC [42] 512 0.5016 0.4884 0.4585 0.4528 0.4682 0.4191 0.3965 0.3812

R-MAC + RPN [62] 3072 0.5483 0.5024 0.4685 0.4446 0.4805 0.4461 0.4098 0.3951
Regional Attention [37] 2048 0.5674 0.5279 0.5070 0.4854 0.4984 0.4621 0.4289 0.4069

Deep Vision + SOLO [47] 3072 0.5486 0.5001 0.4889 0.4815 0.5123 0.4756 0.4358 0.4123
DPSH [7] 64 0.5044 0.4693 0.4451 0.4270 0.4581 0.4203 0.3891 0.3677
DSH [35] 64 0.5052 0.4882 0.4788 0.4734 0.5487 0.4921 0.4578 0.4332
DRH [36] 64 0.5712 0.5435 0.5322 0.5203 0.5306 0.4912 0.4651 0.4498

DDMH [16] 32 0.5231 0.5051 0.4962 0.4802 0.5396 0.4869 0.4421 0.4284
Y-Net (ours) 64 0.6367 0.6102 0.5820 0.5581 0.6013 0.5518 0.5284 0.4976

the help of pixel-wise segmentation training in the FPN branch. Due
to the differentiating ability of the subtle differences in pathological
regions, our Y-Net surpasses DRH over the returned list of 20
and 50 compared to CAM. In summary, three points contribute to
the performance of our Y-Net. (1) The R-MAC branch learns the
class-aware semantic information of pathological regions. (2) The
FPN branch explores the multi-scale subtle spatial information of
pathological regions. (3) The main branch uses the residual block as
the backbone.

2) Qualitative Analysis (RQ2): Lung nodules are small masses
of tissue in the lung and quite common. They appear as round,
white shadows on a chest X-ray. Lung nodules are usually about
0.2 inches (5 millimeters) to 1.2 inches (30 millimeters) in size. A
larger lung nodule, such as 30 millimeters or larger, is more likely
to be cancerous than a smaller lung nodule. The regions of chest
nodules in X-ray images are hard to differentiate malignant or benign
according to the spatial information, including texture and size. So
this is a typical SPDD problem. As shown in Fig. 6, our Y-Net returns
more malignant images and ranking ahead than DRH by querying
a malignant image. Based on the FPN branch exploiting spatially
subtle differences of nodule regions, the R-MAC branch cooperatively
encodes the class-aware semantic information of pathological regions
into the hash-codes. By exploiting the correlation between class
labels and pathological regions, the R-MAC branch can address the
SPDD problem in medical instance retrieval. In fact, the R-MAC
branch weighs the regional of maximum activation by conveying
the class-based semantic information to the R-MAC descriptor and
the convolutional features. The class-weighted regional of maximum
activation can differentiate the same performance of different diseases
of medical images.

The size of CDR computation from color fundus images is the
main clue for glaucoma diagnosis [66]. The different size of CDR
denotes different grading of glaucoma. It is useful for clinicians
to find the most similar images with closer CDR sizes to make a
medico-decision. As shown in Fig. 7, compared to the DRH, Y-
Net returned more glaucoma images with closer CDR sizes and
ranked ahead by querying a glaucoma image. According to this
experimental result, we argue that the FPN branch can effectively
encode the subtle differences of pathological regions into the hash-
codes to address the DPSD problem by mining the multi-scale spatial
information. The FPN branch can locate pathological regions’ subtle
differences at different stages of the same disease based on the pixel-
wise segmentation training. In essence, the FPN branch weights
the pathological regions by segmentation training. The weighted
pathological regions can be encoded as the most discriminative

parts of the hash-codes to differentiate the same disease’s different
manifestations at different stages.

Our Y-Net’s R-MAC branch exploits the class semantic informa-
tion to weigh regions of maximum activation to tackle the SPDD
problem. Apart from the same pathological criteria evaluation (benign
and malignant), we also apply the disease label to evaluate the
performance to embody the effectiveness of tackling the SPDD
problem. The large disease label consists of lung cancer, granuloma,
cryptococcosis, inflammatory mass, etc. The fine disease label for
lung cancer includes adenocarcinoma, large cell carcinoma, small cell
carcinoma, etc. On the returned list of 10, our method outperforms
CAM by 8.12% average precision on diagnosing disease. This
demonstrates that our method can effectively differentiate the similar
manifestation of different diseases. Our Y-Net’s FPN branch explores
the spatially subtle differences of the lesion region to overcome the
DPSD problem. Regarding the DPSD problem, we apply average
CDR to evaluate the performance on differentiating the different
manifestations of the same disease in different stages. Our Y-Net
yields the average CDR gap of 0.2157 between the query image and
the retrieved images, while CAM obtains 0.3521. The convolutional
features in the core node of the main branch learn the information
from both branches to promote hash-codes’ discriminative ability.

3) Ablation Study (RQ3): To further research the R-MAC branch
and FPN branch’s contribution, we conduct an ablation study by
cropping the corresponding branch of Y-Net. As shown in Table III,
Y-Net without the FPN branch can achieve better performance than
Y-Net without the R-MAC branch, and Y-Net achieves convincing
performance by unifying the FPN branch and R-MAC branch.
Without the FPN branch, Y-net can achieve competitive performance
compared to CAM and DRH. Upon the R-MAC branch, Y-Net can
obtain a significant gain by adding the FPN branch. This demonstrates
that the R-MAC branch can differentiate pathological regions’ similar
manifestations by weighing the regional of maximum activation based
on the classification training. The added gain benefits from the
FPN branch, which exploits the subtle differences of pathological
regions by mining the multi-scale spatial information based on the
segmentation training. As shown in Fig. 7, the glaucoma images
ranked ahead are closer to the query image in CDR size. This
also confirms the FPN branch’s effectiveness in preventing the R-
MAC branch from minimizing the intra-class distance. Based on this
joint learning scheme, the core node in the main branch absorbs
the class-aware semantic information from the R-MAC branch and
spatially subtle differences from the FPN branch, then are mapped
into the hash-codes. The learned hash-codes can be used to combat
the ambiguous manifestations of pathological regions.
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Fig. 6. Ranking of the top-5 returned list on the JSRT dataset. We query a malignant image and obtain the ranking of the top-5 returned list for
Y-Net and DRH, respectively. Each image shows the position of the chest nodule labeled manually.

Fig. 7. Ranking of the top-5 returned list on the Fundus dataset. We query a glaucoma image and obtain the ranking of the top-5 returned list for
Y-Net and DRH, respectively. Each image shows its Cup to Disk Ratio (CDR) size labeled manually.

TABLE III
MAP OF BRANCHES OF Y-NET OVER THE VARYING NUMBER OF THE RETURNED LIST ON THE FUNDUS AND JSRT DATASETS.

Branches Fundus JSRT
top-5 top-10 top-20 top-50 top-5 top-10 top-20 top-50

Y-Net w/o FPN and R-MAC branch 0.5001 0.4871 0.4679 0.4575 0.5324 0.4856 0.4509 0.4297
Y-Net w/o FPN branch 0.5881 0.5656 0.5443 0.5033 0.5325 0.5114 0.4831 0.4501

Y-Net w/o R-MAC branch 0.5561 0.5179 0.4854 0.4536 0.5210 0.4914 0.4597 0.4285
Y-Net w/o Circle loss 0.6061 0.5879 0.5554 0.5136 0.5684 0.5291 0.4976 0.4703

Y-Net 0.6367 0.6102 0.5820 0.5581 0.6013 0.5518 0.5284 0.4976

Based on the above experimental analysis, we confirm the effect
of unifying classification and segmentation. Next, we would like to
discuss the coupled loss function’s effect in both branches’ unified
training. First, as shown in Table III, the R-MAC branch with the
circle loss achieves better performance than the R-MAC branch with
the CE loss. The circle loss can help the R-MAC branch maximize
the intra-class similarity and minimize inter-class similarity by pair
similarity optimization. Second, Compared to the sum of the two
losses, the coupled loss function can improve retrieval performance
averagely by 2% on mAP over the varying number of the returned list

on the Fundus and JSRT datasets. This demonstrates that the coupled
loss can help facilitate the generalization of the learned convolutional
features by unifying the losses to the same order of magnitude. As
shown in Fig 8, compared to the sum of the two losses (blue), the
coupled loss (red) unifies the scale of the circle loss (yellow) and
the cross-entropy loss (green) to prevent the loss unbalance in the
convergence process of different tasks. In the process of screening
and diagnosis, the ambiguous manifestation of pathological regions
may be varied. Hence, the two tasks can be mutually beneficial to
enhance Y-Net’s generalization by the joint learning scheme.
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Fig. 8. Qualitative results of the coupled loss. The different loss of
top-50 iterations during training on the Fundus and JSRT datasets are
compared.

4) Retrieval Efficiency Analysis (RQ4): In this section, we
discuss the efficiency of the proposed Y-Net from three-folds by
putting the Fundus dataset as an example.

1) Feature computation time. Based on the pre-trained Y-Net
model, we inference the hash-codes of 64-bits from the core
node in the main branch. Hence, the feature computation of the
main branch occupies the most time cost in the test stage. We
can complete the hash-codes generating for the training set of
585 images in 4 seconds on GPU. The feature computation time
of our Y-Net is fair to the most comparative methods.

2) Retrieval time. After hash-codes generating, we build the index
in 1 second for the training set by using Faiss. By querying the
test set of 65 images, returning top-10 most similar images can
be done in 34ms. The time-consuming processes of the search
engine are the indexing search and similarity calculation. The
time cost of both lengthens when the size of feature vectors used
for similarity calculation extends. As Table II shows (column:
Dim), Y-Net’s hash-code length is equal to the methods using
feature embedding.

3) Memory cost. The memory-consuming is about 2, 000 Mbps
during model training by setting the batch size at 32. The online
search for the index also consumes about 2, 000 Mbps. The
memory cost depends on the model complexity where our Y-
Net is fair to the methods aggregating regional features.

According to the above analysis of efficiency, our Y-Net can provide
fair real-time responses with significantly improving the performance
by comparing to the state-of-the-art methods.

V. CONCLUSIONS

To combat the manifestation ambiguity in medical instance re-
trieval, we propose a novel framework called Y-Net, encoding images
into compact hash-codes aggregating from convolutional features.
The proposed Y-Net contains the main branch, the R-MAC branch,
the FPN branch. Based on the classification loss, the R-MAC branch
encodes the class-aware semantic information of pathological regions
into the convolutional features to avoid SPDD problem. And based
on the pixel-wise segmentation loss, the FPN branch encodes the
spatially subtle differences of pathological regions into the convolu-
tional features to overcome the DPSD problem. After unifying the
classification and segmentation training, the learned convolutional
features in the main branch are directly aggregated to generate the
hash-codes for similarity measure. The extensive experiments on the
two medical image datasets with class and pixel-wise mask labels
show that our Y-Net can alleviate pathologically abnormal regions’
ambiguity.

There also exist two limitations of this work. First, it is hard
to acquire medical image datasets with pixel-wise segmentation
annotations, while detecting the subtle differences with the bounding
box of pathological regions is challenging. This restricts our Y-Net’s

availability and universality. Second, the multi-instances and multi-
labels of medical images significantly lift the difficulty of combating
pathologically abnormal regions’ ambiguity. In the future, we would
like to explore the solutions to address such issues.
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[34] Ş. ÖZTÜRK, “Two-stage sequential losses based automatic hash code
generation using siamese network,” Avrupa Bilim ve Teknoloji Dergisi,
pp. 39–46.

[35] X. Wang, Y. Shi, and K. M. Kitani, “Deep supervised hashing with triplet
labels,” in Asian conference on computer vision, pp. 70–84, Springer,
2016.

[36] S. Conjeti, A. G. Roy, A. Katouzian, and N. Navab, “Hashing with
residual networks for image retrieval,” in International Conference
on Medical Image Computing and Computer-Assisted Intervention,
pp. 541–549, Springer, 2017.

[37] J. Kim and S.-E. Yoon, “Regional attention based deep feature for image
retrieval.,” in BMVC, p. 209, 2018.

[38] Y. Kalantidis, C. Mellina, and S. Osindero, “Cross-dimensional weight-
ing for aggregated deep convolutional features,” in European conference
on computer vision, pp. 685–701, Springer, 2016.

[39] A. Jimenez, J. M. Alvarez, and X. Giro-i Nieto, “Class-weighted
convolutional features for visual instance search,” arXiv preprint
arXiv:1707.02581, 2017.

[40] E. Mohedano, K. McGuinness, N. E. O’Connor, A. Salvador, F. Marques,
and X. Giro-i Nieto, “Bags of local convolutional features for scalable
instance search,” in Proceedings of the 2016 ACM on International
Conference on Multimedia Retrieval, pp. 327–331, 2016.

[41] E. Mohedano, K. McGuinness, X. Giró-i Nieto, and N. E. O’Connor,
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