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Abstract— The ultrasound (US) screening of the infant
hip is vital for the early diagnosis of developmental dys-
plasia of the hip (DDH). The US diagnosis of DDH refers
to measuring alpha and beta angles that quantify hip joint
development. These two angles are calculated from key
anatomical landmarks and structures of the hip. However,
this measurement process is not trivial for sonographers
and usually requires a thorough understanding of complex
anatomical structures. In this study, we propose a multi-
task framework to learn the relationships among landmarks
and structures jointly and automatically evaluate DDH. Our
multi-task networks are equipped with three novel modules.
Firstly, we adopt Mask R-CNN as the basic framework to
detect and segment key anatomical structures and add
one landmark detection branch to form a new multi-task
framework. Secondly, we propose a novel shape similarity
loss to refine the incomplete anatomical structure predic-
tion robustly and accurately. Thirdly, we further incorpo-
rate the landmark-structure consistent prior to ensure the
consistency of the bony rim estimated from the segmented
structure and the detected landmark. In our experiments,
1,231 US images of the infant hip from 632 patients are
collected, of which 247 images from 126 patients are tested.
The average errors in alpha and beta angles are 2.221° and
2.899°. About 93% and 85% estimates of alpha and beta
angles have errors less than 5 degrees, respectively. Exper-
imental results demonstrate that the proposed method can
accurately and robustly realize the automatic evaluation of
DDH, showing great potential for clinical application.
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I. INTRODUCTION

DEVELOPMENT dysplasia of the hip (DDH) is a com-
mon joint disease caused by the abnormal positional

relation between the femoral head and the acetabulum, ranging
from acetabular dysplasia to dislocation [1]. According to the
survey [2], the incidence of DDH in newborns is approxi-
mately 1.5‰∼2%. The treatment of DDH in the neonatal
period is simple and effective, with a success rate of 96%
[3]. If it can be diagnosed early, DDH-caused gait abnormal-
ities, chronic pain, degenerative arthritis, and other long-term
morbidities can be thus avoided [4].

In current clinical practice, ultrasound (US) is widely used
for DDH screening and the Graf method [5] is one of the
most established US examination techniques [6]. Graf method
consists of three steps: (1) identifying the standard plane (Fig.
1(a)); (2) locating three landmarks in the identified plane; (3)
measuring the main dysplasia metrics: α and β angles. Fig.
1(b) illustrates the definition of alpha and beta angles. The
base line is drawn caudally tangential to the flat ilium from
the upper-most portion of the acetabular roof. The bony roof
line in yellow is the tangent of the bony root passing the
lower limb point in blue. Coincidently, notice that it looks
like the bony roof line passes the bony rim point in red, but
not necessarily so by the definition. The cartilage roof line is
drawn from the bony rim through the center of the labrum. α
represents the angle between the base line and the bony roof
line, quantifying the bony socket and the cartilage, and β is
the angle between the base line and the cartilage roof line,
quantifying the cartilaginous acetabular roof.

Although the Graf method has been widely used clinically,
its reliability is still controversial [7]. Some adverse factors,
such as imaging noise and artifacts, incomplete anatomical
structures (Fig. 1(c)), and high structural complexity of the hip
joint (Fig. 1(a)), impose a great challenge for doctors to make
accurate measurements. It also results in high inter-observer
variability in dysplasia metrics. Even measured by experienced
clinicians, standard deviations of alpha and beta angles are as
high as 3° and 6°, respectively [8]. The variability is caused
not only by the level of the physician but also by the quality
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Fig. 1. Examples of the hip joint. (a) An illustration for anatomical structures of the infant acetabulum, with 9 structures and 3 landmarks in total.
Numbers 1-5 are common anatomical structures: 1, bony rim; 2, femoral Head; 3, hyaline cartilage preformed acetabular roof; 4, joint capsule; 5,
synovial fold. Structure S1-S4 are key anatomical structures of the standard plane: S1, flat ilium; S2, lower limb; S3, labrum; S4, chondro-osseous
junction. P1-P3 are three landmarks for the measurement: P1, bony rim point. It is the turning point of concavity to the convexity of the iliac bone.
P2, lower limb point. It is on the floor of the acetabular fossa. P3, center of the labrum. (b) The measurement of two angles: alpha and beta. L1,
base line. It is drawn caudally tangential to the flat ilium from the upper-most portion of the acetabular roof. L2, bony roof line. It is a tangent of the
bony root which is drawn from the inferior rim of the ilium. L3, cartilage roof line. It is drawn from the bony rim through the center of the labrum. (c)
A non-standard hip joint US image without lower limb and labrum.

of the US images [9]. Therefore, a robust standardized and
automated measurement method is highly demanded to reduce
the variability.

In the past, there have been some studies assisting the clin-
ical work of DDH through computer-aided diagnosis, which
can be divided into traditional machine learning methods and
deep learning methods.

1) Traditional machine learning based methods mainly rely
on manual feature extraction from US images [10]. To segment
the anatomy, different filters were adopted to improve the
quality of hip joint US images. In [3], the authors used the
Geodesic Active Regions (GAR) model to segment the ilium.
To measure the angles, Quader et al. [11] proposed an auto-
matic alpha and beta angle calculation system based on phase-
symmetric features. They further used the same features to
identify the bone and cartilage boundaries and then calculated
key dysplasia metrics [8]. [12] proposed a semi-automated
method for the tracing of the bony surface. Alpha angle and
rounding index were then measured automatically. Quader et
al. [13] further extracted the ilium boundaries from US images
with an isotropic bone feature extraction technique. Radon
Transform of regions of interest (ROI) was then conducted
around the inferior edge of the ilium to measure the alpha and
the beta angles. However, due to the complexity of handcrafted
feature design and engineering, traditional machine learning
methods were limited in accuracy and robustness.

2) Deep learning based methods are being explored for
intelligent DDH diagnosis because of the automated fea-
ture extraction capabilities of convolutional neural networks
(CNNs) [14], [15]. Deep learning methods for DDH analysis
can be categorized as segmentation, angle measurement, and
hip type classification. In terms of automatic segmentation of
anatomical structures, El-Hariri et al. [16] proposed a deep-
learned feature-based approach, which utilized the U-Net with
multi-channel input to fulfill ilium segmentation. Their results

showed that, compared to hand-crafted features, deep-learned
features improved accuracy and speed, and reduced outliers
and failure rates. Similarly, Zhang et al. [17] introduced the
ROI into the Full Convolution Network (FCN) to improve the
segmentation of the acetabulum. To guide the segmentation,
a multi-scale feature fusion network [18] was presented to
output a probability map of the bone. Additionally, Sezer et
al. [19] incorporated global and local features into a CNN
framework to obtain a probability map of the bone and then
used this map in probabilistic graph search to guide the
segmentation. In terms of automated angles measurement, the
adversarial idea [20] was used in the CNN to segment the flat
ilium and lower limb, resulting in 77% alpha measurement
errors within 5°. In addition, there are methods that aim to
classify hip joints. In [21], authors used a region-based active
contour model to segment the iliac wing in the defined ROI
of US images. The segmented image patches were input into
a CNN to directly diagnose the infant hip as normal, mild, or
severe dysplasia. Hareendranathan [22] proposed a 10-point
scoring system to evaluate the quality of DDH US scan, which
is based on multiple anatomical structures.

Although the above studies have made important contri-
butions to the diagnosis of DDH, there are still two main
shortcomings: 1) the neglect of the standard plane, and 2) the
insufficient utilization of information on anatomical structures.
The existing methods only handle part of the anatomical
structures, without considering the anatomical information of
all 4 structures and 3 landmarks. Therefore, the lack of an
overall analysis of the anatomies in the hip joint images may
lead to poor performance.

The judgment of the standard plane is an indispensable part
of DDH diagnosis, but it is often ignored by existing intelligent
diagnosis methods. As the baby moves and the scanning angle
changes, some structures may not be fully displayed on the US
image. For example, although the chondro-osseous (CO) junc-
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(a) (b) (c)

Fig. 2. Three hard examples for segmentation. (a) The indistinct lower limb. (b) The invisible outline of the labrum. (c) Due to the connection of the
flat ilium and the lower limb, there is no hypoechoic at the bony rim. The yellow arrow pinpoints the problematic sites.

tion does not affect the measurement angles, the absence of
CO junction indicates that the current image is not a standard
plane and hence worthless for diagnosis. The identification of
anatomical structures often needs extensive experience in DDH
diagnosis and is a non-trivial prerequisite step for landmark
detection. If the process of identifying anatomical structures
can be completed in an automated and standardized manner,
it can not only greatly reduce the burden on sonographers, but
also guide inexperienced physicians. Therefore, in our method,
we leverage segmentation information of four key anatomical
structures for identifying standard planes, and in turn to ensure
that the subsequent measurement is efficient.

The measurement of dysplasia metrics depends on the
shape information of the hip joint anatomy, which can be
effectively obtained by segmentation. However, there are two
major challenges to segment the hip joint from the US image:
1) the segmentation of incomplete anatomical structures due
to imperfect standard planes poses a great difficulty. Blurry
structural edges (such as low echo of the lower limb in Fig.
2(a) and the invisible inferior curve of the labrum (Fig. 2(b))
make the accurate segmentation challenging. The invisible
structures often lead to fragmental segmentations and sub-
sequent inaccurate angle estimates. 2) the segmentation of
connected anatomical structures, including but not limited to
the flat ilium and lower limb is also difficult. As shown in Fig.
2(c), the boundary between the two structures is difficult to be
distinguished, resulting in inaccurate localization of bony rim
and estimation of beta angle.

Multi-task learning can well improve the generalization
ability of learning by sharing feature information between
different tasks [23], [24]. In deep learning, multi-task learning
is usually completed by sharing hard or soft parameters of the
hidden layer. For hard sharing of parameters, the usual method
is to share convolutional layers while learning fully connected
layers for specific tasks. For example, the Deep Relationship
Networks proposed by [25] and the Fully-Adaptive Feature
Sharing Networks proposed by [26]. But this method has
proved to be error-prone to new and complex tasks. Soft shar-
ing of parameters represents connecting several independent
networks through soft parameters to increase learning ability.

For example, Cross-Stitch Networks proposed by [27] and the
weighting losses with uncertainty methods proposed by [28].
It is proved to be effective by adjusting the relative weight of
each task in the loss function [29]–[31].

In this work, different from the existing multi-task learning
frameworks, we take into account the spatial relationships
among anatomical structures and landmarks and propose a
multi-task learning network that is more suitable for DDH
measurement and diagnosis. Our multi-task networks are
equipped with three novel modules to implement automatic
and accurate angle measurements while marking key anatom-
ical structures. Quantitative results on 247 images from 126
patients show that the average errors in alpha and beta angles
are 2.221° and 2.899°, with 93% and 85% estimation errors
less than 5 degrees, respectively. It demonstrates that our
proposed multi-task network has great potential for clinical
application. The contributions of our method can be summa-
rized in threefold.

1) Our multi-task learning network can accurately accom-
plish anatomical structures detection and segmentation, and
landmark detection. Mask R-CNN [32] is adopted as the
basic framework for the detection and segmentation of four
anatomical structures. A landmark detection branch is inserted
to localize three key landmarks.

2) We leverage priors of anatomical structural shape into the
network by following the spirit of the curve similarity [33]
to deal with the challenges of fragmental segmentation. We
explore it as a similarity loss function to regularize the borders
of segmentation so that an intact mask can be recovered from
an incomplete anatomical structure.

3) We model the landmark-structure consistent prior as a
novel loss function, called bony rim loss, for segmenting the
connected structures. It can enforce the bony rim estimated
from the mask of the flat ilium to be consistent with the
detected landmark so that the touched anatomical structure
can be correctly segmented.

II. METHODS

Fig. 3 shows the pipeline of our proposed method. US im-
ages of the hip joint are input into the network and forwarded
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Fig. 3. The pipeline of the proposed framework. The blue region is Mask R-CNN as the model backbone involving the loss (Lmaskrcnn). The
yellow region is a landmark detection branch involving the loss (Llandmark) and the purple module represents additional structure priors involving
shape similarity loss (LSS) and bony rim loss (LBR).

by a feature extraction network. The extracted feature maps
are then fed into three parallel sub-networks for structure
detection, segmentation, and landmark prediction tasks, re-
spectively. Four structures in the form of the mask are obtained
from the detection and segmentation tasks. The preliminary
positions of three landmarks are predicted from the landmark
detection branch. Next, we obtain the final positions of three
landmarks by combining the location information of two
landmarks, which are inferred from the segmentation mask and
predicted from the landmark detection branch, respectively.
Finally, the DDH metrics including alpha and beta angles are
calculated based on estimated masks and detected landmarks.

A. Multi-task Learning Network
To take advantage of the spatial information between

anatomical structures and landmarks, we propose a multi-task
learning network that combines subtasks, including detection,
segmentation of multiple anatomical structures, and prediction
of multiple landmarks.

As the main basis for DDH measurement, the segmenta-
tion of anatomical structures requires a network framework
with excellent performance. Recently, popular segmentation
networks, such as U-net [34] and FCN [35], have been used
to segment the hip image. It is also well known that cropping
out the area containing the target structure can eliminate the
interference of other structures, and the segmentation will be
greatly improved [21]. It is similar to the instance segmenta-
tion in [36]–[40]. In this study, we adopt Mask R-CNN, which
can simultaneously perform detection and segmentation tasks,
as the basic network.

Although the positioning of three landmarks can be roughly
estimated by an end-to-end landmark detection network [41]–
[45], the detection performance may be degraded because of
the large appearance variabilities of landmarks and relatively
low quality of US images. The purpose of the multi-task is to
allow the network to additionally learn the potential associated
information of different structures in the image so that the

positioning of landmarks and the segmentation of anatomical
structures can be improved.

Our network is divided into two stages. The first step is
to extract multi-scale features of the input images via the
backbone, which is ResNet-101-FPN in our work. The output
feature maps are then fed into the Region Proposal Network
(RPN) [46] to determine the bounding boxes of the candidate
regions. In the second step, the extracted feature maps go
through a layer for extracting a small feature map from each
Region of Interest, called RoIAlign, and the feature map
is then assigned to multiple subtasks for target detection,
segmentation, and landmark detection. The specific implemen-
tation of the first two tasks and the loss function Lmaskrcnn

composed of classification Lcls, boundary box regression Lbox

and segmentation Lmask, are based on the work in [32]. The
loss function for landmark detection is softmax cross-entropy
loss defined as:

Llandmark = −
N∑
i=1

yilog(y
,
i), (1)

where yi is the i-th landmark label (0 or 1) and y′i is the
prediction probability of the i-th label normalized by softmax.

B. Prior on Shape Similarity
As for the challenge that incomplete anatomical structures

may lead to fragmental segmentations in the US image of the
hip joint, as shown in Fig. 2(a) and Fig. 2(b), we propose
to introduce the prior knowledge of anatomical structure to
alleviate it. Since the shape of the same anatomical structure
usually has a certain similarity, the shape information can be
input into the network as the priors so that the network can
still output the segmentation results that match the original
shape in the case of partially missing anatomical structures.

Inspired by the curve similarity presented in [33], we
propose a novel Shape Similarity (SS) loss to regularize
the network and use the reference shape of the anatomical
structure to improve the segmentation, see Fig. 4 for the
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Fig. 4. The pipeline of our proposed SS loss quantifies the shape similarity.

pipeline. The binary prediction map is the output by the mask
branch at first. Since the segmentation boundary is usually a
closed curve, we divide it into two curves, such as the upper
and the lower curves. The boundary of structure j can then be
approximately fitted with two cubic polynomials

Cj (x) = ajx
3 + bjx

2 + cjx+ dj , (2)

where a to d are the coefficients of the equation. We use the
least-squares method to find the coefficients of this equation
and the solution is in the closed-form of

θ =
(
XTX + ξI

)−1
XTX, (3)

where X and Y are the abscissas and ordinate matrix of points
on the curve, ξ is the regularization weight, and I is the
identity matrix. The coefficients of (2) other than the constant
term are extracted as the coefficient vector F = [a, b, c] .

For a boundary of an anatomical structure, we obtain the
coefficient vector F1 from the mask and the coefficient vector
F2 from the ground truth by (2) and then calculate the cosine
similarity of these two vectors by

csi =
∣∣∣<F1,F2>
|F1|,|F2|

∣∣∣ , (4)

where 〈·〉 means the dot product operation and |·| means the
length of the vector. If the two vectors tend to be similar, the
value of csi will be close to 1, otherwise, it is close to 0.
Therefore, we define our SS loss on four structures of the hip
joint as

LSS =

N∑
i=1

4∑
j=1

(1− csij) . (5)

SS loss encodes the shape prior by emphasizing the edge-
wise consistency between the predicted mask and ground truth.
During network training, LSS penalizes the large segmentation
discrepancy which is often caused by the blurry edges or
incomplete structures in hip joint US images. Our network

is hence able to recover boundary predictions and alleviates
the failure cases.

C. Prior on Landmark-structure Consistent
In the hip US image, three landmarks are essential for mea-

suring angles, among which the bony rim is the most difficult
to locate. The bony rim is located at the critical line where
the low rim of the flat ilium transitions from hyperechoic to
hypoechoic. However, in clinical practice, sometimes the flat
ilium and lower limb are connected, resulting in the absence
of a hypoechoic area, as shown in Fig. 2(c). In this case, it is
important for the network to learn the positional relationship
between the bony rim and the flat ilium, so that the bony rim
could fall on the edge of the flat ilium segmentation as much
as possible. We introduce the landmark-structure consistent
prior to the network which enables the mask branch and the
landmark branch to supervise each other and achieve better
consistency.

The bony rim can be obtained by two methods from our
network: one is inferred from the segmentation mask by the
definition that the bony rim is located on the tail of the lateral
edge of the flat ilium; the other is predicted by the landmark
branch. The results of the two methods should be the same
point. In other words, the distance between these two points
is 0. We modify this distance as a loss function, named BR
loss, to constrain both branches by extracting bony rim from
the mask branches and the landmark branch respectively.

In the process of calculating BR loss, the coordinates of
two bony rim landmarks obtained from the structure segmen-
tation and the landmark detection are denoted as mi and ki,
respectively. Given the number of samples, we calculate the
Euclidean distance between two points. The BR loss is defined
as the L2-norm given by

LBR =

N∑
i=1

√√√√ 2∑
j=1

(mij − kij)2. (6)
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D. DDH Measurement
Our method automatically measures the diagnostic indi-

cators of DDH in the prediction phase. The segmentation
branches output four masks: flat ilium S1, lower limb S2,
labrum S3, and CO junction S4; the landmark branch outputs
primary positions of three landmarks: the bony rim Pk1,
the lower limb point Pk2 and the labrum point Pk3. Taking
into account the close correlation between the landmark and
anatomical structure (see Fig. 1(a)), landmark positions pre-
dicted by the two strategies are averaged for better accuracy
and robustness. The final positions of three landmarks are
calculated by the formula

Pi = (Psi + Pki) /2, (1 ≤ i ≤ 3) (7)

where Psi is the landmark inferred from segmented structures.
With the three landmarks in hand, we can automatically

measure the angles: alpha and beta (see Fig. 1(b)). The base
line LB is the tangent of the flat ilium; the bony roof line L1 is
the tangent line to the outer contour of flat ilium at the lower
limb point; the cartilage roof line L2 is the line that connects
the bony rim to the center of the labrum. The alpha angle
is calculated between LB and L1, and the beta is calculated
between LB and L2.

The final loss function of our method is defined as

L = λ1Lmaskrcnn + λ2Llandmark + λ3LBR + λ4LSS , (8)

where λ is regularization weight. Fig. 3 shows the overall
network architecture as well as the losses for each subtask.

III. EXPERIMENT

A. Data Preparation
1) Data Collection: In our experiment, we collect the hip

joint US images of 632 infants at the age ranging from 0
to 6 months. Each patient contains one to two images of
the left and right legs, resulting in a total of 1,231 images.
These images consist of 1070 type 1 hip joint and 161 type 2
hip joint cases without dislocation. Under the approval of the
Institutional Review Boards, all the images are acquired from
two machines of Guangdong Women and Children Hospital,
and the models of which are Hitachi HI-Vision Preirus (Ma-
chine 1) and Philips iU22 (Machine 2), respectively. All US
images and annotations in our dataset have undergone strict
quality control to guarantee the reliability of the ground truth
for the model training. Firstly, each image is reviewed by a
15-year experienced expert to ensure that it is a clinically
usable standard image. All images are manually labeled by
an experienced doctor, and all the labels are finally reviewed
and inspected by a group of senior doctors. The labels include
four segmented structures (flat ilium, lower limb, labrum, and
CO junction) and three landmark points (bony rim, lower limb
point, and the midpoint of the labrum). Note that each image
has two measurements from 2 different doctors: one from the
doctor engaged in labeling and the other from the measurement
during clinical diagnosis. In our work, the one from manual
labels (including the contour of 4 key anatomical structures
and the position of 3 landmarks) is the ground truth, and
the one from the manual plot (alpha and beta angles) during

TABLE I
DETAILED DATA DISTRIBUTION. DIGITS INSIDE AND OUTSIDE OF

PARENTHESES REPRESENT IMAGE AND CASE NUMBERS,
RESPECTIVELY.

Machine Types Sum Training set Testing set

Machine 1 268 (584) 210 (475) 58 (110)
Machine 2 364 (647) 296 (510) 68 (137)

Sum 632 (1231) 506 (985) 126 (247)

clinical diagnosis is only used for calculating the disagreement
in angle measurement between doctors.

2) Data Distribution: We randomly split the data into 506
and 126 cases for training and testing at the patient level
to ensure that multiple images of one patient belong to the
same set. The detailed data distribution is shown in Table I.
In addition, standard five-fold cross-validation is also utilized,
of which four-fold is used for the training set and the rest for
the testing set. Besides, there are three pre-processing steps
before an image goes into our framework. First, the key image
area is cropped from the original US image to prevent invalid
information from affecting the network training. Second, all
the images are resized to 512×512 and are augmented using
rotation, translation, contrast enhancement, and brightness
transformation. The last step is standardizing all the image
intensities to 0-1. The above pre-processing is completed in a
fully automatic way without manual factors.

B. Experimental Evaluation
1) Experimental Setup: In this study, we evaluate the

method from two perspectives. First, we evaluate the mea-
surement performance by dysplasia metrics calculated by the
difference between the predicted and the manual angles. We
also calculate the error rates for classifying type I and type
II hip joint. Second, we evaluate the task performance of
structure segmentation and landmark localization and also
evaluate the efficacy of the proposed SS loss and BR loss.
We set up a total of six experiments: (a) Assessment of
dysplasia metrics and the classification of the hip joint. (b)
Segmentation of four anatomical structures. (c) Prediction
of three landmarks. (d) Efficacy of BR loss. (e) Influence
of regularization weights. (f) System performance on image
quality, different machines, and hip types.

Additional significant test experiments are conducted to
demonstrate the efficacy of our method. We used the two-
sample t-test and independently repeated 10 experiments. The
significance level is 0.05 and the degree of freedom (DF) is
18, and the p-value less than the significance level indicates a
significant difference between the two population means.

2) Evaluation Metrics: We utilize the Dice Similarity Coeffi-
cient (DSC) to evaluate the overall segmentation performance
to measure the similarity between prediction and ground truth,
which is expressed as

DSC (X,Y ) =
2 |X

⋂
Y |

|X|+ |Y |
, (9)

where Y denotes the points set of the prediction mask and X
denotes that of the ground truth. Since segmented contours
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TABLE II
MEAN ABSOLUTE DIFFERENCE AND STANDARD DEVIATION OF α AND β
ANGLE (° ). THE ASTERISK (*) DENOTES SIGNIFICANT DIFFERENCES.

Angle α (std) (p-value) Angle β (std) (p-value)

Manual plot 3.984* (3.563) (p<0.01) 5.831* (4.662) (p<0.01)
Unet 3.815* (9.401) (p<0.01) 7.162* (8.571) (p<0.01)

PSPnet 2.503* (2.694) (p<0.01) 5.364* (10.764) (p<0.01)
DeeplabV3+ 2.348* (2.587) (p=0.027) 3.276* (3.717) (p<0.01)

Mask R-CNN 2.762* (3.573) (p<0.01) 3.220* (2.493) (p<0.01)
+ SS Loss 2.589* (2.267) (p=0.014) 3.116* (2.399) (p=0.019)

+ Landmark 2.499* (3.179) (p<0.01) 3.055* (2.409) (p=0.032)
Our Method 2.221 (2.007) 2.899 (2.283)

have a great influence on the landmark locations, we also
evaluate the quality of the segmentation edge via Hausdorff
Distance (HD) that is defined in [47] as

H (X,Y ) =

(
max
x∈X

min
y∈Y
‖x− y‖ ,max

y∈Y
min
x∈X
‖y − x‖

)
, (10)

where ‖·‖ is the L2 distance of points of x and y.
3) Implementation Details: In our work, we use ResNet-

FPN-101 as the backbone. The loss weights λ1 and λ4 are
default to 1, and λ2 and λ3 are set to 0.5 in (8). The size
of the ROI is set to 7 × 7 in the landmark branch. Other
parameters are consistent with [32]. The model is implemented
in the TensorFlow framework and trained on one NVIDIA
GTX 2080Ti GPU in Linux with the Inter Xeon Silver 4114
CPU @2.20GHz. The weights of Mask R-CNN pre-trained
on the COCO dataset are firstly imported. The network head
for bounding-box recognition, mask prediction, and landmark
detection is trained for 20 epochs with a learning rate of
1 × 10−3, and all layers are finetuned for 250 epochs with
a learning rate of 1× 10−4. The whole training process costs
about five hours.

IV. RESULTS

In all experiments, ”Unet”, ”PSPnet” and ”DeeplabV3+”
represent three advanced segmentation methods proposed in
[48]–[50], respectively. ”Mask R-CNN” stands for the original
Mask R-CNN proposed in [32], which includes instance
detection and segmentation, and the positioning of landmarks
is determined only by the segmentation results. ”+ SS loss”
means that SS loss is added to train the original Mask R-CNN.
”+ Landmark” means that the landmark detection branch is
incorporated into the Mask R-CNN with SS loss added in
training, and primary landmark positions are directly predicted
by the landmark branch. ”Our method” is the Mask R-CNN
with the landmark branch and the training loss in (8), and the
ultimate landmark position is the average of segmentation and
landmark detection, as shown in (7). Asterisk (*) denotes sig-
nificant differences when other methods are compared with our
method, and the performance of our method has a significant
improvement over other methods. Bold in the table indicates
it has the best performance compared with other methods.

A. Assessment of Dysplasia Metrics
Table II shows the mean and standard deviation (std) of

angle errors between the predicted and the manual annotations.

Fig. 5. The cumulative distribution of absolute errors concerning alpha
and beta angles.

Thus, our method significantly performs better than manual
plots by doctors and various other methods (Unet, PSPnet and
DeeplabV3+). It reveals the efficacy of our multi-task learning
framework for sharing feature information among different
tasks. Besides, the average error is consistently reduced as
more proposed components being incorporated into the Mask
R-CNN. This verifies that our proposed techniques can well
leverage the shape priors and landmark knowledge, which can
help improve the system performance. After the addition of
both losses and the operation of averaging landmarks obtained
from the landmark and the mask branches, our method out-
performs the Mask R-CNN significantly in terms of mean
accuracy and stability. Especially, it achieves an improvement
of 0.521 and 1.556 degrees in mean and standard deviation
for the alpha angle.

The cumulative distributions of predicted angle errors are
shown in Fig. 5. It can be seen that our method is the
best in terms of mean accuracy, with 93.456% and 84.615%
successful angle estimates for alpha and beta angles. Here
we suppose that angle estimate with an error of fewer than
5 degrees are considered successful since it is close to a
professional doctor’s performance. We also report that the
proposed method achieves 0.407% and 1.215% poor estimates
for alpha and beta angles (we consider that an angle estimate
with an error of more than 10 degrees is poor), whereas the
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Fig. 6. Scatter plots of the predicted and true values of the alpha and beta angles. (a)(b) represent the comparison between the real value and the
predicted value of the alpha angle. (c)(d) represent the comparison between the real value and the predicted value of the beta angle.

TABLE III
THE MISCALASSICATION RATE OF THE HIP JOINT CATEGORY (%).THE

ASTERISK (*) DENOTES SIGNIFICANT DIFFERENCES.

Overall errors FN FP

Mask R-CNN 10.121* 8.097* 2.024*
Our Method 5.668 4.453 1.215

Mask R-CNN has poor rates of 3.239% and 2.444% for alpha
and beta angles. In short, it can be concluded that the proposed
method significantly improves accuracy and robustness.

Scatter plots of the predicted and true values of the alpha
and beta angles are shown in Fig. 6. The Pearson correlation
coefficient of the alpha and beta angles are 0.88 and 0.89, indi-
cating that there is a strong correlation between the predicted
and true values of the two angles. In addition, the two-sample
t-test is used to compare the difference between the two values.
The p-values of the alpha and beta angle are 0.28 and 0.11,
respectively, with both of them larger than 0.05. Therefore,
there is no significant difference between the predicted and
the true value of the two angles.

In clinical practice, doctors focus more on the alpha angle

because it determines the type of the hip joint, while the
beta angle only determines the subclass. To prove the clinical
effectiveness of our method, we evaluate the classification
performance of automatic measurement on Graf’s categories.
The hip joint images are classified into two categories based
on the predicted alpha angle, considering that there are only
two types of hip joints (type I and type II) in our dataset.
The classification errors are summarized in Table III. In
terms of clinical decision support, great importance is given
to the cutoff of 60◦, distinguishing normal (type I) from
dysplastic anatomy (type II) [13]. Results in Table III indicate
that our method can reduce the error rate from 10.121% to
5.668%. We observe that the misclassifications are mainly
concentrated in the range of 58◦ < α < 62◦. In these cases,
an angle estimate error can lead to misclassification, and how
to deal with it remains an open issue. Fig. 7 shows the angle
measurements by our method and the labels. Fig. 7 (a)-(d)
show the precise automatic measurement results. There is only
a minor difference between our method and the manual plot
for landmarks and auxiliary measurement lines. Fig. 7 (e) and
(f) are the cases with errors of more than 5 degrees. The image
with alpha angle error larger than 5° is shown in Fig. 7 (e).
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Fig. 7. Qualitative comparisons on the angle measurement between our method and manual annotations. The white lines are the manual plot line
in the clinic. The red and yellow lines are predicted by our method. The white value is the manual angle plot, and the yellow is the prediction. The
unit is degree. The absolute differences between our method and the manual plot are (a) ∆α = 1.042◦, ∆β = 0.796◦. (b) ∆α = 0.460◦,
∆β = 2.743◦. (c) ∆α = 2.193◦, ∆β = 0.569◦. (d) ∆α = 1.977◦, ∆β = 0.146◦.(e) ∆α = 6.872◦, ∆β = 2.757◦. (f) ∆α = 1.798◦,
∆β = 5.669◦.

It is caused by the offset of the bony rim to the inner side
of the ilium. In Fig. 7 (f), one case with the beta angle error
larger than 5 is shown. It is mainly caused by the positioning
deviation of the labrum point. Although the angle errors are
more than 5 degrees in these two cases, it is noted that they
do not influence the visual judgment by experts, and thus their
Graf classification will remain the same.

B. Key Anatomical Structures Segmentation

In this study, we make qualitative and quantitative compar-
isons on the segmentation of four key anatomical structures.
Table IV and Table V quantitatively evaluate the effects of
different network structures on the segmentation in terms of
overall segmentation and edge accuracy, respectively.

As shown in Table IV and Table V, our method achieves
comparable performance when compared with the SOTA
segmentation networks. It can be observed in Table IV that
DeeplabV3+ and our method outperform the Unet and PSPnet,
with each of them has its strengths. In specific, DeeplabV3+
performs best in the segmentation of flat ilium and CO-
Junction, while our method segment the lower limb and
labrum with the best performance. Besides, compared with
the original Mask R-CNN, adding SS Loss can improve the
segmentation results, especially for small objects such as the
lower limb. Moreover, with the SS Loss and the landmark
branch being incorporated together, the segmentation results
are further improved in both overall segmentation and edge

TABLE IV
OVERALL SEGMENTATION EVALUATION OF FOUR ANATOMICAL

STRUCTURES BY DICE SIMILARITY COEFFICIENT (DSC). THE

ASTERISK (*) DENOTES SIGNIFICANT DIFFERENCES.

Flat Ilium Lower Limb Labrum CO Junction
(std) (std) (std) (std)

Unet 0.882* 0.809* 0.791* 0.838*
(0.039) (0.129) (0.090) (0.136)

PSPnet 0.867* 0.812* 0.820* 0.855*
(0.067) (0.102) (0.105) (0.062)

DeeplabV3+ 0.893 0.832* 0.840* 0.873
(0.080) (0.117) (0.099) (0.084)

Mask R-CNN 0.869* 0.818* 0.817* 0.829*
(0.045) (0.090) (0.086) (0.055)

+ SS Loss 0.871* 0.827* 0.826* 0.846*
(0.044) (0.077) (0.078) (0.055)

+ Landmark 0.876* 0.833* 0.829* 0.838*
(0.043) (0.087) (0.089) (0.023)

Our Method
0.892 0.838 0.841 0.868
(0.039) (0.087) (0.065) (0.043)

accuracy evaluation. It indicates that jointly learning anatom-
ical structures and landmarks can refine the predictions of the
Mask R-CNN. Specifically, compared with the plain Mask R-
CNN, our method increases the DSC of the four structures
by 3.184% on average and decreases the HD by an average
of 12.706%. These results demonstrate that the proposed
multi-task learning network significantly improves the overall
performance of segmentation and accuracy of borders.
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TABLE V
EDGE ACCURACY EVALUATION OF FOUR ANATOMICAL STRUCTURES

BY HAUSDORFF DISTANCE (HD) (IN PIXEL). THE ASTERISK (*)
DENOTES SIGNIFICANT DIFFERENCES.

Flat Ilium Lower Limb Labrum CO Junction
(std) (std) (std) (std)

Unet 11.911* 16.204* 23.836* 22.214*
(21.060) (10.984) (16.549) (25.319)

PSPnet 6.697* 8.199* 9.349* 20.516*
(10.279) (13.537) (10.769) (25.742)

DeeplabV3+ 5.154 5.861* 7.324* 15.857*
(4.248) (4.395) (4.150) (18.501)

Mask R-CNN 21.273* 6.699* 7.566* 14.667*
(11.039) (4.797) (3.374) (9.822)

+ SS Loss 19.988* 6.289* 7.207* 13.786*
(11.085) (3.302) 2.959) (9.268)

+ Landmark 19.764* 6.080* 7.367* 14.180*
(11.163) (4.331) (3.001) (10.747)

Our Method
19.214 5.651 6.835 12.344
(10.032) (4.327) (3.115) (9.292)

TABLE VI
MEAN(AND STANDARD DEVIATION) DISTANCE OF THREE LANDMARKS.

THE ASTERISK (*) DENOTES SIGNIFICANT DIFFERENCES.

Mean Distance Bony Rim Lower Limb Midpoint of the
(Pixel) (STD) Point(STD) Labrum(STD)

Unet 7.765* 12.134* 7.239*
(18.806) (11.384) (9.348)

PSPnet 10.187* 5.990* 5.308*
(24.248) (8.443) (7.219)

DeeplabV3+ 4.713* 5.092* 4.480
(4.325) (5.215) (3.092)

Mask R-CNN 5.381* 5.887* 5.009*
(3.297) (5.882) (3.478)

+ SS Loss 5.256* 5.677* 4.635*
(3.168) (5.903) (3.418)

-MASK +Landmark 6.087* 5.722* 5.108*
(3.710) (7.029) (3.842)

+ Landmark 4.926* 5.534* 4.897*
(3.307) (6.458) (3.386)

Our Method
4.534 5.013 4.563
(3.024) (5.803) (3.201)

Fig. 8 shows three examples of visual comparisons on
the segmentation of the labrum and lower limb, respectively.
From Fig. 8 (a) and Fig. 8 (b), we can see that the plain
Mask R-CNN predicts incomplete segmentation results when
the target is blurred due to the poor image quality and
imperfect standard plane. In contrast, our method can well
circumvent this problem by introducing structure priors, so
that the model can learn the relationships among anatomical
structures successfully. These findings verify the efficacy of
our method in segmenting key anatomical structures. In clini-
cal diagnosis, sometimes all bony parts of the acetabular roof
are hyperechoic (see Fig. 2 (c)). The flat ilium is connected
with the lower ilium, which may cause over-segmentation or
under-segmentation, and subsequently, the bony rim is difficult
to be distinguished. Thanks to the landmark detection branch
and the bony rim loss, our method can learn the structural
information of different parts and the two structures can be

(a)

(b)

(c)
Ground Truth Mask R-CNN Our method

Fig. 8. Qualitative comparison among our method, Mask R-CNN,
and ground truth(GT). (a) and (b) show two typical examples of the
labrum and lower limb, respectively. The arrows indicate where the
segmentation is improved. (c) For the challenging case in Fig. 2 (c),
our method can correctly segment the flat ilium and the lower limb.

well separated, as shown in Fig. 8 (c). In summary, the above
results demonstrate that the proposed SS loss and BR loss
are helpful to learn relationships among anatomical structures,
predicting better segmentation results and bony rim locations.

C. Landmark Detection

Table VI shows the mean and standard deviation distance
of the predicted positions of three landmarks: the bony rim,
the lower limb point, and the midpoint of the labrum. For
the network without the landmark branch, the landmarks
are determined only by the predicted mask, according to
the location relationship among landmarks and anatomical
structures as shown in Fig. 1(a). As shown in Table VI,
our method achieved better performance than Unet, PSPnet,
and DeeplabV3+ in localizing Bony Rim and Lower Limb
Point. It is noted that although DeeplabV3+ performs best in
detecting the landmark of the midpoint of the labrum (4.480),
our method obtains a very closed result (4.563). Furthermore,
compared with the original Mask R-CNN, adding SS Loss and
the landmark branch can reduce the detection errors. It can
be observed in ”-MASK+Landmark” and ”Our Method” rows
that our method performs better than the results with landmark
branch only. Our method leads the baseline by an average of
0.722 pixels in terms of mean distance, which indicates the
superiority of our proposed multi-task learning system.
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TABLE VII
ASSESSMENT OF THE EFFECTS OF BR LOSS.

Flat ilium Bony Rim error
β error (°)

DSC HD (pixel) (pixel)

+BR Loss ↑ 0.011 ↓ 0.427 ↓ 0.230 ↓ 0.152

TABLE VIII
THE EFFECT OF DIFFERENT REGULARIZATION WEIGHT COMBINATIONS

ON MODEL PERFORMANCE.

λ1 λ2 λ3 λ4 Error of
Angle α (°)

Error of
Angle β (°)

1

1
1

1 2.418 2.641
0.5 2.358 2.942
0.1 2.028 3.019

0.5 1 2.291 2.748
0.1 2.308 2.882

0.5 0.5 1 2.011 2.899
0.1 2.175 2.822

0.1 0.1 0.1 2.201 2.791

0.5 1 1 0.5 2.582 3.016

TABLE IX
TEST PERFORMANCE COMPARISON OF OUR METHOD AND MASK

R-CNN IN THREE IMAGE QUALITY.

method Image
quality DSC HD

(pixel)
landmark

(pixel)
Error of

Angle α (°)
Error of

Angle β (°)

Mask R-CNN
good 0.838 12.568 5.221 2.527 2.758

medium 0.829 13.044 5.471 2.771 3.240
poor 0.832 12.042 5.585 2.982 3.662

Our method
good 0.884 10.869 3.852 1.807 2.413

medium 0.849 10.946 4.884 2.659 3.011
poor 0.847 11.218 5.374 2.197 3.274

D. Influence of BR Loss

For the sake of consistency in predicting the Bony Rim
position, we propose the BR loss. The BR loss is added to
the network with the landmark branch but no SS loss. The
quantitative improvement is recorded in Table VII. We evaluate
it from the perspective of the segmentation of flat ilium, the
localization error of bony rim, and the measurement error of
beta angle since the BR loss only works on the bony rim
and its related tasks. Experimental results show that BR loss
improves the performance of multiple tasks. Especially in the
measurement of beta angle, the error is reduced by 0.152°, and
the relative error is reduced by 4.975%. BR loss has a great
contribution to the optimization of network performance.

E. Influence of Regularization Weight

There are four parameters to control the weight of losses
in 8. Our hypothesis is that, the shape similarity based SS
loss is general and critical for the accurate segmentation of
all the four anatomical structures in the DDH US image, It
intuitively plays a more important role than the consistency
based losses Llandmark and LBR. Therefore, we assigned 1.0
for LSS , while assigned 0.5 for both Llandmark and LBR.

We further conducted experiments to verify our hypothesis
and presented the influences of the parameters. As shown

in Table VIII, we tried several typical combinations of the
coefficients. When comparing the four parameters, larger λ4
often leads to better alpha angle results. While larger λ2
and λ3 often contribute to slightly better beta angle results.
Because the alpha angle is the main indicator for DDH
evaluation, we finally take the coefficient setting in our paper
as a compromise for alpha and beta angles.

F. Influence of Image Quality, Machines and Types

We test the three types of images separately to check the
stability and robustness of our method. According to the
differences in image quality, the test data (247 images) are
divided into three categories: good (123 images), medium
(70 images), and poor (54 images), as exemplars shown in
Fig.9. We tested our method on those three categories and
showed the results in Table IX. As we can see, our proposed
method presents a slight difference for images with different
qualities. Good image quality contributes to better accuracy
than poor images. When compared with the Mask R-CNN, our
method shows superiority in keep high accuracy. This proves
the advantages of our novel frameworks.

In addition, the dataset used in our experiment is from two
types of US machines. To investigate whether our method per-
forms significantly differently on two machines, we compare
the experimental results in Table X. It can be seen in Fig.
10 that there is a visual difference between the two types of
machine images. The image of Machine 2 is clearer than that
of Machine 1. However, the p-values of the alpha angle and
the beta angle by the two-sample t-test are 0.118 and 0.152,
which shows that there is no significant difference between
the two machines. The deviation caused by different image
qualities can be eliminated in our method, especially in the
measurement of alpha and beta angles. To a certain extent, it
indicates that our method is not affected by image quality in
angle measurement, and has good robustness.

Moreover, the dataset of hip joints is divided into two types,
type I and type II. The average test data for each fold contains
215 type I cases and 32 type II cases. Taking into account the
imbalance in the number of images of the two types, we train
the model by using two types of data together but evaluate the
test results separately. As shown in Table X, the p-values of
the alpha angle and the beta angle by the two-sample t-test
are 0.802 and 0.523, which shows that there is no significant
difference between errors of alpha and beta angles of the two
types of images. Please note that, due to the lack of sufficient
positive cases (type III and type IV), our method is only
validated on type I and II images. In the future, we will collect
more positive cases to verify the reliability of our proposed
method.

V. DISCUSSION

US screening is crucial in the early diagnosis of DDH, and
the Graf method, which is commonly used clinically, requires
a high demand for clinicians’ technical level. Therefore, we
propose a multi-task learning network for automatic DDH
measurements to assist clinical diagnosis. Experiments prove
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TABLE X
COMPARISON RESULTS OF TWO KINDS OF MACHINES AND TWO TYPES OF THE HIP JOINT.

DSC HD (pixel) Landmark (pixel) Angle error (°)

Flat
Ilium

Lower
Limb Labrum CO

Junction
Flat

Ilium
Lower
Limb Labrum CO

Junction
Bony
Rim

Lower
Limb
Point

Midpoint
of the

Labrum
Alpha Beta

Machine 1 0.873 0.820 0.833 0.836 22.673 5.895 6.609 12.580 4.485 5.158 4.302 2.318 2.881
Machine 2 0.892 0.850 0.848 0.866 16.909 5.715 6.784 13.183 4.861 5.264 4.593 2.217 2.756

Type I 0.889 0.839 0.840 0.858 19.762 5.705 6.709 13.074 4.521 5.260 4.382 2.265 2.826
Type II 0.890 0.841 0.844 0.853 19.568 5.511 6.843 13.159 4.454 5.197 4.218 2.290 2.880

Fig. 9. Three types of DDH images with different qualities. (a) good; (b) medium quality with blurred and unclear edges; (c) poor quality with
invisible structures.

(a) (b)

Fig. 10. Typical US images of two kinds of the machine in our dataset.
(a) US image from Machine 1. (b) US image from Machine 2.

that our method is accurate and robust, and has great value
for clinical application.

There have been many studies on the computer-aided diag-
nosis of DDH limited to the segmentation of local anatomical
structures in the past. Compared with our deep learning-based
methods, the methods in [3], [8], [11] based on traditional
machine learning are limited to complex feature extraction
designs and smaller data sets. Other deep learning-based
methods [17], [18], [20], [21], [29] rely on the segmentation
of key structures, such as ilium or lower limb, while our
method combines the information of anatomical structures and
multiple landmarks to improve the accuracy and robustness
of angle measurement. Besides, unlike the method in [8],
[11], [20], which only focuses on the measurement of dys-
plasia metrics, we have added the identification of four key

anatomical structures to ensure the reliability of the experiment
and provide a reference for doctors to select the appropriate
plane for diagnosis. In addition to the framework of multi-
task learning, we also incorporate extra structure priors to
improve accuracy and robustness. As for the challenge of the
fragmental segmentation, we propose a shape similarity (SS)
loss to regularize the shape of anatomical structures so that an
intact mask can be estimated from an incomplete anatomical
structure. We further propose a bony rim (BR) loss to enforce
the bony rim estimated from the segmentation of flat ilium
to be consistent with the detected landmark, to improve both
structure segmentation and landmark detection.

In addition, our method has some limitations. First of
all, the image style differences caused by different types
of US machines may cause performance degradation of the
network model in practical applications. Although there is no
significant difference in automatic angle measurement between
the two machine models in our experiment, it is not the case
in segmentation. We will consider style transfer and other
methods to deal with the issue in the future. The lack of
positive cases is also a limitation of our method. On the image
of positive cases, some structures, such as the labrum, may not
be visible due to structural deformation of the hip. In this case,
our method may have unexpected problems. Therefore, we will
continue to collect more DDH cases in the future, so that our
method can work well on any type of hip joint. We will also
study more on other directions of DDH-assisted diagnoses,
such as video sequence and three-dimensional volume data
analysis.
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VI. CONCLUSION

In this paper, we propose a multi-task learning frame-
work for automatic DDH measurement. Mask R-CNN with
a landmark detection branch is adopted to effectively learn
the relationships among anatomical structures and landmarks
of the hip joint. By imposing two novel structure priors
on landmark detection and structure segmentation, we show
that the performance of the network can be significantly
improved in terms of accuracy and robustness, particularly
for US images with incomplete and touching anatomical
structures. Experiments demonstrate that our method shows
great potential for clinical application, with 93% alpha and
85% beta angle estimation errors less than 5 degrees.
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2d ultrasound data based on dynamic shape priors,” in Proceedings of the
4th WSEAS international conference on Electronics, control and signal
processing. World Scientific and Engineering Academy and Society
(WSEAS), 2005, pp. 245–50.

[7] J. Dias, I. Thomas, A. Lamont, B. Mody, and J. Thompson, “The
reliability of ultrasonographic assessment of neonatal hips,” The Journal
of bone and joint surgery. British volume, vol. 75, no. 3, pp. 479–482,
1993.

[8] N. Quader, A. J. Hodgson, K. Mulpuri, E. Schaeffer, and R. Abughar-
bieh, “Automatic evaluation of scan adequacy and dysplasia metrics in
2-d ultrasound images of the neonatal hip,” Ultrasound in medicine &
biology, vol. 43, no. 6, pp. 1252–1262, 2017.

[9] L. Wu, J.-Z. Cheng, S. Li, B. Lei, T. Wang, and D. Ni, “Fuiqa: fetal
ultrasound image quality assessment with deep convolutional networks,”
IEEE transactions on cybernetics, vol. 47, no. 5, pp. 1336–1349, 2017.

[10] Y. Fan, H. Rao, J. Giannetta, H. Hurt, J. Wang, C. Davatzikos, and
D. Shen, “Diagnosis of brain abnormality using both structural and
functional mr images,” in 2006 International Conference of the IEEE
Engineering in Medicine and Biology Society, 2006, pp. 1044–1047.

[11] N. Quader, A. Hodgson, K. Mulpuri, T. Savage, and R. Abugharbieh,
“Automatic assessment of developmental dysplasia of the hip,” in 2015
IEEE 12th International Symposium on Biomedical Imaging (ISBI).
IEEE, 2015, pp. 13–16.

[12] A. R. Hareendranathan, M. Mabee, K. Punithakumar, M. Noga, and
J. L. Jaremko, “Toward automated classification of acetabular shape in
ultrasound for diagnosis of ddh: Contour alpha angle and the rounding
index,” Computer methods and programs in biomedicine, vol. 129, pp.
89–98, 2016.

[13] N. Quader, A. Hodgson, K. Mulpuri, and R. Abugharbieh, “Improving
diagnostic accuracy of hip dysplasia measures in 2d ultrasound scans of
infants to guide decisions regarding need for surgery,” in Orthopaedic
Proceedings, vol. 98, no. SUPP 5. The British Editorial Society of
Bone & Joint Surgery, 2016, pp. 44–44.

[14] N. Torosdagli, D. K. Liberton, P. Verma, M. Sincan, J. S. Lee, and
U. Bagci, “Deep geodesic learning for segmentation and anatomical
landmarking,” IEEE Transactions on Medical Imaging, vol. 38, no. 4,
pp. 919–931, 2019.

[15] N. Torosdagli, D. K. Liberton, P. Verma, M. Sincan, J. Lee, S. Pattanaik,
and U. Bagci, “Robust and fully automated segmentation of mandible
from ct scans,” in 2017 IEEE 14th International Symposium on Biomed-
ical Imaging (ISBI 2017), 2017, pp. 1209–1212.

[16] H. El-Hariri, K. Mulpuri, A. Hodgson, and R. Garbi, “Comparative
evaluation of hand-engineered and deep-learned features for neonatal hip
bone segmentation in ultrasound,” in International Conference on Med-
ical Image Computing and Computer-Assisted Intervention. Springer,
2019, pp. 12–20.

[17] Z. Zhang, M. Tang, D. Cobzas, D. Zonoobi, M. Jagersand, and J. L.
Jaremko, “End-to-end detection-segmentation network with roi convo-
lution,” in 2018 IEEE 15th International Symposium on Biomedical
Imaging (ISBI 2018). IEEE, 2018, pp. 1509–1512.

[18] A. R. Hareendranathan, D. Zonoobi, M. Mabee, D. Cobzas,
K. Punithakumar, M. Noga, and J. L. Jaremko, “Toward automatic
diagnosis of hip dysplasia from 2d ultrasound,” in 2017 IEEE 14th
International Symposium on Biomedical Imaging (ISBI 2017). IEEE,
2017, pp. 982–985.

[19] A. R. Hareendranathan, D. Zonoobi, M. Mabee, D. Cobzas,
K. Punithakumar, M. Noga, and J. L. Jaremko, “Toward automatic
diagnosis of hip dysplasia from 2d ultrasound,” in 2017 IEEE 14th
International Symposium on Biomedical Imaging (ISBI 2017), 2017, pp.
982–985.

[20] D. Golan, Y. Donner, C. Mansi, J. Jaremko, M. Ramachandran et al.,
“Fully automating graf’s method for ddh diagnosis using deep con-
volutional neural networks,” in Deep Learning and Data Labeling for
Medical Applications. Springer, 2016, pp. 130–141.

[21] A. Sezer and H. B. Sezer, “Deep convolutional neural network-based
automatic classification of neonatal hip ultrasound images: A novel data
augmentation approach with speckle noise reduction,” Ultrasound in
Medicine & Biology, vol. 46, no. 3, pp. 735–749, 2020.

[22] A. R. Hareendranathan, B. Chahal, S. Ghasseminia, D. Zonoobi, and
J. L. Jaremko, “Impact of scan quality on ai assessment of hip dysplasia
ultrasound,” Journal of Ultrasound, pp. 1–9, 2021.

[23] R. Caruana, “Multitask learning,” Machine learning, vol. 28, no. 1, pp.
41–75, 1997.

[24] Z. Wu, C. Valentini-Botinhao, O. Watts, and S. King, “Deep neural
networks employing multi-task learning and stacked bottleneck features
for speech synthesis,” in IEEE International Conference on Acoustics,
2015.

[25] M. Long and J. Wang, “Learning multiple tasks with deep relationship
networks,” Computer Science, 2015.

[26] Y. Lu, A. Kumar, S. Zhai, Y. Cheng, T. Javidi, and R. Feris, “Fully-
adaptive feature sharing in multi-task networks with applications in
person attribute classification,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), July 2017.

[27] I. Misra, A. Shrivastava, A. Gupta, and M. Hebert, “Cross-stitch net-
works for multi-task learning,” IEEE, 2016.

[28] A. Kendall, Y. Gal, and R. Cipolla, “Multi-task learning using uncer-
tainty to weigh losses for scene geometry and semantics,” in 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2018.

[29] Z. Zhang, P. Luo, C. C. Loy, and X. Tang, “Facial landmark detection by
deep multi-task learning,” in European conference on computer vision.
Springer, 2014, pp. 94–108.

[30] C. Lian, M. Liu, L. Wang, and D. Shen, “Multi-task weakly-supervised
attention network for dementia status estimation with structural mri,”
IEEE Transactions on Neural Networks and Learning Systems, pp. 1–
13, 2021.

[31] Z. Feng, D. Nie, L. Wang, and D. Shen, “Semi-supervised learning
for pelvic mr image segmentation based on multi-task residual fully
convolutional networks,” in 2018 IEEE 15th International Symposium
on Biomedical Imaging (ISBI 2018), 2018, pp. 885–888.

[32] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” in
Proceedings of the IEEE international conference on computer vision,
2017, pp. 2961–2969.

[33] Z. Yan, X. Yang, and K.-T. Cheng, “A skeletal similarity metric for
quality evaluation of retinal vessel segmentation,” IEEE transactions on
medical imaging, vol. 37, no. 4, pp. 1045–1057, 2017.

[34] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” in International Conference on
Medical image computing and computer-assisted intervention. Springer,
2015, pp. 234–241.

[35] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2015, pp. 3431–3440.

[36] D. Bolya, C. Zhou, F. Xiao, and Y. J. Lee, “Yolact: real-time instance
segmentation,” in Proceedings of the IEEE International Conference on
Computer Vision, 2019, pp. 9157–9166.



14 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. XX, NO. XX, XXXX 2021

[37] E. Xie, P. Sun, X. Song, W. Wang, X. Liu, D. Liang, C. Shen,
and P. Luo, “Polarmask: Single shot instance segmentation with polar
representation,” ArXiv, vol. abs/1909.13226, 2019.

[38] Z. Wang, L. Wei, L. Wang, Y. Gao, W. Chen, and D. Shen, “Hierarchical
vertex regression-based segmentation of head and neck ct images
for radiotherapy planning,” IEEE Transactions on Image Processing,
vol. 27, no. 2, pp. 923–937, 2017.

[39] S. Wang, K. He, D. Nie, S. Zhou, and D. Shen, “Ct male pelvic organ
segmentation using fully convolutional networks with boundary sensitive
representation,” Medical Image Analysis, vol. 54, 2019.

[40] C. A. Xu, A. Cl, W. A. Li, B. Hd, C. Tk, C. Shf, B. Jg, A. Ds, B. Jjx,
and A. Pty, “Diverse data augmentation for learning image segmentation
with cross-modality annotations,” Medical Image Analysis, 2021.

[41] J. Zhang, M. Liu, L. Wang, S. Chen, and D. Shen, “Context-guided fully
convolutional networks for joint craniomaxillofacial bone segmentation
and landmark digitization,” Medical Image Analysis, vol. 60, p. 101621,
2019.

[42] M. Liu, J. Zhang, D. Nie, P. T. Yap, and D. Shen, “Anatomical
landmark based deep feature representation for mr images in brain
disease diagnosis,” IEEE Journal of Biomedical & Health Informatics,
pp. 1–1, 2018.

[43] J. Zhang, M. Liu, L. An, Y. Gao, and D. Shen, “Alzheimer’s disease
diagnosis using landmark-based features from longitudinal structural mr
images,” IEEE Journal of Biomedical and Health Informatics, pp. 1607–
1616, 2017.

[44] M. Liu, J. Zhang, E. Adeli, and D. Shen, “Landmark-based deep multi-
instance learning for brain disease diagnosis,” Medical Image Analysis,
vol. 43, p. 157, 2017.

[45] Y. Lang, C. Lian, D. Xiao, H. Deng, and D. Shen, Automatic Local-
ization of Landmarks in Craniomaxillofacial CBCT Images Using a
Local Attention-Based Graph Convolution Network. Medical Image
Computing and Computer Assisted Intervention – MICCAI 2020, 23rd
International Conference, Lima, Peru, October 4–8, 2020, Proceedings,
Part IV, 2020.

[46] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time
object detection with region proposal networks,” IEEE Transactions on
Pattern Analysis & Machine Intelligence, vol. 39, no. 6, pp. 1137–1149,
2017.

[47] D. P. Huttenlocher, G. A. Klanderman, and W. J. Rucklidge, “Comparing
images using the hausdorff distance,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 15, no. 9, pp. 850–863, 1993.

[48] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” Springer, Cham, 2015.

[49] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid scene parsing
network,” IEEE Computer Society, 2016.

[50] L. C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam, “Encoder-
decoder with atrous separable convolution for semantic image segmen-
tation,” Springer, Cham, 2018.


