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Abstract—The ability to perform accurate prognosis is
crucial for proactive clinical decision making, informed re-
source management and personalised care. Existing out-
come prediction models suffer from a low recall of infre-
quent positive outcomes. We present a highly-scalable and
robust machine learning framework to automatically predict
adversity represented by mortality and ICU admission and
readmission from time-series of vital signs and laboratory
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results obtained within the first 24 hours of hospital admis-
sion. The stacked ensemble platform comprises two com-
ponents: a) an unsupervised LSTM Autoencoder that learns
an optimal representation of the time-series, using it to dif-
ferentiate the less frequent patterns which conclude with an
adverse event from the majority patterns that do not, and b)
a gradient boosting model, which relies on the constructed
representation to refine prediction by incorporating static
features. The model is used to assess a patient’s risk of
adversity and provides visual justifications of its prediction.
Results of three case studies show that the model outper-
forms existing platforms in ICU and general ward settings,
achieving average Precision-Recall Areas Under the Curve
(PR-AUCs) of 0.891 (95% CI: 0.878-0.939) for mortality and
0.908 (95% CI: 0.870-0.935) in predicting ICU admission and
readmission.

Index Terms—Ensemble Learning, Gradient Boost,
Imbalanced time-series, Long Short Term Memory networks
(LSTM), Clinical Outcome Prediction, Outlier Detection,
Machine Learning, Mortality Prediction, Stacked Ensemble.

I. INTRODUCTION

THE secondary re-use of routinely collected patient data has
been a facilitator of innovations aiming to improve patient

care. A prominent example is the development of early warning
systems that predict adversity from patient physiological mea-
surements. The majority of early warning models take the form
of ad-hoc scoring tools [40] such as the National Early Warning
Score (NEWS2) widely used in the United Kingdom [54]. Such
tools estimate a patient’s risk of adversity using aggregates of
physiological measurements [27]. Generally, scoring tools suffer
from low sensitivity due to overlooking the dependencies among
the temporal signatures underlying a patient’s physiology. Ma-
chine Learning models have been developed to overcome the
limitations of scoring tools via sophisticated architectures that
capture non-linearities within the multivariate temporal patient
data [12].

Despite the promising results of Machine Learning early
warning systems, we find that existing approaches bear sev-
eral shortcomings that adversely affect model performance and
adoption potential. First, generic clinical outcome prediction
models are scarce. Most existing models are condition-specific,
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Fig. 1. The Knowledge-Distillation Outcome Predictor (KD-OP). The
Dynamic Knowledge Distiller (Dynamic-KD) module learns a com-
pressed temporal representation of the no-adversity class. Static Out-
come Predictor (Static-OP) performs the final prediction by combining
Dynamic-KD’s output with patient static features. The framework’s visu-
alisation module uses both contexts to justify the predictions made.

being developed and evaluated with a single condition in mind,
e.g. sepsis [36], cardiac patients [31], COVID-19 [70], brain
injury [51]. The few condition-agnostic models available are
mostly limited to intensive care (ICU) settings where the mag-
nitude of measurements is high, and the population is more
uniform in acuity levels [4], [64]. Second, predicting adverse
clinical outcomes is an imbalanced learning problem because
any adverse outcome is only present in a minority of the patient
sample used to train and evaluate a model. To illustrate, consider
the United Kingdom’s in-hospital mortality rates, which are
around 23% in ICU settings [3] and 4% in secondary wards [21].
Similarly, cardiac arrest incidence is estimated to be 2.3% of ICU
admissions [2]. Nevertheless, most current adversity-prediction
models are benchmarked using the Area Under the Curve (ROC-
AUC) [1], [10], [29], [39], [60], which is known to overestimate
model performance on minority outcomes under imbalanced
distributions [17], [53]. The result is a general over-optimism
in existing models’ performance. Finally, in contrast to medical
practice, where both the dynamics of a patient’s physiology
and personal characteristics (e.g. demographics) are used for
prognosis, clinical outcome predictions models seldom consider
the interplay between the dynamic and static data available about
a patient. Existing models either consider the two views de-
scriptively and not a predictive context [7], or distinctly without
consideration of the interplay between the two [59].

This paper presents KD-OP (Knowledge Distillation Out-
come Predictor), an ensemble Machine Learning framework
designed to overcome the current difficulties in predicting ad-
verse clinical outcomes from electronic health records data.
The framework (Fig. 1) comprises two learner modules. The
first, Dynamic-KD (Dynamic Knowledge Distiller), learns from
the multivariate time-series of a patient’s physiology, while the
second, Static-OP (Static Outcome Predictor), estimates the
risk of adversity using static features (e.g. demographics and
aggregate measurements). KD-OP uses a stacked architecture
to capture the interplay between the two patient views, using
Dynamic-KD’s learned context to guide the predictions made

by Static-OP. In contrast to existing clinical outcome prediction
models, KD-OP is designed to befit the relative infrequency
of adverse outcomes in real hospital data. This is achieved
by implementing Dynamic-KD as a Long Short-term Memory
(LSTM) Autoencoder, thereby reformulating the prediction task
into one of outlier detection, whereby adverse outcomes (e.g.
mortality =1) are modelled as outliers. We evaluate the frame-
work’s predictive power under ICU and general ward settings,
using metrics specifically designed for imbalanced classification
models [13], [48]. The stacked architecture generates visual
justifications of its predictions based on the learned temporal
and static context.

II. RELATED WORK

Ensemble models have shown superior performance com-
pared to single-classifier architectures in predicting hospitalisa-
tion outcomes [10], [29], [35], [41], [50], [60]. The advantages
of ensemble models have been realised either by capturing
different data modalities (i.e. static and dynamic views) [59], or
by consolidating predictions by several ‘weak’ classifiers [66].
However, in all existing clinical outcome prediction frameworks,
the ensemble’s learners are linked by additively combining
their respective predictions, e.g. via weighted averaging. This
approach is problematic for ensembles operating on different
data modalities because the final prediction is not depictive
of the possible dependencies between the data’s static and the
dynamic views [38]. There is, therefore, a missed opportunity in
developing models that capture the interplay between a patient’s
dynamically changing physiology and personal characteristics.
Moreover, additive ensembles have been shown to fail to allevi-
ate the individual learners’ bias; they are generally outperformed
by alternative models that stack strong classifiers into an ensem-
ble [14], [38].

The proposed stacked architecture dedicates its time-series
prediction task to an LSTM Autoencoder. The model choice
is motivated by the natural marginal representation of adverse
outcomes in hospital data and the known ability of LSTM
AutoEncoders to identify minority outcomes from imbalanced
time-series [33], [34]. The idea is that an LSTM Autoencoder
encodes the time-series in a low dimensional representation
capturing its most informative features. The compact represen-
tation then only enables the reconstruction of the representative
features from new input without noise. By strictly training the
LSTM Autoencoder on the majority (no-adversity) time-series,
outliers (time-series corresponding to adverse outcomes) will
generate high reconstruction errors [33]. LSTM Autoencoders
have been effectively used in fall detection [46], sensor failure
prediction [42], fraud detection [19] and video surveillance [68].
LSTM Autoencoders have also shown great potential in health-
care [5], with applications in retinal eye research [57], patient
subtyping [6] and healthcare fraud detection [62].

III. METHODOLOGY

In this work, the prediction of adverse clinical outcomes is
expressed as a binary classification whose input comprises two
types of multivariate data collected for a patient: 1) dynamic
data, comprising physiological measurements and laboratory
results routinely collected at the bedside either automatically
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or by healthcare practitioners (e.g. heart rate), and 2) static
data, which is either recorded during admission (e.g. demog-
raphy), summarised during examination (e.g. comorbidities)
or is a dynamic-data aggregate habitually used by healthcare
practitioners to evaluate a patient’s state (e.g. maximum heart
rate during in a given day). For a given adverse outcome, the
framework (Fig. 1) assigns each patient a binary class label using
the predicted probability of the patient’s risk and an adversity
threshold γ ∈ [0, 1], which the model also learns.

The dynamic data, which takes the form of a multivariate
time-series, is processed by the Dynamic Knowledge Distiller
(Dynamic-KD) module to learn a vector representation assign-
ing each patient a risk score based on the patient’s temporal
signatures alone. Dynamic-KD’s learned risk is used to guide the
prediction process of the Static Outcome Predictor (Static-OP)
module, a Gradient Boost classifier that uses the static view to
predict the final class label. The ensemble model is designed to
improve predictive power and adoption potential in the following
ways:

1) By adopting a stacked architecture to capture the interplay
between the temporal signatures of a patient’s physiology
and static features, thereby enabling the temporal risk
learned by Dynamic-KD to drive classification based on
static using Static-OP.

2) By incorporating a robust mechanism to address the
marginal representation of adverse outcomes (e.g. ICU
admission = 1) compared to typical outcomes (e.g. no
ICU admission) in the overall population. This is achieved
by designing the dynamic-learner module, Dynamic-KD,
using the successful LSTM-Autoencoder outlier detec-
tion architecture.

A. Glossary of Terminology and Model Formulation

For a patient k having v dynamic features each measured
over T consecutive time windows, and u single-measurement
static features, we represent the patient’s dynamic view by a
matrix Xk ∈ /BbbRT×v , containing the totality of the patient’s
dynamic observations. Moreover, the patient’s static view is
represented by a vector xk ∈ /BbbRu consisting of a sequence
of u static and aggregate features. For a population of n patients,
the ensemble model therefore accepts two types of inputs:
the combined multivariate time-series of the n patients, Dd =
{Xk}nk=1, and a static patient-feature matrix Ds = {xk}nk=1.
Additionally, because Static-OP is a classifier, it is trained using
Ds and a vector representing the true incidence of the adverse
outcome in the cohort y = {yk}nk=1.

For a given adverse outcome, the goal of the framework is
to predict the vectors p̂ = {p̂k}nk=1 and ŷ = {ŷk}nk=1. Each
ŷk ∈ {0, 1} is a binary variable representing the predicted onset
of the adverse outcome for a single patient; p̂k is the predicted
probability of the outcome for one patient, which we retain
for use during the interpretation stage. Naturally, the class
distribution of y is highly imbalanced in favour of non-adverse
outcome, as will be demonstrated in the evaluation sections. The
framework learns the probability of an adverse outcome for the
population of n patients, p̂k from the two views of the clinical
data Dd and Ds, using it to estimate ŷk.

TABLE I
VARIABLE BINNING FUNCTIONS USED IN THIS WORK. WHEN A VARIABLE IS

ASSOCIATED WITH MORE THAN ONE BINNING FUNCTION (E.G. HEART
RATE), THEN TWO FEATURES ARE GENERATED

B. Data Processing

Data extracted from Electronic Health Records (EHRs) is
generated as a by-product of routine clinical care. As a result,
the variables making up a patient’s dynamic data view comprise
irregularly-sampled time sequences of physiological measure-
ments. Using the extracted data to train KD-OP entailed trans-
forming the irregular time series into Dd = {X1, . . .Xn} for
the n patients, where each Xk is a T × v matrix, of fixed
number T of equally-sized observation windows and v vital
signs measured at each time window t ∈ T . Furthermore, in
order for Dd to be digestible by the two Machine Learning
models, interpolation of missing data and scaling are required.

To alleviate missingness while overcoming non-uniform sam-
pling, the number of observation windows T used to construct
Dd was optimised iteratively by maximising completeness
while minimising the length of the observation windows t ∈ T .
If multiple observations are present for a variable during a
window, they are binned using a knowledge-based approach that
mimics the summaries used by clinicians in practical settings
(Table I).

Similarly to [60], we imputed the resulting time-series Gaus-
sian Process Regression (GPR). Gaussian Processes (GPs) ex-
tend the assumptions of a Gaussian distribution over functions,
whereby a function f is a Gaussian Process if it is entirely
characterized by its mean m and covariance o functions: f ∼
GP(m, o) [52]. GPR thus provides a non-parametric method for
accommodating statistical uncertainty measures in a regression
problem. It has been used in a wide range of applications and has
been found to produce superior results when used to interpolate
missing data in multivariate time-series [11], [47].

We defined a GPR over the dynamic features in Dd for the T
time windows. To ensure the interpolated values are meaningful,
we grouped patients into subpopulations based on demograph-
ical similarities (age, sex, co-morbidity indices), subsequently
defining the mean function of each feature as the subpopula-
tion mean μ of patients within the same demographical group.
We used the exponential covariance function, resulting in the
following definition of our GPR:

f∼GP(m, o) : m(x) = μ and o(x, x′) = exp

(
−1

2
(x− x′)2

)
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Fig. 2. KD-OP Data Flow: Dd contains the totality of the dynamic
data for n patients, where each Xk is a T × v matrix corresponding
to the time series of a single patient with v dynamic features over T time
windows. p̂Dynamic is a vector of length n containing, for each patient
k, the likelihood of the patient k of belonging to the adversity class
based on the learned temporal context embedded within Xk. Static-OP
uses p̂Dynamic to guide classification based on data containing static
features, Ds, to output the final predicted probabilities p̂ and adversity
classes ŷ.

Furthermore, the data was normalised using a number of scal-
ing techniques including absolute-value scaling and min-max
scaling. Using a min-max scaler with a range of [0,1] achieved
the best classification performance and was therefore adopted
for all the models. The interpolation and normalisation models
were both fitted to the training data, using each model’s learned
parameters to process the test data.

C. The Architecture

Fig. 2 illustrates the data flow of the proposed architecture.
As the figure shows, the combined multivariate time-series of
the n patients, Dd is used as input to Dynamic-KD, which
is an unsupervised LSTM Autoencoder that learns a vector
p̂Dynamic ∈ [0, 1] from the time-series such that for two in-
dividuals a and b whose time-series observations Xa and Xb ∈
Dd, if ŷa > ŷb then:

log(p̂aDynamic) > log(p̂bDynamic)

That is, the vector representation p̂Dynamic creates a separa-
tion between time-series corresponding to adverse outcomes and
those corresponding to normal outcomes. The use of log trans-
formation captures the difference in the order of magnitude of the
resulting representations, rather than possibly non-significant
fluctuations within the actual values [15].

The second module, Static-OP is a classification ensemble
based on gradient boost trees. Static-OP is trained using Ds

and the true incidence of the outcome in the cohort, y to
estimate the final prediction probability p̂. During the training
process of Static-OP, p̂Dynamic is used as sample weights
to guide training. The two modules form the bi-level stacked
classification system KD-OP (Knowledge Distillation Outcome
Predictor). The output for the ensemble is:

ŷ =

{
0 if p̂Static > γ

1 otherwise
(1)

Where the adversity threshold γ ∈ [0, 1] is a learned parameter
corresponding to the optimal threshold for classification selected
by optimising the mean Area Under the Precision-Recall Curve
(PR-AUC). The remainder of this section details the design of
KD-OP’s individual modules.

Fig. 3. The Dynamic-KD LSTM Autoencoder Module. Dd
0 refers to the

portion of the time-series data which corresponds to patients with typ-
ical (non-adverse) outcomes used to self-train the LSTM Autoencoder;
Dd

0+1 refers to mixed-class time-series. When provided with Dd
0+1

as input, the trained LSTM Autoencoder, yields p̂Dynamic, which is
representative of the probability of each patient k in Dd

0+1 belonging to
the minority class.

1) Dynamic-Kd: The first module is designed to use the
data’s dynamic view, i.e. the multivariate time-series input Dd,
to learn a vector-form separation between the majority (non-
adverse outcome) time-series and time-series corresponding
to adverse events. The module capitalises on the significantly
lower frequency of adverse outcomes (e.g. ICU admission =
1) compared to typical outcomes (e.g. no ICU admission) in
the overall population, enabling viewing adverse outcomes as
outliers.

Dynamic-KD (Fig. 3) consists of an unsupervised LSTM-
Autoencoder architecture which is ‘self-trained’ using a subset
of the time-series containing only majority outcomes, Dd

0 . For
each patient matrixXk inDd

0 , the training procedure aims to re-
construct Xk’s input sequence by minimising a distance-based
objective function J . J is the reconstruction loss measuring the
difference between the input vectors in the original series Xk

and the vectors of the reconstructed series X̂k. J is defined as
below:

J =

√√√√ T∑
t=1

||xt − x̂t||22 (2)

where T is the number of multivariate observations for each
patient k, xt and x̂t are the multi-feature vectors at time t, and
||.||2 is the L2-norm. Once trained, the LSTM Autoencoder is run
on a subset of the mixed-class time series (Dd

0+1 in the figure).
Because training was performed strictly on majority-class series,
the values of the reconstruction loss J associated with outliers
(samples corresponding to the adversity class) in Dd

0+1 will be
significantly higher than the reconstruction loss J associated
with the majority (no adversity) samples of Dd

0+1. As a result,
the vector output p̂Dynamic, which is the reconstruction loss
associated with Dd

0+1, will be representative of the probability
of each patient k in Dd

0+1 belonging to the minority (outlier)
class.

Dynamic-KD adopts an attention mechanism over the time
steps to capture the most important features in each sequence
as proposed by [23] and successfully implemented in [58], [60],
[61]. Fig. 4 shows a feature-level representation of the attention
mechanism in the encoder-decoder architecture of Dynamic-KD,
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Fig. 4. The attention mechanism of the encoder-Decoder Architecture
demonstrated at feature level. X: input sequence; X̂: output sequence;
h: encoder hidden state; s: decoder hidden state; c attention (context)
vector.

reconstructing a multi-variable sequences over T time step
batches (i.e. T ordered sequences per patient). For each feature
j, a soft attention mechanism is implemented over the encoder’s
hidden states to obtain a distinct context vector cj . cj attenuates
the most informative hidden states in sj,1, . . ..sj,T of the decoder
based on the encoder’s latent representation and is computed as
follows:

For each feature j, the attention probabilities based on the
encoded sequence α = (α1, . . .., αT ) are calculated using the
encoded sequence and the encoder’s internal hidden states. First,
the importance of information at each time step for feature j is
calculated:

ej,t = a(Uj � st−1 + Wj � hj + bj)

where Uj and W| are trainable parameters capturing the input-
to-hidden and hidden-to-hidden transitions for a given layer
j respectively. Terms Wj � ht−1 and U j � xt respectively
capture the update from the hidden states at the previous step
and the new input. a is the activation function. In the decoder
layers, we can measure the importance of the information at each
time step for each feature j denoted by ej,t using proximity to
U j . Then αj,t is obtained by normalising ej,t using the softmax
operation:

αj,t =
exp(ej)∑T
t=1 exp(et)

Finally, the context vector for each feature cj is calculated
using the weighted sum of the encoded sequence with the
attention probabilities. Intuitively, this vector summarizes the
importance of the encoded features in predicting tth sequence:

cj =

T∑
t=1

αj,thj,t (3)

As algorithm 1 shows, the Dynamic-KD LSTM-Autoencoder
is trained in batches of Dd

0 to minimise the reconstruction loss
J (line 1). The resulting loss is therefore representative of the
training errors associated with the negative (majority) class.

Once trained, the LSTM-Autoencoder is run on a non-
overlapping subset of the time-series Dd

0+1 (line 2), which
contains mixed data (positive and negative outcomes), using the
optimal loss obtained during training. Running the autoencoder
yields a reconstruction D̂d

0+1 of Dd
0+1 and an attention matrix

C0+1. At the end of the procedure, the reconstruction loss
p̂Dynamic (line 3) of D̂d

0+1 from the original series Dd
0+1

Algorithm 1: Static-OP.
Receives: Training and validation subsets of the
multivariate, regularly-sampled and batched time-series,
Dd: Dd

0 containing majority-class time-series for training
and Dd

0+1 containing mixed-class time-series for
validation

Returns: Validation reconstruction loss p̂Dynamic, and
attention matrix C0+1

Train Auto Encoder
1) θ̂= argminθ J (Dd

0)
Run Auto Encoder
2) D̂d

0+1, C0+1 = Decoder(Encoder(Dd
0+1), θ̂)

3) p̂Dynamic = D̂d
0+1 − Dd

0+1

augments the original highly-dimensional feature space into
a linear representation which is descriptive of the deviation
from normality (no adversity) with respect to the temporal
interactions embedded within the data. p̂Dynamic is, therefore,
discriminatory between the two classes and corresponds to the
likelihoods of each batch (patient) k belonging to the positive
class. p̂Dynamic is used to complement the learning from static
features performed by Static-OP, while C0+1 is fed into the
interpretation component of the framework.

D. Static-Op

The goal of this module is to complement the predictions
made from dynamic data by Dynamic-KD. Static-OP takes
as input static information routinely employed by healthcare
practitioners to assess a patient’s risk factors (e.g. demographics,
symptoms, summary statistics of physiology). In other words,
instead of using p̂Dynamic as a predictor of the outcome, it is
instead used to drive further classification. This way, the overall
pipeline has the advantage of capturing the interplay between dy-
namic physiological measurements and static features in making
the final predictions.

Static-OP is a supervised gradient boost model [32] whose
overall structure is given in Algorithm 2. The data used to train
Static-OP comprises static features and outcomes of the same
patients used to construct Dd

0+1. We denote those by Ds
0+1

and y0+1 respectively. The reconstruction loss p̂Dynamic gen-
erated by Dynamic-KD serve as sample weights ω (line 1)
for each sample in Ds

0+1. Because Dynamic-KD ensures that
p̂Dynamic creates a separation between positive and negative
classes, the minority samples of Ds

0+1 will be the determinant
of the decision threshold the model is trained to discover.

Using the model to predict the outcome probabilities from
ys−test produces p̂, and will also produce the variable impor-
tance vector (line 2). The class labels ŷ, are obtained as in 1 (line
4), using a prediction threshold learned by maximising PR-AUC
from the predicted probabilities (line 3).

IV. EXPERIMENTAL EVALUATION ON REAL USE CASES

We critically assess the model’s performance using two
sources of data. The first is general-ward (non-ICU) hospi-
tal data obtained from King’s College Hospital and Princess
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Algorithm 2: Static-OP.
Receives:
1) Ds

0+1 and ys: Static-feature dataset of the same
patients used to validate Dynamic-KD, with
corresponding true-outcome labels.

2) Ds−test
0+1 and ys−test: An independent mixed-class

static testing dataset, with corresponding true-outcome
labels.

3) Validation reconstruction loss, p̂Dynamic of Ds
0+1

obtained from Dynamic-KD.
Returns: Classification label ŷ, ŷ ∈ {0, 1}, ∀ŷ ∈ ŷ,
variable importance I

Train Gradient Boost
1 μ = TrainGB(X = Ds

0+1, y = ys,ω = p̂Dynamic)
Test Gradient Boost
2 p̂, I = μ(Ds−test

0+1 , ys−test)

3 γ = argmaxPR−AUC(y
s−test, p̂)

4 ŷ
γ

≥ p̂

Royal University Hospital in London, U.K.. The compiled
dataset comprised inpatients diagnosed with COVID-19 for
which KD-OP was used to predict (a) mortality and (b) ICU
admission. The second source is an ICU database, namely the
freely-available Medical Information Mart for Intensive Care
III (MIMIC-III) [30]. Here, we extracted two datasets corre-
sponding to Pneumonia and Chronic Kidney Disease (CKD)
patients. Since MIMIC-III strictly contains ICU data, KD-OP
was used to predict (a) mortality and (b) ICU re-admission
from the MIMIC-III cohorts. KD-OP was trained to predict
adverse outcomes using time-series corresponding to the first 24
hours of hospital admission (in the COVID-19 use case) or ICU
admission (in the Pneumonia and CKD use cases). Moreover,
the risk of adverse outcomes (mortality, ICU admission or ICU
re-admission) was predicted at intervals of 5, 7, 14 and 30 days
within admission.

A. Datasets

1) COVID-19 Case Study: Data was collected from 1276
adult (≥ 18 years old) inpatients testing positive for severe acute
respiratory syndrome coronavirus 2 (COVID-19) by reverse
transcription polymerase chain reaction (RT-PCR) between the
1st of March and 31st April 2020 at two acute hospitals (King’s
College Hospital and Princess Royal University Hospital) in
South East London (U.K.). Only symptomatic patients who
required inpatient admission were included. Presenting symp-
toms included but were not limited to fever, cough, dyspnoea,
myalgia, chest pain, or delirium. Static data collected include
age, sex, ethnic background, the length of the period from symp-
toms onset to hospital admission, and pre-existing conditions
(specifically, chronic obstructive pulmonary disease (COPD),
Asthma, heart failure, diabetes, ischemic heart disease (IHD),
hypertension and chronic kidney disease). For training and risk
prediction, pre-existing conditions were aggregated into one or-
dinal feature describing the number of comorbidities at the time
of admission. The dynamic features included 14 of the routinely

TABLE II
SUMMARY STATISTICS OF THE DATASETS. DATA ARE DISPLAYED AS MEAN

(STANDARD DEVIATION) OR COUNT (PERCENT)

The number of pre-existing conditions was normalised to [0,1] as the two data sources
used different scales to measure co-morbidity. ICU refers to ICU admission in the
COVID-19 study and ICU re-admission in MIMIC-III.

collected vital signs and laboratory tests of Table I. Details of
the variables used in the COVID-19 study and their missing-
ness ratios in the data collected are available on our online
repository.1

2) Pneumonia and CKD Case Studies: We used the data of
ICU stays between 2001 and 2012 obtained from the MIMIC-III
database, which is a freely-available anonymised ICU database
and is the largest resource of time-series hospital data available
worldwide [30]. We extracted admission details, demographics,
time-stamped vital signs and laboratory test results obtained
over the first 24 hours of admission of adults having ICD-9
code = 482.9 (pneumonia, cause not otherwise specified) and
585.9 (CKD, cause not otherwise specified) as the primary
diagnoses in the ICU admission notes. Our choice of relying
on ICD-9 codes to construct the two cohorts is a pragmatic one.
ICD-9 codes are highly-specific but exhibit low sensitivity in
extracting confirmed diagnoses from EHRs, including those of
pneumonia [25], and CKD [65]. Since our aim is to evaluate the
developed model, ICD-9 codes are sufficient to extract correct
yet possibly incomplete cohorts for the two conditions.

Since the MIMIC-III database is structured such as each
hospital admission may correspond to multiple ICU stays,
we extract the time-series pertaining to the first ICU stay of
each admission, and used subsequent ICU admission to as-
certain readmission outcomes. The resulting datasets comprise
509 323 records corresponding to 2798 pneumonia ICU stays
and 702 813 records corresponding to 2822 CKD ICU stays
(SQL and python scripts for recreating the dataset using the
MIMICIII database are available on our online repository2).

3) Data Description and Characteristics: Table II provides
statistical summaries of the three datasets, including demograph-
ics and outcome distributions in the training and test sets of the
three cohorts. The datasets vary in size, where pneumonia and
CKD are much larger than COVID-19. The difference in size is

1https://github.com/zibrahim/MIMICTimeSeriesProcessing/blob/main/
VitalAggregation.pdf

2https://github.com/zibrahim/MIMICTimeSeriesProcessing

https://github.com/zibrahim/MIMICTimeSeriesProcessing/blob/main/VitalAggregation.pdf
https://github.com/zibrahim/MIMICTimeSeriesProcessing
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a direct consequence of the mode of collection. The pneumonia
and CKD datasets were extracted from the largest publicly-
available ICU time-series database [30], while the COVID-19
data was locally collected over a short time span. Females were
only the majority of cases in the COVID-19 dataset (females
= 57.6 %), but sex distribution only significantly differed from
the CKD dataset (females = 37.27%) and not from the pneu-
monia dataset (females = 45.58%). The pneumonia cohort was
significantly younger and less co-morbid than the other two.
The pneumonia cohort also showed a wider distribution of age
compared to COVID-19 and CKD. In addition, the table shows
that the number of pre-existing conditions varied greatly in the
pneumonia and CKD cohorts, while the distribution of pre-
existing conditions was more uniform in the COVID-19 dataset.
The different distributions in age and pre-existing conditions
is quite reasonable and align with the nature of the use cases:
CKD is an age-related chronic illness [43], with previous studies
showing that the rate of comorbidities is around 41% [37].
COVID-19 hospital admissions are more likely in the elderly
with pre-existing conditions such as hypertension and diabetes,
where symptoms are likely to be more severe as opposed to the
young healthy individuals [49]. In contrast, although both older
age and pre-existing conditions increase the risk of acquiring
pneumonia, they have not been found to be associated with
the severity of the condition and subsequent intensive care
needs [45], [63].

Across all prediction intervals, the COVID-19 dataset had
higher rates of mortality, while mortality rates of CKD were
significantly lower than in the other two cohorts. In addition, the
CKD cohort had significantly lower rates of ICU re-admissions
across all prediction intervals compared pneumonia, and com-
pared to ICU admission in COVID-19. However, the time to
ICU admission in COVID-19 was much lower than the time to
ICU re-admission in CKD and pneumonia, where the average
duration was 4.35 days, compared to 12.23 days in pneumonia
and 11.18 days in CKD. In all three cohorts, the training and
test sets are comparable in age, percentage of females and the
distribution of outcomes (5,7, 14 and 30-day mortality, ICU
admission or re-admission).

B. Implementation Details

Applying the regularisation procedure described in
Section III-B produced T = 48 for pneumonia and CKD
(aggregation into half-hourly windows) and T = 12 for the
COVID-19 use-case (aggregation into 2-hourly windows) for
the 24-hour data extracted. The resulting datasets comprised
30 624 samples with 12 variables for the COVID-19 dataset,
134 304 and 135 456 samples with 30 variables for the
pneumonia and CKD cases respectively.

The datasets have two notable properties: 1) the outcomes are
skewed, with positive outcomes being highly under-represented
in the time series, and 2) the temporal ordering is defined
over T batches for each patient. In order to retain the natural
distribution of outcomes and temporal ordering during training
and to prevent information leakage, we used stratified grouped
k-fold cross-validation,3 with k = 3, to split the data as shown

3https://www.kaggle.com/jakubwasikowski/stratified-group-k-fold-cross-
validation

Fig. 5. The procedure followed for the three-way split of the data
in KD-OP. Each group shows an approximation of the proportion of
positive-outcome (shaded) to negative-outcome samples (non-shaded).
The positive outcomes have been marked as discarded in the autoen-
coder training set because the unsupervised Dynamic-KD is trained
solely on positive-class time series. The positive class samples of the
ensemble training and testing sets have been highlighted for visualisa-
tion purposes only.

Fig. 6. Reliability plot of KD-OP’s predicted p̂ in the test set, where
empirical p is the fraction of patients with adverse events within the
interval (e.g. 30-day mortality).

in Fig. 5. At each iteration, the data used to train Dynamic-KD
is obtained using one fold (Autoencoder Training Set in the
figure), discarding the samples corresponding to patients with
positive outcomes to yield Dd

Train,0. The second fold (Ensem-
ble Training Set in the figure) is used to run Dynamic-KD to
predict p̂DynamicTrain and further to train Static-OP, using
p̂DynamicTrain as sample weights. The third fold (Testing Set
in the figure) is used to predict the testing p̂DynamicTest using
Dynamic-KD, using it as sample weights in Static-OP, where
the final model prediction is made to produce ŷ.

We used the Python language and the Keras library with
Tensorflow backend.4 For Dynamic-KD, model hyperparame-
ters were optimised through empirical evaluation, by carefully
observing the prediction performance using a set of candidate
values of the hyperparameters; those included the number of
neurons per layer, the number of hidden layers, dropout rates
and activation function. The final design included bi-layered
encoder and decoder, with the outmost layers having neurons
in the order of 2× n_features, where n_features is the
number of dynamic variables used (14 for COVID-19 and 30 in
the pneumonia and CKD studies). A dropout rate of 0.5 was
used between each two layers to prevent the autonecoder from
overfitting the training data and an adaptive learning rate was
used using the Adam optimizer and starting at 0.001. The

4The source is available at: https://github.com/zibrahim/StackedPredictor/

https://www.kaggle.com/jakubwasikowski/stratified-group-k-fold-cross-validation
https://github.com/zibrahim/StackedPredictor/
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TABLE III
AVERAGE PERFORMANCE PER OUTCOME FOR COVID-19, PNEUMONIA AND CKD

number of epochs was 1000, which was selected via cycles
of experiments and careful monitoring of the validation loss.
An early stopping criteria was used to retain the best model
by minimising the validation loss with a patience parameter of
50 epochs. All layers of the autoencoder used ReLU as their
activation function, which performed best during our evaluation.
The Static-OP module was implemented using the XGBoost
algorithm. The parameters were chosen through a grid-search
over the hyperparameter space. Static-OP’s sample weights
were set to Dynamic-KD’s prediction loss. We used calibrated
classification using the nonparametric isotonic method included
in Python’s scikit-learn package. The calibration plot is shown
in Fig. 6.

C. Results

We evaluate KD-OP’s performance across four dimensions.
First, we evaluate the performance under different settings pre-
sented by the three datasets; these include cohort heterogeneity
with respect to individual characteristics and outcome distri-
bution with respect to the minority (positive) cases. Here, we
initially report metrics averaged across the different prediction
intervals for each setting to obtain an overall view, and sub-
sequently evaluate the model’s robustness across different pre-
diction intervals. We then evaluate the contributions of the two
modules Dynamic-KD and Static-OP to the overall performance,
validating those empirically and against clinical knowledge. Fi-
nally, we compare the predictive power of KD-OP with existing
outcome prediction models as reported in the literature. After
evaluating KD-OP’s performance, we demonstrate its visualisa-
tion capability in section IV-C5.

Throughout the experiments, we report the Precision-Recall
Area Under the Curve (PR-AUC) to capture the model’s per-
formance with respect to the minority cases, as well as the
widely-used Receiver-Operator Area Under the Curve (ROC-
AUC). Despite our knowledge of ROC-AUC’s impartial as-
sessment of the model’s performance for positive and negative
outcomes [24], we choose to show it here due to its wide
usage in the literature. Specifically, we use ROC-AUC to com-
pare our model’s performance with state-of-the-art models in
section IV-C4. We also report the macro-averaged precision,
recall and F1-score. We used macro averages to understand the
modules’ true performance with respect to the under-represented
outcomes [16].

1) Overall Performance and Sample Diversity: We first eval-
uate the overall performance across the three case studies. For
each dataset, Table III shows the model’s performance averaged
across the prediction intervals of 5, 7, 14 and 30 days for
each outcome. The performance is high overall. However, better
performance across prediction intervals was achieved using the

Fig. 7. Grouped performance plot. The x-axis corresponds to perfor-
mance grouped by PR-AUC. The mean comorbidity per performance
group is given by the y-coordinates (circles), while the comorbidity stan-
dard deviation is shown as text annotations over each circle. The circle
size indicates the mean age within the performance range, while the
numerical age means and standard deviations are shown in the legend.

COVID-19 dataset compared to pneumonia and CKD, despite
the latter two being larger datasets with a higher resolution of
observations (half-hourly windows as opposed to two-hourly
windows used to construct the COVID-19 time-series). A close
examination is shown in Fig. 7, where higher performance
ranges appear to be closely correlated with sample homogeneity
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Fig. 8. Performance measured in PR-AUC (top) and ROC-AUC (bot-
tom) for COVID-19, Pneumonia and CKD. In each plot, the respective
performance is shown over 5, 7, 14 and 30 days for mortality and
ICU admission (in the COVID-19 case) or ICU re-admission (in the
pneumonia and CKD cases).

(lower standard deviation) for both age and the number of pre-
existing conditions. COVID-19 admissions are more uniform
in age and comorbidity, consequently influencing changes in
physiological states. In pneumonia, the standard deviation of
comorbidity is higher in younger patients where the model
achieves the lowest performance.

2) Performance Across Prediction Intervals and Outcome
Distribution Settings: Fig. 8 shows KD-OP’s performance in
predicting mortality and ICU admission/re-admission over 5,
7, 14 and 30-day intervals on COVID-19, pneumonia and CKD.
Two observations can be made when examining this figure in
conjunction with the distribution of the outcomes of Table II.
Apart from 5-day ICU re-admission in pneumonia and CKD,
(a) KD-OP shows high performance across short and long-term
intervals, and (b) KD-OP’s performance remains high when the
minority (positive) samples constitute< 10% of the overall pop-
ulation, which confirms the merit of relying on outlier detection

TABLE IV
COMPARISON OF DYNAMIC-KD’S PREDICTIONS WITH THE FINAL

PREDICTION MADE BY KD-OP ACROSS THE CASE STUDIES, GROUPED BY
PREDICTION INTERVAL (5, 7, 14 AND 30 DAYS) AND BY OUTCOME

(MORTALITY, ICU ADMISSION/RE-ADMISSION)

to construct the temporal representation used in the pipeline.
These findings are in-line with the demographic diversity results
of Section IV-C1, as the mean and standard deviations of age and
the number of pre-existing conditions of those re-admitted to the
ICU within 5 days were 33.76 (35.1) and 0.23 (0.2) for pneu-
monia and 66.12(21.3) and 0.28(0.17) for CKD respectively,
showing a highly-diverse sample, deviating almost as highly
as the overall pneumonia and CKD populations as shown in
table II. In contrast, the 5-day ICU admission sample in the
COVID-19 study had a mean and standard deviation of age and
the number of pre-existing conditions of 63.3 (9.79) and 0.32
(0.05) respectively, showing a narrow range of demographical
variation compared to pneumonia and CKD.

3) The Contribution of Static-OP vs Dynamic-KD: We now
turn to compare the relative contribution of the two modules
to KD-OP’s overall prediction across the three use cases, out-
comes and four intervals. The detailed comparison is provided in
table IV. In the table, we list the contribution of each module per



432 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 26, NO. 1, JANUARY 2022

TABLE V
COMPARISON OF KD-OP’S PERFORMANCE WITH EXISTING LITERATURE OF GENERAL OUTCOME PREDICTION TESTED IN GENERAL WARDS AND ICU

SETTINGS. ADDITIONALLY, A COMPARISON WITH CURRENT STATISTICAL MODELS OF TO PREDICT DETERIORATION IN COVID-19 IS GIVEN

prediction interval for each outcome using macro-averaged pre-
cision, recall and F1-score, as well as PR-AUC and ROC-AUC.
We also show avg Δ, the average change in each metric’s value
between Dynamic-KD and the final prediction made by KD-OP.
It is clear that the two modules complement each other to reach
a high performance that is not otherwise achievable by the
time-series predictor alone. This effect is especially noticeable in
recall, where Static-OP often increases avg Δ. avg Δ of mortal-
ity outcomes also show that the stacked model slightly decreases
Dyanmic-KD’s precision, indicating that the temporal signatures
are somewhat better suited for identifying more patients who are
at risk of mortality. However, the magnitude of the decrease in
the overall precision is insignificant compared to the magnitude
of increased recall, leading to a higher decrease in false alarms,
which is a common bottleneck in clinical outcome prediction
models [27].

Examining the performance from a domain angle, Static-OP’s
contribution to the overall performance appears to be more
pronounced in short-term outcomes. A highly noticeable dif-
ference is in the case of COVID-19 5-day mortality, where the
average macro F1-score increases by 0.127 (from 0.786 using
Dynamic-KD alone to 0.913 using the full pipeline). In contrast,
the increase in F1 goes down to 0.021 (from 0.922 to 0.943) when
examining 30-day mortality. This observation is consistent with
current knowledge and recent findings that demographic infor-
mation (e.g. age, pre-existing conditions) are highly predictive
of short-term mortality in COVID-19 patients [69]. Similarly, for
ICU readmission, replicated studies have found co-morbidities
to be highly predictive of intensive care readmission during the
same hospitalization [26].

4) Comparison With Existing Outcome Prediction Models:
Here, we compare KD-OP’s performance with the reported
performance of relevant adverse outcome prediction models,
showing the results in Table V. We restrict the comparison
to models that a) predict adverse outcomes (e.g. deterioration,
mortality, re-admission, cardiac arrest), and b) report perfor-
mance exceeding the NEWS2 baseline of ROC-AUC = 0.78.
Having gone through the literature, the only machine learning
frameworks found to have been validated in non-ICU settings
were DEWS [60], eCART [10], [29], and LightGBM [35] so we
list those first. As the NEWS2 score is widely used to predict
deterioration, we include the latest evaluation of its performance

(from [27]) in the table for comparison. For these models, we
compare their performance against the average performance of
KD-OP when applied to the COVID-19 use-case, as it is a
general ward population. For each model, we highlight the class
distribution of the target outcome as reported by each model.
For KD-OP, the class distribution was taken as the average
distribution of the outcomes over the intervals evaluated (5, 7, 14
and 30 days), as shown in Table II. As none of the models reports
PR-AUC, we compiled a list of all reported metrics, using them
to compare against KD-OP’s performance in conjunction with
the widely-used ROC-AUC.

For mortality, LightGBM achieved a high ROC-AUC of 0.961
with a class distribution of 5.1% of the outcome. However, the
only other available metric for LightGBM is specificity, which
is at a low 0.641 and entails a high rate of false alarms generated
by the framework. eCart’s ROC-AUC is equally distinctive at
0.93 with extremely low frequencies of mortality cases in the
data used (1.2 % of the cases). However, no information on
the recall or specificity of the model is available. We, therefore,
draw attention the only outcome for which eCart’s sensitivity and
specificity are investigated, which is cardiac arrest. For this out-
come, despite the high ROC-AUC achieved by the model (0.89)
at a very low distribution rate of the outcome variable (0.05%),
specificity is at 0.52, which once again shows the over-optimism
of the ROC-AUC reported by the model. KD-OP achieved
a ROC-AUC of 0.978, with mortality averaging at 18.1% of
the samples (ranging between 10.88-26.23%). DEWS’ AUC
score was also high at 0.926. However, the class distribution
reported in their study is highly skewed in favour of the outcome
(65.3% mortality). With respect to unplanned ICU admissions,
KD-OP achieved the highest AUC of 0.981 with an average class
distribution of 8.81% (ranging between 8.22 −9.71%) for the
four intervals. DEWS was the closest competitor at 0.811 AUC,
albeit with a significantly higher distribution of the positive
outcome (27%). Overall, KD-OP shows the highest performance
stability across the two outcomes, rendering it a better candidate
for general hospitalisation outcome prediction; especially given
the lack of thorough assessment of competitive models using
metrics suitable for the problem under study.

We also list high-performing machine learning models that
have only been strictly validated in ICU settings; those include
SANMF [41], SICULA (a.k.a. the super learner) [50] and [44].
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Fig. 9. Visual Justification of KD-OP’s Predictions.

It is worth noting that none of the models predicts ICU re-
admission. We, therefore, resort to comparing with KD-OP’s
average performance in predicting mortality when applied to
pneumonia and CKD using the MIMIC-III ICU dataset. Also,
apart from [44], which reports sensitivity, the models strictly
rely on ROC-AUC to report their performance. We will, there-
fore, resort to comparing with KD-OP’s performance using
ROC-AUC. As the table shows, KD-OP is the best predictor
of mortality in an ICU setting, marginally exceeding SICULA’s
performance (ROC-AUC of 0.881 vs 0.880). Given that the
SICULA’s performance is the current benchmark for mortality
prediction in the ICU, KD-OP’s performance is well-aligned
with existing prediction potential.

Finally, as the literature now contains several statistical mod-
els aiming to make prognostic predictions of COVID-19 hospi-
tal admissions, we compare those with KD-OP applied to the
COVID-19 case. It is worth noting that all of the models listed
under the COVID-19 section of Table V are scoring systems
aiming to mimic or exceed the performance of NEWS2 in
predicting COVID-19 deterioration. Hence, KD-OP presents
a novel contribution to the COVID-19 use case in being a
scalable end-to-end machine learning architecture for predicting
hospitalisation outcomes for COVID-19 admissions.

5) Visual Justification of Predicted Outcomes: The stacked
nature of KD-OP naturally enables visualising its predictions
using the built-in visualisation properties of each module and
obtaining the relative contributions of each module’s prediction
to the outcome. For Dynamic-KD, the feature attention weights
at each time window embedded inC (see output to Visualisation
module in Fig. 3 and line 2 of Algorithm 1) make up the relative
importance of the temporal signatures of each feature. On the
other hand, the gradient boost implementation of Static-OP
provides a feature importance capability, which we use to
understand the relative contribution of each static feature. Since
the relative contribution of each module to the final prediction
is dependent on the outcome and prediction interval, including
those variables in the visualisation of the output is highly
essential for clinical utility as it directs the attention to the
most contributing view (static or dynamic) of the patient. We

define the contribution of each module using the ratios of the
respective modules’ PR-AUC.

An example of the generated visualisation of a positive 30-day
mortality outcome of a COVID-19 patient is shown in figure 9. In
the figure, the left-most bar shows the relative contribution of the
individual modules. In this scenario, Dynamic-KD is a signifi-
cant contributor (≈ 93% of the overall contribution). Examining
the attention weights generated by the framework shows that
the highest weights are of lymphocytes and neutrophils (Lymph
and Neut in the figure) at hours 36-48 as well as C-reactive
protein (CRP in the figure) at time-step 48 (24th hour). We use
this information as a justification for the prediction made by
Dynamic-KD. On the other hand, the patient’s age and the mean
NEWS2 score show the highest importance among the static
features, followed by the length of the period from symptoms
to admission (SxToAdmit) and the maximum C-reactive protein
level over the 24 hours.

It is essential to view this justification in relation to current
findings. C-reactive protein, lymphocytes and lactic dehydro-
genase have been recently found to be highly correlated with
adverse outcomes in COVID-19 patients [70]. Although lactic
dehydrogenase was not part of our COVID-19 dataset, the
temporal signatures of both C-reactive protein and lymphocytes
have been accurately identified by Dynamic-KD as predictors.
This, in addition to age being marked as an important static
feature, agrees with recent findings [69], showing that the signals
jointly picked up by the framework’s modules are coherent and
well-aligned with clinical findings.

V. DISCUSSION

We developed and validated KD-OP, an end-to-end pipeline
for predicting adversity during hospitalisation. The pipeline
comprises two stacked modules, each making predictions from
a view of the patient’s data: dynamic time-series and static fea-
tures. The stacking of the pipeline’s modules enables mimicking
a clinician’s approach to making prognostic decisions, by taking
into account the interplay between the temporal signatures of a
patient’s physiology as well as time-invariant characteristics. By
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design, the pipeline is cognizant of the class imbalance natural
to hospitalisation outcome data. It is trained and validated using
stratified data that retains the original distribution of the real
outcomes within the population.

Model interpretability has been extensively linked with clin-
ical utility and trust in clinical risk prediction systems [56],
where clinicians are generally reluctant to accept decisions
guided by ‘black-box’ Machine Learning models [55], [67].
KD-OP enables the post-hoc interpretation of its predictions
by extending the idea of using attention weights to interpret
neural network outcomes [9]. KD-OP’s visualisation component
accounts for the interplay between dynamic and static features
in justifying the predictions made by the pipeline, which is a
feature that derives directly from the stacked architecture. To
our knowledge, this feature is not available in any existing
hospitalisation outcome predictor.

We evaluated KD-OP’s performance using real hospital data
on three use cases representative of the diversity of electronic
health records data. Using the pipeline to predict mortality and
ICU admission/re-admission over 5-day, 7-day, 14-day, and 30-
day intervals resulted in prediction accuracies exceeding 90%
in all mortality outcomes and most of the ICU admission/re-
admission outcomes.

KD-OP is among the few models available in the literature
that have been validated in ICU and non-ICU settings. Adversity
prediction in ICU settings is a less challenging endeavour due
to the high volume of frequently-recorded variables and the
relative uniformity of patients with respect to the level of acuity.
In a non-ICU setting, KD-OP outperforms all existing models
when considering the wide range of metrics needed to make an
informed judgement about the models’ predictive power. More
importantly, KD-OP is the only model that has been validated
using PR-AUC, which measures the model’s ability to predict
minority (adverse) outcomes.

The high performance achieved by KD-OP in predicting
adverse outcomes in three diverse patient populations is a
confirmation of the model’s capacity in recognising context.
The model’s ability to identify the most relevant features for a
given diagnosis reflects what one would like to see in a general
outcome prediction model, where the primary diagnosis serves
as a guide to making a prognosis about a given patient. A disease-
agnostic model such as KD-OP could be built into the visual
display of an EHR for all clinicians to use. The present challenge
is that each hospital department has its outcome prediction
scoring system, subsequently making it unrealistic to build over
30 distinct models into an EHR system. The generic nature
of KD-OP, coupled with high performance and visualisation
capability, gives it a broader potential for integration in ICU and
non-ICU settings.

KD-OP can be extended in a number of ways. First, it would
be interesting to project the progression of the risk of adversity;
we are currently developing a temporal risk score model to
predict and visualise the risk of a given outcome on an individual
level over time, using KD-OP as the base model. Second, the
current pipeline only supports classification outcomes. Existing
targets include the prognosis of continuous outcomes such as
worsening oxygenation or cardiac function. Also, the current
framework strictly uses routinely collected clinical variables as

predictors. Other types of data can be of high relevance to a
given use case. For example, ECG signals are the predictors
of choice for cardiology-related outcomes; X-ray images can
positively improve predictive power in the case of COVID-19,
etc. Although the stacked architecture has proven to be highly
robust compared to parallel ensembles, it is intrinsically less
flexible towards incorporating additional models, which renders
extending the stacked model an interesting research problem.
Finally, we are currently extending the framework’s justification
component to incorporate both the magnitude and direction
of variable contribution to Static-OP and Dynamic-KD’s pre-
dictions. However, our ultimate goal is to extend beyond a
correlation-based visualisation and into a decision-theoretical
framework enabling the contextual selection of predicted risk
based on the modular and overall framework performance.
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