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Abstract—Diabetes intensive care unit (ICU) patients are
at increased risk of complications leading to in-hospital
mortality. Assessing the likelihood of death is a challenging
and time-consuming task due to a large number of influ-
encing factors. Healthcare providers are interested in the
detection of ICU patients at higher risk, such that risk fac-
tors can possibly be mitigated. While such severity scoring
methods exist, they are commonly based on a snapshot of
the health conditions of a patient during the ICU stay and do
not specifically consider a patient’s prior medical history.
In this paper, a process mining/deep learning architecture
is proposed to improve established severity scoring
methods by incorporating the medical history of diabetes
patients. First, health records of past hospital encounters
are converted to event logs suitable for process mining.
The event logs are then used to discover a process model
that describes the past hospital encounters of patients. An
adaptation of Decay Replay Mining is proposed to combine
medical and demographic information with established
severity scores to predict the in-hospital mortality of dia-
betes ICU patients. Significant performance improvements
are demonstrated compared to established risk severity
scoring methods and machine learning approaches using
the Medical Information Mart for Intensive Care III dataset.

Index Terms—Process mining, deep learning, in-hospital
mortality, risk assessment, diabetes, intensive care.

I. INTRODUCTION

W ITH 26.9 million diagnosed patients in the United
States [1] and by accounting for 45% of ICU patients

above the age of 65 [2], diabetes mellitus (DM) is a widespread
illness that requires unique attention. There are two main types
of DM. Type I is controlled with diet and insulin. Type II, the
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more common, is controlled with diet, exercise, and a multitude
of medicines. However, even a small infection can lead to
severe patient outcomes and difficulties to control the disease.
Hence, DM is rarely a standalone reason for severe patient
outcomes but a factor that increases the likelihood of potentially
life-threatening outcomes. In the aftermath, hospitalized DM pa-
tients require significantly more healthcare resources compared
to other chronic disease populations [2]. One way to allocate
healthcare resources more efficiently and to lower the rate of
mortality is a precise in-hospital mortality risk assessment of
diabetes ICU patients.

The calculation of risk and mortality scores in hospital settings
has a long-standing history and is well-studied in the literature.
The first methods were developed in the 1980 s and are used
in healthcare facilities for decades. Commonly, such methods
target the general patient population and include comorbid-
ity assessment methods, such as the Elixhauser comorbidity
score [3] and the Charlson comorbidity index (CCI) [4], and
specific risk assessments like the probability for organ failure.
Risk and mortality scores are calculated mostly based on patient
information of the current admission and provide a snapshot
of the patient’s condition. With the ongoing adoption of Elec-
tronic Health Records (EHRs), healthcare facilities are building
empiric patient data repositories. This enables the application
of data mining and machine learning approaches. However,
recent methods often neglect EHR data of patient’s past hospital
encounters when assessing their risk, or require substantial
financial investment to be applicable in real-world.

A patient’s health records can be understood as a sequence
of observations. Such observations may include performed ser-
vices, diagnoses, or lab measurements, and are also known as
careflows. Process mining is a comparatively young research
discipline that aims to extract knowledge from such sequences.
Applications of process mining can be found across many
industries, mainly to analyze and optimize applied processes,
such as in business process management [5], automation [6],
[7], manufacturing [8], [9], and recently in healthcare [10],
[11]. Healthcare organizations increasingly acknowledge pro-
cess mining and the use of empirical data to improve pro-
cesses [12]. However, there is a lack of studies that include
the patient’s past hospital encounters using process mining to
predict outcomes.
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In this paper, a novel process mining/deep learning architec-
ture is proposed to enhance established risk calculation methods
of in-hospital mortality of diabetes ICU patients by incorporat-
ing patient careflows from earlier hospital admissions. More
specifically, the paper demonstrates a strategy to convert elec-
tronic health records to a careflow format suitable for process
mining and how this information can be used to predict the pa-
tient outcome. Next to the past hospital encounters, the proposed
approach leverages demographic information, diagnoses and
procedures, diabetes-related health measurements, and existing
risk scores that are calculated after 24 hours of admission.

The contributions of this paper are two-fold. First, a pro-
cess mining/deep learning architecture is proposed to transform
careflows embedded in EHRs into event logs suitable for pro-
cess mining. Second, the proposed architecture is successfully
demonstrated to improve the in-hospital mortality prediction
of diabetes ICU patients by enhancing established risk scoring
methods. The manuscript accentuates the non-negligible impor-
tance of modeling past patient careflows for outcome prediction
and highlights process mining as a prospective set of tools for
future research directions.

The paper is structured as follows. The related work is dis-
cussed in Section II. The fundamental preliminaries are pro-
vided in Section III followed by the proposed methodology in
Section IV. Experimental evaluation and comprehensive result
interpretations are reported in Section V. Section VI concludes
the paper and provides future research directions.

II. RELATED WORK

The methods that are of interest for this paper can be separated
into three categories: Severity Scores, Data Mining and Machine
Learning, and Process Mining. Each category is introduced
separately in this section.

A. Severity Scores

A common approach to assess the likelihood of in-hospital
mortality of ICU patients is based on comorbidities. The Elix-
hauser Score [3] and CCI [4] are well-adopted in practice and
calculated predominantly on diagnosis codes of patients [13].
The Elixhauser Score is the summation of points that are as-
signed if diagnoses belong to certain categories. In comparison,
CCI weights more serious and more advanced conditions with
more points. The Elixhauser and CCI scores are mainly used
to assess the comorbidities of a patient and predict long-term
mortality but are also used to predict in-hospital mortality [14]–
[17]. Since DM requires specialized attention compared to the
general patient population, a DM specific severity measure
called Diabetic Complications Severity Index (DCSI) has been
developed [18], [19]. The calculation is similar to the Elixhauser
score. To the best of the authors’ knowledge, no study investi-
gated if DCSI predicts in-hospital mortality.

One of the most widely used algorithms to predict the
mortality of patients in the ICU is the Acute Physiology and
Chronic Health Evaluation (APACHE) II algorithm [20]. This
severity score requires 15 variables, including physiological
measurements, and provides a snapshot of the recent conditions

of a patient. With the increasing availability of EHRs and the de-
ployment of patient workflow management software, APACHE
II can be calculated automatically. However, APACHE II
does not leverage available historical patient information. The
subsequent versions, APACHE III and IV, are refinements and
improvements of APACHE II and require a significantly larger
number of variables [21]. The increase in necessary data led to
the continued use of the APACHE II algorithm in practice [22].

The Simplified Acute Physiology Score (SAPS) II [23] reduces
the complexity of APACHE-II. Similarly, SAPS-II is a measure
of patient severity of illness and calculated based on demo-
graphic information, vitals, and lab measurements. SAPS-II has
a sigmoidal relationship between mortality and its score and is
therefore used to predict in-hospital mortality of ICU patients.
The subsequent release, SAPS-III, uses 17 variables, including
physiological and disease manifestation variables [24].

With the Oxford Acute Severity of Illness Score (OASIS), a
scoring has been developed to predict outcomes like mortality
while requiring as few variables as possible [25]. OASIS is
calculated based on seven physiologic measurements, elective
surgery, age, and length of stay prior to ICU.

A further severity score is the Sepsis-Related Organ Failure
Assessment (SOFA) that provides a risk calculation for organ
failure [26]. SOFA has not been designed to predict mortality
specifically, however, there is a positive correlation between
the score and in-hospital mortality [27], [28]. Many Ethics
Committees of hospitals are using SOFA to help plan for lim-
ited resources of ICU beds and ventilators during COVID-19
surges [29]. This adds risk associated with using scores in a way
that they were not designed for [30] and highlights the immediate
practical importance of mortality prediction.

Like APACHE, SAPS, and OASIS, SOFA provides a snapshot
of the recent conditions of a patient with minimal or no consid-
eration of historically available data of patients. Additionally,
these severity scores have been developed for a broad patient
population and were not specifically designed for DM patients.

B. Data Mining and Machine Learning

With the increasing availability of EHRs and computational
advancements, data mining and machine learning methods have
been proposed to assess patient outcomes. Recently, Brajer
et al. [31] prospectively evaluated XGBoost based models to pre-
dict the in-hospital mortality of adults at the time of admission.
However, the model uses only data from the recent admission
and does not consider patient trajectories from past hospital
encounters. Additionally, the model aims to predict in-hospital
mortality for all types of hospital admissions and does not focus
on the special attention that is required for diabetes ICU patients.
Similar works have been published [32]–[34]. However, these
methods do not consider the patient’s careflow history and do
not focus on DM patients. Solely Rajkomar et al. [35] predict
in-hospital mortality by training a deep learning model on pa-
tient’s entire EHR histories. However, their approach requires to
map all EHR data to Fast Healthcare Interoperability Resources
(FHIR) format across healthcare sites. Moreover, the training of
the model is computationally expensive and needs specialized
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know-how to develop. This requires substantial investment
and therefore reduces practicability and near-term applicability
significantly.

Two studies have been focusing on Machine Learning ap-
proaches to predict the in-hospital mortality of diabetes ICU
patients. Anand et al. [22] developed Logistic Regression (LR)
and Random Forest (RF) models to assess the mortality risk
in diabetes ICU patients. The proposed approach considers
patient demographic data, diabetes-related lab measurements,
diagnoses, and medications. Similarly, Convolutional Neural
Networks (CNN) were applied to a similar set of variables [36].
None of the methods consider the careflows of past hospital
encounters of patients, though prior admission information is
known to be a factor for outcome prediction [37].

C. Process Mining in Healthcare

Process mining originates from the analysis of business pro-
cesses by investigating recordings of performed actions. EHRs
and patient workflow management systems enabled the adoption
of process mining in the healthcare domain. In comparison to
business processes, healthcare processes are highly dynamic,
complex, increasingly multi-disciplinary, and ad-hoc [38] which
results in numerous research challenges.

One of the first healthcare applications of process mining was
published by Mans et al. [39] in 2008. This work demonstrates
the applicability of process mining techniques to a gynecological
oncology process. The process was analyzed from control flow,
organization, and performance perspectives and detected a lack
of structure in healthcare environments. Since then, process min-
ing in healthcare has gained significant attention [11], [40]–[43]
and is increasingly used to identify regular behavior, careflow
variants, and exceptional medical cases in an a-posterior way.
The outcomes of process mining in healthcare are used to dis-
cover different disease progressions, treatment variations, detect
bottlenecks, and evaluate how well a healthcare site conforms
with guidelines. Process mining is also increasingly utilized to
analyze and detect careflows across multiple organizations [44].
Using empirical data to improve processes is increasingly ac-
knowledged by healthcare organizations [12].

Process mining techniques have also been applied to analyze
diabetes-related processes. The study of de Toledo et al. [45]
discovered common DM disease patterns from diagnosis data
that is generally recorded for administrative purposes. The au-
thors demonstrate the applicability of process mining to detect
meaningful patterns from a real-world dataset of DM patients.
Conca et al. applied process mining on a DM dataset to in-
vestigate if differences in work coordination of caregivers exist
and if differences lead to undesired patient outcomes [46]. A
further study by Dagliati et al. analyzed DM patients in Italy to
unveil frequent care patterns that describe the evolution of the
disease [47].

While the literature recognizes that process mining can be
used to obtain valuable insights into healthcare processes and
careflows, no study exists that uses process mining to predict
future patient outcomes. Such outcomes include in-hospital
mortality of diabetes ICU patients.

III. PRELIMINARIES

A. Event Log

The subsequent definitions are based on [48]. An event a ∈ A
is an instantaneous change of the state of a system. A describes
the set of all possible events. An event instance E is recorded
for each occurrence of an event. E is a vector that consists of at
least two elements: the label of the corresponding event and the
timestamp of occurrence. E can contain further non-mandatory
elements that describe for instance resources, people, or costs.
Since events are instantaneous and the point probabilities in
continuous probability distributions are zero, the timestamps of
two events cannot be equal [48]. A trace g ∈ G is a finite and
chronologically ordered sequence of event instances.C describes
the infinite set of all possible traces. An event log L ⊂ G is a set
of traces. Li,j denotes the jth event instance of the i trace of an
event log L. The cardinality of an event log, |L|, corresponds to
the number of traces.

B. Petri Net

A Petri net is a mathematical model. It is a commonly used
technique in process mining to represent processes. Events that
are recorded in an event log can be represented by transitions in
a Petri net. A Petri net model is at any given time in a certain
state. Whenever a transition fires, i.e. an event is observed, the
state of the Petri net changes from one to another until a final
state is reached. The reader is referred to [49], [50] for formal
Petri net introductions and definitions.

C. Process Mining

Process mining is a comparatively young research discipline
that focuses on the analysis of processes using event logs [5].
Process mining methods can be traditionally classified into
three categories: Process Discovery, Conformance Checking,
and Process Enhancement.

Process Discovery is confronted with the automated extrac-
tion of process models, such as Petri nets, from a given event
log L. Ideally, such a process model reflects the behavior seen in
the event log but also generalizes well. Conformance Checking
describes the quality assessment of a process model with regards
to an event log L. Exemplary conformance checking metrics
include the measurement of how well a process model allows
for the behavior in an event log and metrics that measure if a
process model allows for behavior beyond the one recorded in an
event log. The category of Process Enhancement deals with the
extension and improvement of process models using information
from an event log.

The reader is referred to [5] for a formal process mining
introduction. This paper is based on methods that are categorized
as Process Discovery and Conformance Checking.

D. Decay Replay Mining

Decay Replay Mining (DREAM) [48] is a process mining
based methodology that is used to predict future process events.
The method extends the places of a discovered Petri net process
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Fig. 1. High-level view of the proposed process mining/deep learn-
ing architecture to enhance the in-hospital mortality prediction of ICU
diabetes patients.

model with time decay functions. These functions are parameter-
ized using event timestamp information when replaying an event
log on top of the process model. When replaying an event log
on a Petri net that has been extended with time decay functions,
one obtains a vector of time decay function values and a vector
that represents the number of tokens that were created in each
place next to the marking of the Petri net. The concatenation
of marking, time decay function values, and token count is
called timed state sample and represents the state of a process
by incorporating time information. Additionally, a timed state
sample is a lossfull embedding that can recover visited markings
of replayed trace. The original publication [48] demonstrated
the applicability of timed state samples to predict the next
event given a partial trace and reports significant performance
improvements.

E. Medical Information Mart for Intensive Care

The Medical Information Mart for Intensive Care III (MIMIC-
III) is a large publicly available relational database that con-
tains deidentified clinical data of patients that were admitted
to the Beth Israel Deaconess Medical Center in Boston, Mas-
sachusetts [51]. The database encompasses 38 597 adult patients
and 49 785 hospital admissions from 2001 to 2012. The clinical
data encompasses admission information, patient demographics,
caregiver information, lab measurements, charted observations,
full-text notes, diagnosis codes, and more. MIMIC-III has been
recently evaluated and recommended for process mining pur-
poses [52]. The database consists of multiple tables. Each table
is defined as a relational variable T where t1, t2, . . ., tn ∈ T
defines the column identifiers. A row of a table is defined by a
vector RT . The value rt corresponds to the value of column t of
row R.

IV. METHODOLOGY

This section focuses on the proposal of a process mining/deep
learning architecture to enhance the in-hospital mortality pre-
diction of diabetes ICU patients. The high-level overview is
visualized in Fig. 1. The selection of variables is introduced in
Section IV-A. In Section IV-B, an approach to convert EHRs
to event logs is proposed. Finally, Section IV-C introduces

Fig. 2. This visualization provides an overview of the raw data sources
required for each event class.

the methodology to predict the in-hospital mortality probabil-
ity of DM ICU patients using an adapted DREAM-NAP ap-
proach [48]. The corresponding Python source code is publicly
available on Github.1

A. Variable Selection

The methodology has been developed using the MIMIC-III
dataset. All DM patients were included that had at least one inpa-
tient or outpatient hospital encounter registered in the database
prior to their most recent ICU encounter.

The trace of each patient contains events of hospital admission
types, admission timing, discharge times of past encounters,
and insurance information. The possible insurance types are
Government, Self Pay, Medicare, Private, and Medicaid. The
admission types are planned and unplanned.

Furthermore, the hemoglobin A1C (HbA1c), serum creati-
nine, and blood glucose lab measurements are considered for
each patient. These lab measurements are identifiable in MIMIC-
III using the LOINC codes 4548-4, 2160-0, and 2345-7, respec-
tively. The lab measurements are used regardless of inpatient-
or outpatient venue.

Additionally, the performed services and diagnoses are con-
sidered using CPT and ICD-9-CM codes. Codings are ordered
in MIMIC-III by priority. A timestamp of a code is considered
if present. Alternatively, the timestamp of a code is set to the
timestamp of discharge.

Demographic information is used for each patient. This in-
cludes the age at the first registered encounter, sex, and race.
Additionally, the SOFA, OASIS, APS-III, and SAPS-II score
are calculated 24 hours after the admission for the index ICU
encounter.

B. Health Records to Event Log Conversion

This section describes the conversion methodology to convert
medical records from MIMIC-III to events that are suitable for
process mining. In total, 10 different event classes are defined.
Fig. 2 provides an overview how each table of MIMIC-III is used
for the corresponding event classes. Events that are related to

1[Online]. Available: https://github.com/ProminentLab/PM-DL-Mortality-
Prediction

https://github.com/ProminentLab/PM-DL-Mortality-Prediction
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admission information is provided in blue. Green shows events
that are based on lab measurements. Comorbidity events are
visualized red. Artificial events resulting from diagnosis codes
are highlighted in pink.

Initially, an empty trace gp is created for each p ∈ P where
P is the set of relevant patients.

1) Admission Events: For each hospital admission of p, two
events are created: one that reflects the type of admission with
a timestamp equaling the recorded admission time, and one
event that reflects the insurance of the patient with a timestamp
that is delayed by 1 ms from the admission type. The delayed
timestamp is calculated by the function σ(t)where t is the initial
timestamp. The delay is minimal. In this way, no information is
altered and the delay is negligible given that the common time
dimension in MIMIC-III is days.

For each hospital admission row RTadmissions
of p, an event

instance E is created such that ets equals the admission time
of R. Moreover, an admission mapping is created that maps for
each value of the set of values for tadmittype a value of the set
{Planned, Unplanned}. The mapped value corresponds to the
event name of E.

Additionally, a second event instance E is created for each
admission row RTadmissions

of p where ets equals the value of
the functionσ of the admission time ofR. The event value equals
the value in the insurance column. All events are added to gp.

2) Lab Events: Lab measurements can be understood as time
series data since each measurement might be performed multiple
times during a specific hospital encounter or between hospital
discharge and readmission. For each recorded time series and
type of lab measurement, two events are created: a start event
that corresponds to the observed mean value with a timestamp
equaling to the timestamp of the first performed measurement,
and an end event that represents the standard deviation (std) of
the time series with a timestamp of the last performed mea-
surement. If only one measurement was observed for a given
time series, then the timestamp of the end event is set to 1 ms
after the start event to maintain the order. Consequently, a lab
event is calculated from one or many lab measurements. The
corresponding events are added to gp.

3) Comorbidity Events: Events are created to represent co-
morbidities. Therefore, the ICD-9-CM diagnosis codes of each
hospital admission are used to calculate the Elixhauser comor-
bidity score. This score assigns points if certain ICD-9-CM
codes are present representing a particular comorbidity category.
If a point for such a category is assigned, a corresponding event
is created such that the event name equals the comorbidity cate-
gory. This leads to 30 possible different comorbidity events. The
timestamp of comorbidity events corresponds to the discharge
time of the corresponding hospital encounter. The comorbidity
events of each patient are added to gp. Since events in a trace
occur sequentially, multiple comorbidity events with the same
timestamps are delayed by multiples of 1 ms to maintain the
order. The delayed timestamp is calculated by the function σ(t)
where t is the initial discharge timestamp.

4) Artificial Events: The time-ordered sequence of CPT and
ICD-9-CM codes are used to create artificial events that carry
essential, objective-dependent information. Since the number
of unique ICD-9-CM and CPT codes is very large, a much

Fig. 3. This figure illustrates the flow to learn and extract artificial
events from sequences of diagnosis and procedure codes.

smaller number of n artificial events need to be learned to
transform the diagnosis and procedure codes into a space with
a manageable dimension. Fig. 3 illustrates the methodology
of learning artificial events from sequences of ICD-9-CM and
CPT codes. Blue components represent neural network modules.
These modules are connected from and to data objects. White
data objects correspond to given inputs and desired outputs
whereas gray objects represent latent data representations. The
yellow arrows correspond to loss functions that are used to
train the neural network objects that are visualized on the same
vertical interception.

In a first step, the sequence of ICD-9-CM and CPT codes is
transformed into a numerical space. Therefore, existing clinical
embeddings of Choi et al. are leveraged [53]. The embeddings
combine a large set of medical concepts including diagnoses,
medications, procedures, and laboratory tests in one numerical
space, and are learned using neural language modeling. These
embeddings are derived from a private claim dataset of an health
insurance company. This dataset contains ICD-9-CM codes,
CPT procedure codes, medication, and lab measurement data
of over four million patients longitudinally for 2-4 years per
patient between the years of 2005 and 2013.

The embedded sequences are fed into a Long Short-Term
Memory (LSTM) [54] that acts as an encoder with an output ofn
sigmoid neurons to learn an n-sized embedding of the sequence.
The architecture of this encoder consists of two LSTM layers
with each 100, and n LSTM cells and a dense output layer.
Dropout is applied with a rate of 20% between all layers to
prevent overfitting [55].

The resulting embedding is then fed as an input to a second
LSTM to reconstruct the original embedded sequences using a
mean absolute error loss. The architecture of the decoder is equal
to the inversed architecture of the encoder. With this approach,
an n-sized embedding of the sequences is learned that carries as
much information as possible to reconstruct the input.

In parallel, the n-sized embedding is used to train a dense
neural network to classify if the provided ICD-9-CM and CPT
code sequence belongs to a patient that will either survive
future hospital stays, is at risk of dying in a future hospital
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Fig. 4. Overview of the proposed approach to predict in-hospital mor-
tality of diabetes ICU patients.

stays, or will die in the current hospital stay. This adds mor-
tality information to the n-sized embedding when optimizing
a categorical cross-entropy loss. At convergence, the n-sized
embedding contains information to predict if a patient is at risk of
in-hospital mortality while being able to reconstruct the original
ICD-9-CM and CPT codes of importance. The dense neural
network architecture consists of three layers with 35, 15, and
3 neurons, respectively. The first two layers leverage a Rectified
Linear Unit activation [56] whereas the final layer uses a softmax
activation to output the desired probabilities. Dropout of 20% is
applied between all layers to prevent the model from overfitting.

Since then-sized embedding consist of sigmoid outputs of the
LSTM encoder, all n values are in the range of [0,1]. If a value
at the index i ∈ 0, 1, . . ., n− 1 is greater or equal than 0.5, an
artificial event is created such that the name of the event equals
index i. Hence, the existence of an event i corresponds to a value
greater or equal than 0.5 at index i whereas the non-existence of
an event i corresponds to a value smaller than 0.5 at index i of the
n-sized embedding. The timestamps of artificial events equal to
the timestamp of the sequence observation plus minimal offsets
of 1 ms to maintain the order of the indices calculated by σ(t).
The resulting artificial events are added to the corresponding gp.

C. In-Hospital Mortality Prediction

This section introduces a process mining based approach by
leveraging the created event logs, patient demographics, and
on-admission day severity scores to predict in-hospital mortality
of diabetes ICU patients. An overview of the components is
visualized in Fig. 4. Subsection IV-C1 introduces an extended
DREAM approach [48]. Subsection IV-C2 focuses then on a
dense neural network to predict the desired patient outcome.

1) Adapted Decay Replay Mining: DREAM demonstrated to
be a promising process mining based methodology to predict the
next event during the runtime of a process [48] by incorporating
interarrival times of events using time decay functions. In this
paper, two modifications to the original approach are proposed to
predict in-hospital mortality events of diabetes ICU patients. The
general idea is that the medical history of a patient is replayable
on a process model. The timed state sample at the time of
the most recent admission represents the state of the patient’s
comorbidities and diabetes-related health conditions on hospital
presentation. As defined in [48], the timed state sample at time
τ is defined as

S(τ) = F (τ)⊕ C(τ)⊕M(τ)⊕R(τ) (1)

which is the concatenation of the decay value vectorF (τ), token
count vector C(τ), marking M(τ), and resource counts R(τ)
(if applicable) at time τ . In this paper, the timed state sample
representation is modified to

S(τ) = F1(τ)⊕ F2(τ)⊕ F3(τ)⊕ F4(τ)⊕
C(τ)⊕M(τ) (2)

where F1(τ) corresponds to the original F (τ), and F2−4(τ)
correspond to novel time decay functions. When using several
distinct types of time decay functions, one can highlight different
time properties of the process when replaying the event log. This
is assumed to provide a stronger learning signal for the prediction
of events.
F1(τ) and F2(τ) contain time decay values of linear time

decay functions, such as the one depicted in 3. However, the α
parameter is initialized differently for the time decay functions
in F2(τ) compared to F1(τ). Whereas the linear time decay
functions of F1(τ) are initialized using the mean reaction times
of token, the functions ofF2(τ) are initialized based on the mean
trace duration of L.

f1(τ) = β − α ∗ τ (3)

F3(τ) contains time decay values of exponential time decay
functions that have been parametrized with the maximum trace
duration. These functions are defined in 4. This type of time
decay function provides a stronger signal on more recent place
activations but vanishes faster compared to linear time decay
functions. Time decay values have increased differentiability if
they are occurring closer in time to each other.

f3(τ) = β ∗ (1− α)τ (4)

Finally, F4(τ) is a vector that contains time decay values of
logarithmic time decay functions. These functions are defined
in 5 and are parametrized using the mean trace duration of L.

f4(τ) = log(τ)/log(α) (5)

Finally, an event count vector A(g) is added that counts the
occurrence of each event of a trace. Since the time decay function
values, token counts, and markings are features that are obtained
based on tokens entering and leaving places of the process
model, the vector A(g) contributes additional information of
fired and visible transitions. This vector also counts all events of
historical encounters and the index ICU encounter independent
of time and sequence.

2) Dense Neural Network: The neural network required to
predict the desired patient outcome has three input components
that are different from the initially proposed neural network
architecture in [48]: The timed states samples as an output from
the adapted DREAM component described in Section IV-C1,
demographic inputs and severity scores that are calculated on
ICU admission day as a second input, and the event counts as a
third input. An overview of the dense neural network architecture
is provided in Fig. 5. The number in each layer represents the
number of neurons. BN corresponds to a batch normalization
layer and DO represents a dropout layer.

The timed state sample input layer takes S(τ) on admission
as input. The second layer takes the age of a patient on its
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Fig. 5. Architecture of the dense neural network to predict in-hospital
mortality of diabetes ICU patients.

first hospital encounter, gender, one-hot encoded ethnicity, and
the severity scores (OASIS, SOFA, SAPS-II, and APS-III) that
are calculated on ICU admission, concatenated into a single
vector into consideration. The third layer considers the time-
and sequence independent event count of a patient trace includ-
ing events of the index encounter. This includes procedures,
diagnoses, and diabetes-related health measurement values that
are not necessarily available in the MIMIC-III database on
admission, but that are commonly known and/or assessable by
clinicians within 24 hours of ICU admission.

Each input layer is fed to a separated and unique hidden layer
branch before a hidden layer concatenates the branches and
feeds it to two further layers. All hidden layers use a Rectified
Linear Unit activation function which has demonstrated superior
performance in literature. The branched first hidden layers have
additionally a batch normalization layer for accelerated conver-
gence and improved stability [57] each. Dropout layers with a
rate of 40% for regularization [55] are used. The output layer
consists of a softmax activation function to output the patient’s
probability of in-hospital mortality. The detailed architecture
is visualized in Fig. 5. The introduced architecture performed
best across multiple hyperparameter selection iterations. Further
insights are provided in Section V-D.

V. EVALUATION

This section describes the experimental evaluation of the
proposed approach. The used dataset is described in subsection
V-A followed by an introduction of the setup in V-B. The results
and comparisons to existing methods is highlighted in V-C.
Ablation studies are described in subsection V-D. A discussion
in subsection V-E concludes Section V.

A. Dataset

DM patients with at least two hospital encounters where the
most recent one encompassed an ICU encounter, are considered
for evaluation. All of these patients must have had a DM-
related ICD-9-CM diagnosis (250.xx) prior to the most recent
admission. This excludes gestational DM and drug-induced DM.
Furthermore, all patients were verified to either have an HbA1c
value greater or equal than 6.5% [58] prior to the most recent
admission, be prescribed DM home medication, or have had a

TABLE I
COHORT DETAILS OF THE TRAIN AND TEST SPLITS

DM history in their medical history full text notes. This verifies
and confirms that the selected patients are truly diabetic. This
lead to a total number of 2436 patients which were randomly
split into a training and testing cohort using a 75/25 ratio. The
patient statistics of each split are described in Table I.

Additionally, 74 patients are added to the train set that were
previously diagnosed with DM (250.xx) and went to the ICU,
but that could not be verified to have an HbA1c value greater or
equal than 6.5% prior to the most recent encounter, be prescribed
diabetes home medication, or have had a diabetes history in
their medical history full text notes. These patients are called
conjectural samples and can be used for model training purposes
only.

Furthermore, the train set is randomly split using an 85/15
ratio to obtain a train and validation split. These splits are
required to discover a process model and train a neural network,
and to select the best model before evaluating on the test split.

B. Setup

Process discovery and training of the described methodol-
ogy is performed using the train set including the conjectural
samples to maximize the training sample size. The conjectural
samples are similar to the target group since these patients have
been diagnosed with at least one diabetes-related ICD-9-CM
code. Preliminary experiments have shown that using the set
of conjectural samples for training increased the performance
of predicting the in-hospital mortality of verified diabetes ICU
patients using the proposed methodology.

The LSTM-based neural network architecture to learn artifi-
cial events that is introduced in Section IV-B4 is trained with
an embedding size of n = 30. Hence, up to n = 30 artificial
events are extracted from a given sequence of ICD-9-CM and
CPT codes. The LSTM-based neural network has been trained
for 300 epochs using a batch size of 128. The best model is
obtained based on the performance on the validation set.

The corresponding timed state samples, demographic inputs,
and severity scores are obtained for the train, test, and validation
split. The train and validation splits are shuffled such that the
sample sizes remain unchanged. In this way, the train split
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Fig. 6. This illustration provides a visualized overview of the obtained AUROC scores and their 95% CIs for each model.

contains samples that were unseen during process discovery and
the validation set contains samples that have been used to obtain
the process model. This increases the generalization of the neural
network to predict in-hospital mortality. The neural network to
predict the patient outcome is trained for 200 epochs using a
batch size of 256. The best performing model is chosen based
on validation loss and performance.

The test split is used to obtain the Area under the Receiver
Operating Characteristic curve (AUROC). This score is an es-
timate of the probability that a classifier ranks a randomly
chosen positive instance higher than a randomly chosen nega-
tive instance, and is a better classification estimate than other
common classification performance metrics [59]. Moreover,
the 95% confidence intervals (CIs) for the obtained AUROC
scores are obtained using DeLong’s method [60]. For evaluation
and comparison purposes, the AUROC scores and CIs on the
test set are obtained for the APS-III, SAPS-II, SOFA, OASIS,
Elixhauser comorbidity, DCSI, and CCI scores. Moreover, LR
and RF models are developed as described in [22]. A CNN-based
model is trained as reported in [37] using the set of train patients
as described in Section V-A.

C. Results

The proposed approach results in the highest observed AU-
ROC score and the most narrow 95% CI. The severity score of
APS-III demonstrates the second best AUROC score which is
roughly 4.5% smaller than the one of the proposed approach with
a CI that is more than 1% larger. SAPS-II shows also a satisfying
performance in terms of AUROC. The SAPS-II AUROC is
almost 1% smaller than APS-III, however, its CI is slightly nar-
rower. The severity scores of SOFA, OASIS, DCSI, Elixhauser
comorbidity score, and CCI show a decreasing predictive power
in this order. At the same time, the CIs are increasing which
implies an increasing uncertainty of each model when predicting
the in-hospital mortality of diabetes ICU patients. Using the
significant features that are described in [22] to build an LR and
RF classifier result in lower AUROC scores with comparatively
larger CIs than originally reported. It can be assumed that this is

due to the fact that the machine learning models were trained on
patients that had at least two hospital encounters. Consequently,
there are fewer patients available to train the model. Finally, the
CNN model described in [36] performs with the lowest AUROC
and the largest CI of all models. This score significantly differs
from the originally reported score. The authors of [36] applied
data transformations including oversampling prior to splitting
patients into train and test cohorts. This leads to data leakage
and causes consequently incorrect conclusions. In comparison,
the evaluation scores reported in this manuscript are based on
unseen patients contained in the test set and reflect the actual
predictive performance of the model.

The CIs are visualized in Fig. 6. Since the CI of the proposed
approach is non-overlapping with the CIs of OASIS, LR, RF,
Elixhauser comorbidity score, DCSI, CNN, and CCI, the im-
provements are statistically significant. For APS-III, SAPS-II
and SOFA, DeLong tests are performed with the null hypotheses
that the ROC of the proposed approach is the same as the
ROC of APS-III, SAPS-II, and SOFA, respectively. This sta-
tistical test leads to the corresponding and respective p-values
of 0.0266, 0.0053, and 0.0006. The Holm-Bonferroni proce-
dure [61] is used to deal with the familywise error rates. Since
0.0266 < 0.05, 0.0053 < 0.025, and 0.0006 < 0.0167, it can be
concluded that the proposed process mining/deep learning archi-
tecture performs significantly better than any of the compared
methods at a level of α = 0.05.

Furthermore, a derivation of the proposed model is trained
that neglects the severity scores for in-hospital mortality pre-
diction. This model results in an AUROC of 0.826 with a
95% CI of [0.783, 0.868]. This is numerically larger than the
other models and statistically superior to all but the APS-III,
SAPS-II and SOFA using Delong’s test at α = 0.05. Conse-
quently, it can be concluded that a process mining approach,
without leveraging existing severity scoring methods, results
in an AUROC that is as good as APS-III, SAPS-II and SOFA
for diabetes ICU patients. The corresponding ROC curves are
visualized in Fig. 7. The proposed model improves especially in
the low False Positive Rate area compared to other established
methods.
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Fig. 7. ROC curves of the models.

Fig. 8. Average 3 rd quartile range of Shapley values per feature type.

D. Ablation Study

This subsection describes multiple performed ablation stud-
ies, including an analysis of Shapley values of the neural net-
work, an event type ablation on the event log, a layer-wise
ablation study on the neural network, and an ablation study on
the artificial event learning approach in the Sections V-D1, V-D2,
V-D3, and V-D4, respectively.

1) Shapley Value Analysis: A Shapley value analysis is per-
formed on every patient of the test set to investigate the impact
of each patient’s input to the neural network output probability.
Therefore, the Shapley Additive Explanation approach [62] is
leveraged. A Shapley value describes the average contribution
of a feature value to the prediction across different coalitions.
The 3 rd quartile range of Shapley values provides a good
estimate of a feature’s importance while neglecting outliers and
accommodating for the sparsity of features with low impact due
to the high dimensionality of the process model. Fig. 8 shows
the obtained results.

The figure shows that the patient’s count of events has the
largest impact on the prediction, followed by the severity scores.
The token count vectors created by replaying the patient’s history
on the process model have an impact similar to the severity
scores. The average 3 rd quartile ranges of Shapley values for
the time decay function values and markings of the timed state
samples originating from the patient’s history show a range of
around 10 percent. The demographic information and exponen-
tial time decay function seem to be less important on average.
The figure confirms that patient history and the timing of events

Fig. 9. Mean AUROC difference for including/excluding an event type
over 10 runs. The reference value corresponds to the setup including
the event type under investigation while the bars indicate the difference
when excluding the event type under investigation.

modeled using process mining have an impact on the mortality
probability prediction in the proposed setting.

2) Event Type Ablation Study: It has been demonstrated that
the removal of severity scores and demographic information
leads to a performance that is comparable to severity scores.
The continued step-wise event removal from the event log is
analyzed in this subsection. The impact of each event type is
investigated by using all possible combinations of event logs
that either include/not include lab measurement, comorbidity,
and artificial events. Admission events are always required since
those mark the extraction of timed state samples. This leads to
a total of 8 unique event log setups that are trained 10 times
each. Fig. 9 shows the mean AUROC differences compared to
reference scores.

The results indicate a performance maximization when all
event types are included. This justifies the incorporation of the
proposed event definitions. Moreover, the plot highlights the
presence of high-dimensional event interactions. The removal
of an arbitrarily chosen event type from the proposed event log
structure leads to lower predictive performance. At the same
time, the inclusion of lab measurements improves the predictive
performance only when both comorbidity and artificial events
are present. In other scenarios, lab measurement events seem to
be negligible. The learned artificial events have a high impact in
every event log setting based on the bottom plot.

3) Neural Network Layer Ablation Study: The proposed neu-
ral network architecture is analyzed in two steps. First, an
analysis is performed by adding further layers to each of the
three inputs prior to the concatenation layer. Second, a step-wise
decrease of layers after the concatenation layer is conducted. The
results are visualized in Fig. 10.

Fig. 10 shows that a second layer per input prior to concate-
nation leads to a similar AUROC score over 10 runs, but with
higher variance. With a third layer, the AUROC starts decreasing
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Fig. 10. Mean AUROC difference to proposed one-layer per in-
put pre-concatenation and to proposed two-layer architecture post-
concatenation including the corresponding standard deviations over 10
run.

with an even higher variability. This justifies one layer per input
prior to concatenation of the proposed model. The figure shows
also that the removal of all post concatenation layers (except
for the softmax output) leads to an AUROC decrease with a
large variance. Using one layer post concatenation results in a
slightly worse AUROC performance with a variance compared
to the proposed architecture.

The results indicate that the proposed architecture is locally
optimized. Additionally, interactions across the different inputs
are present since the architecture prior to the concatenation
requires less layers compared to the one post concatenation.

4) Artificial Embedding Analysis: This subsection investi-
gates the effectiveness of the proposed autoencoder architecture
to learn artificial events, as described in Section IV-B4. The
proposed architecture is compared to a reduced architecture with
one hidden LSTM layer, and to an LSTM model where the
embeddings are derived from the hidden state of the LSTM.
Moreover, each architecture is trained with n = 10, 20, and
30. The resulting nine architectures are trained and evaluated
each ten times. The validation AUROC is used to interpret the
performances. Fig. 11 visualizes the results.

The results show that the proposed architecture leads to
constantly high validation AUROC scores independent of n.
When increasing n, the comparison models increase in perfor-
mance. Since all models with n = 30 lead to a similar validation
AUROC with a similar variance, a deeper look at the resulting
artifical events are required. The probability densities show that
the proposed architecture leads to values that are closer to 0 or 1
with only few values in the mid-range around 0.5 compared to
the simplified and the LSTM architecture. This shows that the
proposed architecture learns the desired artificial events. When
comparing the proposed architecture with n = 30 to n = 20,
it can be observed that the value range is narrower and closer
to 0.5. Hence, the usage of n = 30 is justified. An increase of
n = 40 leads to a higher dimensionality of the process model
that is less favorable.

Fig. 11. 10-Fold validation set AUROC performance of three models
with three embedding sizes.

E. Discussion

From the results, one can see that the severity scores that are
calculated on ICU admission day - in particular SAPS-II, APS-
III, SOFA, and OASIS - are good indicators for the in-hospital
mortality of diabetes ICU patients. However, these scores are
calculated based on a large set of present physiologic parameters
with minimal or no consideration of prior patient histories. The
proposed approach leverages those scores, also, and combines
the information with information from past hospital encounters.
This combination leads to an AUROC improvement of +5%
from APS-III and +10% from OASIS. The Elixhauser comor-
bidity score, CCI, RF, LR, and CNN approaches can predict
the in-hospital mortality of diabetes ICU patients with a weaker
AUROC. However, these methods do not fully integrate past
hospital encounters and leverage only a fraction of the available
information.

One of the advantages of the proposed approach is the output
of a process model that enables further analysis of patient
careflows. A further advantage of using process mining over pure
severity scores and traditional machine learning models is the
discovery of a usually interpretable process model, as visualized
in Fig. 4. This process model can be used for further traditional
process mining analysis to gain insights into the patients at risk
and their historical careflows.

A limitation of the proposed approach is that it requires that
the patient have at least one prior admission and that the hospital
has access to at least one of the last admissions. Hence, the
approach is not suitable for patients which are previously only
admitted to outside hospitals. Patients with DM who have never
been admitted to a hospital before are likely less common in
ICUs than those with prior admissions. In our dataset, roughly
40% of the DM patients in the ICU never had an encounter in
the hospital before.

Therefore, the proposed approach addresses mainly large hos-
pitals and hospital networks such that past hospital encounters
of patients are available. Small hospitals that are geographically
isolated may work well also as most admission(s) and other
encounter data are captured. Small hospitals in urban areas
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might lack the availability of data to build a process mining
based model due to loss of encounter data. However, this lim-
itation can be overcome with the integration of standards like
FHIR to interchange medical health records between healthcare
providers or through vendor initiated sharing networks like care
everywhere®2 and Commonwell®.3

VI. CONCLUSION

This paper has demonstrated one of the first process mining
based approaches to model historical EHR data of diabetes
ICU patients in combination with severity scores to predict in-
hospital mortality. Specifically, an approach has been introduced
that converts past medical records prior to the index hospital
admission to event logs that are suitable for process mining.
Then, a combination of existing risk scoring methods and Decay
Replay Mining is used to predict the probability of mortality of
a patient. In this way, established methodologies are combined
with the advantages of incorporating historical information that
provides an increased holistic view of the patients’ conditions.
The paper demonstrates significant performance improvements
in predicting the in-hospital mortality of diabetes ICU patients
that have a patient history in the hospital of the MIMIC-III
database compared to established risk assessment scores and
machine learning approaches.

The results underscore the importance of incorporating EHR
information from the past into predictive systems. Furthermore,
it demonstrates the suitability of process mining based methods
to examine the impact of diabetes-related lab results, diagnoses,
and procedures on outcomes in ICU patients.

However, the current methodology has also certain limita-
tions. First, this approach addresses hospitals with a strong
longitudinal patient record and may not be useful for ones with
minimal longitudinal patient history. Yet, this limitation can
be overcome if information exchange is occurring between the
index and other medical centers. Second, the approach focuses
on DM patients only and is not easily transferable to other
chronic diseases. Each chronic disease may require its own
process mining based model to maintain a satisfying objective-
dependent predictive performance. Third, such an analysis using
the MIMIC-III database can be difficult as patients procedures
and diagnoses are ordered for billing purposes without the corre-
sponding occurrence timestamp. Therefore, research on further
hospital datasets is anticipated to strengthen the reported results
and to validate the assumptions.

Future research is anticipated to be conducted in multiple
directions. First, the proposed process mining/deep learning
architecture enables multiple further healthcare applications that
focus on various chronic disease patient groups and prediction
tasks. This includes outcomes such as length of stay, ICU length
of stay, or unexpected 30-day readmission on patients with
chronic diseases like DM, kidney disease, or heart failure. Sec-
ond, the proposed approach should be extended to analyze the

2[Online]. Available: https://www.himss.org/resource-environmental-scan/
care-everywhere

3[Online]. Available: https://www.commonwellalliance.org/how-to-
participate/alliance-members/

resulting process models of the DREAM approach for in-depth
interpretability. Such an analysis can unveil further patterns that
are predictors for severe patient outcomes in patient careflows.
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