
276 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 26, NO. 1, JANUARY 2022

Reconstruction of Missing Samples in
Antepartum and Intrapartum FHR

Measurements Via Mini-Batch-Based Minimized
Sparse Dictionary Learning

Yefei Zhang , Zhidong Zhao , Member, IEEE, Yanjun Deng , Xiaohong Zhang , and Yu Zhang

Abstract—Fetal Heart Rate (FHR), an important recording
in Cardiotocography (CTG)-based fetal health status mon-
itoring, is the only information that clinical obstetricians
can directly obtain and use. A challenge, however, is that
missing samples are very common in FHR due to various
causes such as fetal movements and sensor malfunctions.
The aim is the development of an inpainting tool which
is suitable for different missing lengths q and various to-
tal missing percentages Q, as well as for use in online
mode. This study focused on two major impediments to
existing inpainting methods: the longer the missing length,
the more difficult it is to recover with mathematical meth-
ods; the reliance on tens of thousands of training samples,
and the computational burden caused by full batch-based
dictionary learning algorithms. We present a regularized
minimization approach to signal recovery, which combines
a L0.6−norm minimized sparse dictionary learning algo-
rithm (MSDL) and a model optimization strategy for using
a mini-batch version for signal recovery. Using 100 FHR
recordings with 2 protocols designed to simulate missing
clinical data scenarios, the combined method performed
favorably in terms of 5 data analysis metrics and 3 clinical
indicators. Comparing 4 inpainting methods, we were able
to prove the superiority of the proposed algorithm for both
large q and large Q. The experimental results showed the
lowest values (2.64 (MAE), 4.68 (RMSE)) when Q = 5% with
short interval lengths. The developed architecture provides
a reference value for the practical application of recovering
missing samples online.

Index Terms—Missing sample, reconstruction of FHR
recording, sparse dictionary learning, mini-batch version.

I. INTRODUCTION

F ETAL distress and hypoxia are the main causes of adverse
events such as neonatal asphyxia and disability [1], which
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often occur in late pregnancy and in labor. It is crucial, therefore,
to monitor fetal safety in the womb in late pregnancy. Car-
diotocography (CTG) is a widely used and non-invasive prenatal
diagnosis technique for clinical evaluation of fetal condition in
the maternal uterus. A typical CTG recording consists of two
simultaneously acquired signals, namely Fetal Heart Rate (FHR)
and Uterine Contraction (UC), in which FHR is usually obtained
by Doppler ultrasound probe or fetal scalp electrode. The former
is a non-invasive prenatal diagnosis technique, while the latter
is an invasive technique. On the basis of the guidelines provided
by the International Federation of Gynecology and Obstetrics
(FIGO) [2], FHR signals can provide valuable information about
fetal homeostasis during the critical period of late pregnancy
and labor, and are the only information directly available to
clinicians to make a professional diagnosis by naked-eye in-
spection. Therefore, analysis of FHR recordings is of crucial
importance. A very challenging objective is development of
artificial intelligence auxiliary diagnosis (AIAD) tools for the
extraction of meaningful features from FHR recordings that
could be reliably used to point out possible fetal and neonatal
pathologic conditions.

AIAD tools such as information fusion-based online heart
monitoring systems [3], smart health systems for ambulatory
maternal and fetal monitoring [4] and smart supervision of
cardiomyopathy [5], the ambiguity of which depends in part
on the quality of the measured data. Unfortunately, artifacts can
interfere with FHR recording due to the gravida’s heartbeat, and
suffer from frequent invalid or missing samples due to fetal or
maternal movements, sensor malfunctions, or misplaced elec-
trodes. This is particularly critical during the labor stage since
fetal condition may suddenly change. Labor stage represents a
very stressful period; FHR is the sole measurement acquired
directly from the fetus during delivery, and there is no way of
repeating acquisition as is usually done in the antepartum stage.
Therefore, any distortion leading to a corrupted signal means
difficulties for fetal surveillance.

Usually, for internal direct measurements of FHR, the percent-
age of missing samples ranges from 0-10%, and for external
ultrasound measurements, the percentage varies from 0-40%
[6]. We should note that there are still no guidelines on how
large a percentage of missing samples will disqualify an FHR
recording from automatic analysis or visual inspection, although
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Fig. 1. Architecture of the mini-batch-based minimized sparse dictionary learning approach.

an empirical value given by clinicians for visual inspection, is
50% [7]. Clinicians can tolerate such a high percentage of miss-
ing samples in FHR, because: 1) their inspections, unlike those
of AIAD systems, are mainly focused on morphological fea-
tures, and their rich clinical experience provides a large number
of empirical samples for morphology-based diagnosis; and 2)
human visual perception is far less sensitive to missing samples
than AIAD systems’ quantitative / qualitative assisted diagnosis.
Currently, the development premise of most AIAD tools is to
provide a complete data set [8]. Therefore, the reconstruction of
FHR values for missing samples has a twofold purpose: 1) to
improve trace readability when used for naked-eye inspection;
and 2) to provide a valuable and complete sampled signal that
could be used for AIAD.

As an initial inpainting method, researchers such as SK Lee
et al. [9] and M.Cesarelli et al. [17] have manually reconstructed
missing FHR data based on linear/non-linear mathematical mod-
els. For example, SK Lee et al. applied a first-order autoregres-
sive conditional heteroscedasticity (ARCH (1)) in 2019; and
ZD Zhao et al. (2019) [15] integrated spline interpolation and
cubic spline interpolation to to recover FHR data. However, these
mathematical inpainting methods are not suitable for FHR with
long missing samples. As more and longer missing data are
expected when using external measurements devices such as
wearable monitors, better estimations are desired.

In addition, to the best of our knowledge, there is no reported
study adopting the relevant techniques of deep learning to re-
cover missing FHR recordings. But in some other application
scenarios such as image processing and geo-statistics, recovery
of missing data has been extensively explored [10]–[14]. These
deep learning algorithms can effectively reconstruct regular
missing data and minimize the impact of artifacts. However,
they rely heavily on learning and training with a large amount
of sample data, and cannot be adapted for timely data retrieval
because of the time required to process the data.

In this work, we propose an effective mini-batch-based min-
imized sparse dictionary learning (MSDL) approach (called
miniMSDL), to rebuild the FHR values for missing samples,
with architecture as shown in Fig. 1. The main contributions
and novelty of this work can be summarized as follows:

1) The longer the missing length, the more difficult it is to
recover. In addition, the location of missing data is highly
random, so adaptive learning of missing information is
particularly important. This paper introduces a sparse
learning-based dictionary construction and optimization
method. Compared with the mathematical methods that
rely on a few specified formulas or a sample system
[7]–[9], [15]–[17], the right choice of an adaptive learned
dictionary can lead to better representation of the signal,
i.e., a more sparse representation with less residual.
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2) This paper focuses on addressing the problem of online
mode, i.e timely data recovery for both antepartum and
intrapartum FHR measurements. On the one hand, most
previous approaches are actually designed for an offline
mode since the reconstruction relies on tens of thousands
of training samples and is time-consuming and sometimes
quite repetitive [10]–[12]. But on the other, traditional
dictionary learning is usually computationally expensive
to train as well as to use [18],[19], especially for an
inpainting problem with long missing sample length. To
reduce the training load, we adopted a model optimization
strategy of the mini-batch version, and simultaneously
used a conjugate gradient to solve the complex dictionary
and sparse coefficient matrix. This two-step operation
reduced the number of free variables and alleviated the
computational burden, which clears the way for greater
clinical / practical application in most online AIAD tools.

The proposed method not only achieves state-of-the-art re-
sults on different lengths of missing data, but also provides
complete data for research on FHR-based AIAD systems, and
makes a modest contribution to the biomedical signal processing
knowledge base.

II. RECONSTRUCTION MODEL OF MISSING FHR SAMPLES

Sparse dictionary learning, also known as sparse representa-
tion and dictionary learning, is based on the idea of sparsely
representing a signal in a certain domain where the learned dic-
tionary represents this domain. Therefore, the algorithm consists
of two stages: dictionary generation and sparse coding with a
precomputed dictionary.

With y = [α1, α2, . . . , αL] ∈ RL×1 being a 1D signal of
length L, it can be approximately expressed as y = Dw. Where
D ∈ RL×Nis a dictionary, its columns represent N feature atoms
(thus the block length is N), andw ∈ RN×1 is a sparse coefficient
vector. In the case of L << N, y = Dwbecomes an underdeter-
mined equation system and the current D is an overcomplete
dictionary.

With regard to the reconstruction of missing FHR samples, a
similar relationship exists:

ŷ = Ry (1)

where ŷ ∈ RL×1 is an incomplete FHR signal of a pregnant
woman and y ∈ RL×1 corresponds to her complete FHR sig-
nal. R ∈ RL×L is a random sampling diagonal matrix which
represents the position of data missing, rii = 0: data missing
of the current position while rii = 1is data integrity, i.e., if
ŷ = [a1, 0, 0, 0, a5, . . . , aL]

T, R = diag(1, 0, 0, 0, 1, . . . , 1), in
which diag{·} means diagonalization.

Due to the influence of maternal/fetal displacement and probe
movement, which create a certain amount of noise and error,
formula (1) can be rewritten as follows:

ŷ = Ry + ε (2)

in which ε ∈ RL×1 is a noise term. Formula (2) is aimed at
reconstructing y based on ŷ. Combined with y = Dw, formula
(2) can be expressed as follows:

ŷ = RDw + ε = D̂w + ε, D̂ = RD (3)

Since R and ŷare known to us, the key to to reconstructing a
FHR recording y lies in the solution of D̂ and w. It is, obviously,
a standard sparse coding problem [20], and can be transformed
into:{

D̂, w
}
= argmin

D̂,w

∥∥∥ŷi − D̂w
∥∥∥2
2

, s.t. w is sparse (4)

In whichw is sparse and can be expressed as ‖w‖F ≤ δ, where
‖ · ‖F is the regularization term F-norm. δ is a regularization
term error which is related to the noise term ε and is not known
a priori in most applications.

We transformed the reconstruction of missing FHR samples
into a sparse coding problem because of: 1) the advantage
of dictionary learning. One can represent a large sample with
random missing positions by dictionary learning, which is a
dimension reduction representation. By learning the key features
of the missing location, dictionary learning makes the learned
dictionary adaptive to each pregnant woman. 2) the value of
sparse representation, which expresses as much information as
possible with fewer resources; this can accelerate the calculation
speed of the online mode.

If a pregnant woman collects multiple sets of missing FHR
signals in fetal monitoring, that is, the incomplete FHR signal is
Ŷ = [ŷ1, . . . , ŷK ] ∈ RM×K, then the reconstruction problem
can be expressed as follows:

Ŷ = [ŷ1, . . . , ŷK ] = [R1D1w1 + ε, . . . , RKDKwK + ε]
(5)

Let R = [R1, . . . , RK ] ∈ RM×MK, D = [D1, . . ., DK ]T

∈ RMK×Nand W = [w1, w2, . . . , wK ], and formula (5) can be
determined as follows:

Ŷ = RDW + ε (6)

Similarly, the key to reconstructing Y = [y1, . . . , yK ] ∈
RM×K lies in the solution of D and W , and the above formula
(6) can be transformed into:

{
D,W

}
= argmin

D,W

∥∥∥Ŷ −RDW
∥∥∥2
2
, s.t. wi is sparse (7)

Using equation (4) to resolve formula (7), we obtain:

{D̂,W} = argmin
D̂,W

K∑
i=1

∥∥∥ŷi − D̂wi

∥∥∥2
2
, s.t. ‖wi‖F < δ (8)

Overall, the most important and effective constraint im-
posed on W is L0−norm, as the following formula (9) shows.
It is, however, a nondeterministic polynomial (NP) problem,
and rarely applied in practice. Further, though both L1- and
L2−normcan reduce the risk of overfitting, the former can
more easily obtain a “sparse” solution. That is, the sparse
coefficient matrix W obtained by formula (10) will have more
zero components. Formula (10) can be calculated by iterative
convergence or gradient descent, but its shortcoming lies in its
large computational burden and high complexity.

{D̂,W} = argmin
D̂,W

K∑
i=1

∥∥∥ŷi − D̂wi

∥∥∥2
2
, s.t. ‖wi‖0 < δ (9)
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{D̂,W} = argmin
D̂,W

K∑
i=1

∥∥∥ŷi − D̂wi

∥∥∥2
2
, s.t. ‖wi‖1 < δ (10)

Further analysis shows that replacing the L1−normwith the
Lp−norm(0 < p < 1) can produce a much more accurate re-
construction of sparse signals under the same acquisition condi-
tions. The theoretical analysis leading to this conclusion has been
supported by detailed theoretical research and experiments in the
literature [21]. Therefore, we used the Lp−normto reconstruct
the sparse coding problem, and obtained the objective function
as follows:

{D̂,W} = argmin
D̂,W

K∑
i=1

‖ŷi − D̂wi‖22, s.t. ‖wi‖p < δ, 0 <

p < 1 (11)

III. MINI-BATCH-BASED MINIMIZED SPARSE DICTIONARY

LEARNING FOR DATA RECOVERY

A. Optimization to Objective Function: MSDL

Analyzing the objective function in formula (11), D̂ andW are
free variables, and neitherLp−norm nor the regularization term
error δ is a prior parameter, which makes it difficult to choose in
practice. We developed an Lp−norm-based minimized sparse
dictionary learning algorithm with a mini-batch version and
combined it with a conjugate gradient solution for data recovery
and noise term estimation. To determine Lp−norm automati-
cally, the bayesian information criterion (BIC) is adopted.

1) First, quantify the constraints of formula (11), and obtain
the minimized calculation formula below:

{W,δ} = argmin

[
MK log δ + 1

δ

K∑
i=1

∥∥∥ŷi − D̂wi

∥∥∥2
2

+
K∑
i=1

N∑
j=1

2
p (|wji|p − 1)

] (12)

in which wiis the ith sparse coefficient vector of sparse coef-
ficient matrix W and wji is the value of W in the row j and
column i. The first partMK log δ is a fitting degree of regu-
larization term error, the second part 1

δ

∑K
i=1 ‖ŷi − D̂wi‖22is

a fitting degree of a noise term, and thus these two parts
can be collectively defined as a fitting term. The third part∑K

i=1

∑N
j=1

2
p (|wji|p − 1)is a penalty term: if p = 1 , it can

be resolved as 2(
∑K

i=1 ‖wi‖1−KN) , which is similar to
L1−norm; If instead p → 0 , it does not show similarity to
L0−norm and can be resolved as 2

∑K
i=1

∑N
j=1 log|wji|.

2) Second, find an iterative solution of the independent vari-
able W: Let w(k)

i be the update result of the kth iteration of the
ith sparse coefficient vector and δ(k) be the regularization term
error of the kth iteration. If one marks formula (12) as f(W, δ),
it can also be expressed as follows:

f (W, δ) =
K∑
i=1

f (wi, δ)

=
K∑
i=1

⎛
⎝M log δ +

1

δ

∥∥∥ŷi − D̂wi

∥∥∥2
2
+

N∑
j=1

2

p
(|wji|p − 1)

⎞
⎠

(13)

Calculate the partial derivative of f(wi, δ
(k)) with respect to

wH
i , in which (·)Hrepresents a conjugate transpose operation,

and set it equal to 0, to get:

1

δ(k)
D̂HD̂wi − 1

δ(k)
D̂Hŷi + P−1wi = 0,

P = diag

{[
|w1i|2−p, |w2i|2−p, . . . , |wNi|2−p

]T}
(14)

Since P is a nonlinear function of w
(k)
i , it is hard to solve

the iterative update expression w
(k)
i from (14). Therefore,

we use a heuristic method here. Let P ∼= P(k), i.e., P (k) =

diag{[|w(k)
1i

|2−p
, |w(k)

2i
|2−p

, . . . , |w(k)
Ni

|2−p
]
T}, to get:

wi =
(
D̂HD̂ + δ(k)P−1

)−1

D̂Hŷi (15)

In conclusion, we can obtain w
(k+1)
i of the ith sparse coeffi-

cient vector at the (k+1)th iteration:

w(k+1)
i

=

(
D̂HD̂ + δ(k)

(
P (k)

)−1
)−1

D̂Hŷi

= P (k)D̂H
(
D̂HP (k)D̂ + δ(k)I

)−1

ŷi (16)

Thus, the sparse coefficient matrix is determined: W (k+1) =
[w(k+1)

1
, w(k+1)

2
, . . . , w(k+1)

K
]

3) Finally, find an iterative solution of the independent vari-
able δ: δis a regularization term error in formula (11), which is
the quantization formula of noise term ε. Calculate the partial
derivative of f(w(k)

i
, δ) with respect to δ, and set it equal to 0,

to get:

δ =

∑K
i=1

∥∥∥ŷ − D̂w(k)
i

∥∥∥2
2

M
(17)

Then, obtain the iterative update formula δ(k+1)at the (k+1)th
iteration:

δ(k+1) =

∑K
i=1

∥∥∥ŷ − D̂w(k+1)
i

∥∥∥2
2

M
(18)

Based on the above analysis, we can update the sparse vector
matrix W and the regularization term error δwith formulas (16)
and (18), so as to further realize the iterative solution of the
reconstruction model.
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TABLE I
FULL-BATCH-BASED MSDL ALGORITHM

Note: since ŷ ∈ RL×1, i = 1 (w(k)
i ) and we simplified it to w(k); n_iter will be set and introduced in Section IV.B; the changing trend of the BIC for various Lp−norm

is in Fig. 5(c).

B. Optimization Solution: Model Optimization Strategy of
Mini-Batch Version

Using formulas (16) and (18) derived from MSDL, we can per-
form sparse coding and dictionary learning with a greedy method
such as matching pursuit [22] along with its optimization, called
least absolute shrinkage and selection operator (LASSO) [23].
Since these methods are iteratively updated based on all training
samples, they are also called batch-based solutions. For example,
if the incomplete FHR signal of a pregnant woman is ŷ ∈ RL×1,
i.e., the length of the training FHR sample is L, full batch-based
MSDL can be performed using Algorithm 1 (Table I), where
Condition 1 represents the following inequality:∥∥w(k) − w(k−1)

∥∥
2∥∥w(k)

∥∥
2

≤ ξ1 (19)

which measures the difference degree betweenw(k) andw(k−1).
The smaller the value, the smaller the difference degree between
these two iterations. ξ1 is a small positive number.

As seen in algorithm 1, the sparse coefficient matrix and dic-
tionary depend on all the previous information in each iteration,
and thus all training samples must be processed in one iteration.
In this way, most of the time will be spent on gradient calcula-
tion, which is very time-consuming. Specifically, if L training
samples are iterated a total of n_iter times, the calculation
amount is L× n_iter, which is relatively large. Therefore, we
further expanded the model optimization strategy of a mini-batch
version to MSDL (hence the name mini-batch-based MSDL).

Let us take as an example the training set ŷ ∈ RL×1, in
which L training samples are divided into K parts (that is, K
subsets), each with L/K samples. We will call each subset a mini
batch, and the subset size “batch size”. Then traverses each mini
batch, calculates its gradient, and updates the information. In
this way, traversing all mini batches is just like performing K
gradient descents. Thus, Condition 1 can be implemented with
a smaller n_iter. Mini-batches decline faster than the traditional

full-batch-based solution, which improves the memory utiliza-
tion and parallelization efficiency of the algorithm. Marking L/K
as M, the training set becomes Ŷ ∈ RM×K, with a total of K
mini batches ŷ ∈ RM×1; and each ŷ ∈ RM×1 should be trained
in sequence.

In this study, we implemented such a variant with a genetic
factor λ, thus obtaining the iterative updating formula of w(k+1)

i

and δ(k+1) as in the follow equations (20)-(21). The old data
from the previous iteration is partially forgotten.

w(k+1)
i

=

(
P (k)D̂H

(
D̂HP (k)D̂ + δ(k)I

)−1

ŷi

)
new

+ λw(k)
i

(20)

δ(k+1) =

(
N∑
i=1

∥∥∥ŷ − D̂w(k+1)
i

∥∥∥2
2

/
M

)
new

+ λδ(k) (21)

The miniMSDL can be seen in Algorithm 2 (Table II) where
Condition 2 satisfies the constraints shown in equation (22),
which is a variant of formula (19) and calculates the difference
degree of W in the iterative update process. Using a mini-batch
solution without adapting the entire data set would mean using
the learned dictionary from the previous iteration as the initial
dictionary for the current iteration. Doing so would make the
MSDL capable of processing large amounts of data and also
suitable for online mode.(

N∑
i=1

∥∥∥w(k)
i

− w(k−1)
i

∥∥∥
2

)/(
N∑
i=1

∥∥∥w(k)
i

∥∥∥
2

)
≤ ξ1 (22)

C. Optimization Solution: Conjugate Gradient Solution

When applying the mini-batch-based MSDL algorithm to
reconstruct the missing FHR samples, the iterative update
of the sparse coefficient matrix W involves calculation of

shannonc
Sticky Note
Change N to K

shannonc
Sticky Note
change N to K

shannonc
Sticky Note
change N to K
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TABLE II
MINI-BATCH-BASED MSDL ALGORITHM

Note: the changing trend of test time for various λ is in Fig. 5(d); training time for various K is in Fig. 5(e).

the inverse of the matrix. Specifically, the following part of
(D̂HP (k)D̂ + δ(k)I)−1 equation (20) has a high computational
complexity. Therefore, we converted it to a least squares problem
solved by a conjugate gradient, thus reducing the computational
complexity of the sparse coding update process.

Conjugate gradient is a nonlinear optimization algorithm that
falls between steepest descent and the Newton method. Theo-
retically, we can obtain an optimal solution with only few steps,
which is very suitable for the iterative solution of a sparse matrix.

1) First, let G = (D̂HPD̂ + δI)−1ŷ, rewritten as follows:

G =
(
CHC

)−1
CHx, in which C =

[
P

1
2 D̂H

δ
1
2 I

]
,

x =

[
0

δ−
1
2 ŷ

]
(23)

2) Second, analyze the above formula (23) and transform it
into the least squares problem:

min
G

‖CG− x‖22 (24)

3) Finally, perform the above formula (24) in Algorithm
3 (Table III), where Condition 3 satisfies the following
inequality:

‖rk+1‖22
‖ŷ‖22

≤ ξ2 (25)

Based on the above analysis, this study realizes the recon-
struction of FHR values for missing samples, using miniMSDL

TABLE III
DETAILED STEPS OF CONJUGATE GRADIENT FOR LEAST SQUARE PROBLEM

(PROVIDE COMPUTING SERVICES FOR MINIMSDL)

and the conjugate gradient solution. The detailed and complete
process is shown in Fig. 2.

IV. EXPERIMENTS AND RESULTS

A. Data Description

We carried out a large number of experiments using the
Czech Technical University-University Hospital in Brno (CTU-
UHB) Intrapartum Cardiotocography Database [24], [25]. This
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Fig. 2. Proposed reconstruction model of missing FHR samples, which combines conjugate gradient with miniMSDL.

database, from the obstetrics ward of the UHB, Czech Republic,
contains 552 CTG recordings, which were carefully selected
from 9164 recordings collected between April 2010 and August
2012. Each CTG contains a FHR time series and a UC signal,
each sampled at 4 Hz. These 552 recordings were screened by
Chudacek et al [26] using many clinical and technical criteria,
for instance, a maximum of 60 minutes for the first stage of labor
and a maximum of 30 minutes for the second stage of labor.

The original length of each FHR signal is greater than 10000.
In order to obtain a more intuitive and reliable recovery result
for missing signals, we intercepted complete FHR data without
missing samples and obvious artifacts from each FHR signal,
each with length L = 2000, as shown in Fig. 3(a). It should
be noted that for reconstruction of missing FHR in practice,
there is no required signal length; FHR signals of any length
are suitable. The data missing from FHR is highly random,
and there is currently no gold standard that can truly simu-
late fetal/ maternal movements and other scenarios. So, we
designed two protocols as described below to simulate a missing
FHR sample, which is representative of a rather comprehensive
scenario of challenges and issues for regression techniques.
More precisely, we defined Q, q and numas total missing

Fig. 3. Complete FHR segment of the 2nd pregnant woman
(top); Protocol 1 for missing data (middle), in which Q = 5%, q =
{9, 10, 11, 12, 13, 14, 15, 16}, and num = 8; Protocol 2 for missing data
(bottom), in which Q = 5%, num = 3, q = {5, 7, 88}. The red dotted
line represents the original missing samples. bpm: beat per minute.
Note: these two examples are not the only options for simulation
protocols.
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Fig. 4. FHR recordings collected by the 1st pregnant woman, with
frequently missing data. Each abnormal waveform (of the value to zero)
signifies different degrees of missing data.

percentage, length of each missing, and total number of miss-
ing times, respectively, with the following relationship: Q =∑num

i=1 qi/L. The first indicator measures the missing degree of
an entire FHR, while the latter two measure the number and
frequency of data missing in a pregnant woman throughout fetal
monitoring.

1) Protocol One: Frequent but short missing data segments:
In this protocol, each missing length qis randomly selected, q ∈
(0, 25]. The total missing percentage Q is increased from 5%
to 40%, i.e., Q ∈ [5%, 10%, 20%, 30%, 40%] , and num is
adjusted successively as follows: increased from 8 to 64, i.e.,
num ∈ [8, 16, 32, 48, 64]. The reason why Q ≤ 40%is the
existing rule of clinical collection: when Q exceeds 40%, this
signal is not available [6], [26]. This rule is also applied in the
screening of CTU-UHB. The main goal of this protocol was
to evaluate: 1) whether the proposed algorithm could achieve
reliable reconstruction with multiple data missing (a large num)
in actual acquisition. In other words, the maximum value ofnum
that the proposed algorithm could accept; and 2) the dependence
of miniMSDL on total missing percentage Q.

2) Protocol Two: Fewer but longer missing data segments: In
this protocol, Q is set at 5%, i.e., the total length of data missing
is 100. Define one of the missing lengths as a long time missing,
qmax ∈ (25, 100], and adjust num with the mathematical rules
of formula (26). The main goal of this protocol is to evaluate the
dependence of miniMSDL on the length of each missing q.

qmax =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∈ (25, 50] , num = 5, q
= { q1, . . . , q4, qmax } ;

∈ (50, 98] , num = 3, q = { q1, q2, qmax } ;

= 99 , num = 2, q = { 99, 1 } ;

= 100, num = 1, q = { 100 } .
(26)

We adopted this probabilistic approach to reproduce missing
data segments which did not exhibit any periodicity or correla-
tion with the FHR time-series. Examples of these two simulation
protocols are shown in Fig. 3(b) and (c). Significantly, there are
more than 300 groups of FHR signals in CTU-UHB which have
multiple data missing, including the 1th, 8th, 9th, 12th, …, 549th,
and 552th maternal recordings collected. Fig. 4 shows the signal
of the 1st pregnant woman, which frequently has data missing,
to the extent that it was difficult to intercept a signal segment

satisfying the conditions. Therefore, we sequentially screened
these 552 groups of recordings and selected 100 groups for the
missing data simulation, for example the 2nd recording, shown
in Fig. 3(a).

B. Experimental Setup

1) Our experiments were carried out using Python 3.7 +
scikit-learn 0.23.1 + scipy 1.4.1 on a personal server with an
Intel(R) Xeon(R) Silver 4110 GHz and an NVIDIA Quadro
P4000 GPU. The following basic parameters were used for the
sparse coding and dictionary update: the number of iterations
(n_iter in Table III) was set to 15; the algorithm used to solve
the lasso problem was “lars”; the algorithm used to transform
the data was “omp” and conjugate gradient algorithm proposed
above. For optimal accuracy, the four most important parameters
(block length N , batch size M, Lp−normand genetic factor λ)
were set based on 100 FHR recordings as described in Section
IV.C.

2) The primary indicators: In order to provide a quantitative
evaluation of the recovery of missing FHR, we first compared
the mean absolute error (MAE) and the root mean square error
(RMSE) of the reconstructed FHR and the original complete
signal, which are well-known metrics typically used in data
analysis. Concurrently, we increased the BIC [27] as well as
the training and test time to study the optimal parameters of
Lp−norm, M , and λ for the proposed miniMSDL approach. In
data analysis, the BIC is the criterion for model selection for a
limited number of training samples. With the increase of model
complexity, the BIC value will increase, and conversely, as the
likelihood increases, the BIC value will decrease. Therefore, the
model with the lowest BIC value is the best.

3) The secondary indicators: The above algorithms were
next evaluated by three clinical characteristics, as shown in
the following formulas (26)–(28) [28]. These three indicators
comprehensively described the shape and changes of the FHR
baseline, and were the most important morphological time-
domain features.

Short-term variability (STV):

STV =
1

24

24∑
i=1

|sŷi − syi| (26)

Long-term variability (LTV):

LTV = IQR

(√
ŷ2i + ŷ2i+1

)
(27)

Interval index (INT):

INT =
STV

std (ŷi)
(28)

where sŷi = ŷ(10(i−1)+1) is the value of FHR recording ŷifor
each period of 2.5s; IQRdenotes the inter-quartile range
[0.25, 0.75]; and std represents the standard deviation.
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Fig. 5. Comparison of the primary indicators for different parameter combinations. Experimental data: using Protocol 1 to simulate the data
missing: Q = 10%, num = 16: (a)–(b), (d) set p = 0.6,M = 125, (c) set λ = 0.6,N = 400,M = 125, and (e) set λ = 0.6, p = 0.6,N = 400.

C. Optimization of Different Parameters

In this experiment, we looked at the effect of different pa-
rameters on the performance of miniMSDL. More specifically,
the study mainly involved four training parameters: block length
N in the dictionary D̂ ∈ RM×N(also known as feature atoms);
batch size M in mini-batch version training, which determined
the number of mini-batches to complete training once (namely
K); regularization term Lp−norm; and the genetic factor λ in
the mini-batch version.

Based on 100 groups of complete FHR signals, we used Pro-
tocol 1 to simulate missing data, and set Q = 10% , num = 16.
Sub-graphs (a)-(e) in Fig. 5 show the changes in signal recovery
as the block length N / batch size M / genetic factor λ/ regular-
ization term Lp−norm increased.

Sub-graphs (a) and (b) show that the proposed miniMSDL
reached a sweet spot at around λ = 0.6. After partially magni-
fying three curves of λ = 0.5, λ = 0.6, and λ = 0.7 in sub-graph
(d), we found that when compared with the other two curves, the
test time at λ = 0.6was relatively long, but the overall difference
was within an acceptably small range. Further, the BIC values
for different p are shown in sub-graph (c) and reached a sweet
spot at around p = 0.6. With the increase of N , the values of
MAE and RMSE showed a decreasing trend and reached the

ideal location around N = 400 and N = 500, so N = 400 or
N = 500 are ideal values. However, it can be seen from Fig. 5(d)
that with the same genetic factor, block length N ultimately
affected the test time. The larger the value of N , the longer
the test time. Sub-graph (e) shows that increasing batch size
Mwithin a reasonable range was conducive to improving the
memory utilization and parallelization efficiency of the proposed
algorithm. However, it is not advisable to blindly increase it,
because this could lead to more time being needed to achieve
the same accuracy and slower adjustment of the parameters.
When the batch size is increased beyond normal limits, it will be
converted to full-batch learning, which means that the proposed
miniMSDL algorithm becomes batch-based MSDL (shown in
Table I). However, it can be seen from Fig. 5(e) that the effect
of full-batch-based MSDL (M = 2000 , K = 1) is not optimal.
By studying Fig. 5 we can see that:

– The shorter the block length N, the faster the test time.
– There was a sweet spot for the value of genetic factor λ

that was not affected by the value of block length N.
– There was a point of optimal balance between Mand K,

i.e., (M,K) = (125, 16).
– In order to reduce the testing time as much as possi-

ble while achieving the sweet spot, we set λ = 0.6, p =
0.6, N = 400, and M = 125.
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TABLE IV
RECOVERY PERFORMANCE OF SECONDARY INDICATORS WITH VARIABLE TOTAL MISSING PERCENTAGE Q

Fig. 6. Recovery performance of the primary indicators with variable
Q and num.

V. DISCUSSION

A. Discussion 1: Influence of Protocol 1

In this section, we assess the performance of the proposed
method in Protocol 1. Specifically, the experiment was designed
to evaluate the influence of total missing percentage Q and total
number of missing times num.

Performance of the primary and secondary indicators with
different Q and various num are shown in Fig. 6 and Table IV,
respectively. It can be seen that the changing curve of MSE and
the mean line basically overlap when Q is 5%, 10%, and 20%.
We can draw a general conclusion that all num values achieved
similar good performance for short interval lengths (within
Q ≤ 20%) and achieved the lowest values of 2.64 (MAE) and
4.68 (RMSE) with Q = 5%. Therefore, when the total missing
percentage Q was relatively small, miniMSDL could achieve
reliable data recovery no matter how many times missing data
occurred in the actual collection. However, the amount of miss-
ing data that miniMSDL could withstand was limited. In fact,
any regression algorithm has similar problems, and we will give a
detailed experimental analysis in Section V.C. It is worth noting
that excessive missing data during actual signal acquisition is
itself a cause of unqualified samples, and even with external
ultrasound measurements, the maximum data missing will be
no more than 40% [6]. Nowadays, with the development of
semiconductors, microelectronics, etc., the severity of missing
signals has been reduced to a certain extent.

In Table IV, we show the computations for three clinical
indicators and compare the resulting values with the ones ob-
tained from the original recording. The intent was to look at
the clinical characteristics of the reconstructed signals and see

how similar the morphological time-domain characteristics of
the reconstructed signal were to the original signal. Due to
space limitations, we only list the four groups with the best
performance when Q= 10%, 20%, 30%, and 40%. As expected,
higher deviations were noticeable with large Q. By studying
Fig. 6 and Table IV we can see that:

– When the total missing percentage Q was small, the re-
covery result of the proposed miniMSDL algorithm was
independent of the total number of missing times num.

– The higher the total missing percentage Q, the worse the
degree of recovery.

Fig. 7 Shows One of the Missing Data Simulations for the 2nd
Pregnant woman: Q = 5%, num = 8, and the Reconstruction
Result Was Based on miniMSDL. It is Worth Nothing That the
Overlap of the Red and Blue Curves Indicates Good Perfor-
mance in Reconstructing FHR.

B. Discussion 2: Influence of Protocol 2

We Would Like to Point Out That While the Inpainting
Methods Can Reconstruct the Missing Data to Varying degrees,
They Might Miss Some Details If the Missing Length q Becomes
Too large. Therefore, We Devised an Experiment to Take a
Closer Look At the Performance for Different Lengths of Each
Missing q.

Similar to Discussion 1, the experiment was based on 100
groups of complete FHR signals in CTU-UHB and used Protocol
2 to simulate missing data, with Q set at 5%. Fig. 8 shows the
change in MAE and RMSE with the increase of missing length q.
For example, when q = 100, the proposed miniMSDL achieved
achieved a MAE of 45.91 and RMSE of 75.91. It is evident
that the waveform properties for signals with short missing
lengths were restored better than those for signals with long
missing lengths. Therefore, a long missing length affected data
retrieval ability. However, when the length of each missing q
satisfied q ≤ 60, the proposed miniMSDL could achieve fairly
good reconstruction performance.

Actually, in the case of FHR recordings, temporary increases
or decreases are important details when determining fetal well-
being, and indicate accelerations and decelerations in the heart
rate. Therefore, a long missing length in itself creates an un-
qualified collection. In an abrupt acceleration or deceleration
the FHR has a change of 15 beats per minute with a time
from onset to extremum of 30 seconds and total duration of
less than 2 minutes. Based on this, it is safe to reconstruct
segments with a maximum length of 25 seconds [19]. Each FHR
of CTU-UHB dataset was sampled at 4 Hz, corresponding to
100 sample point. This is why we set the maximum value of
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Fig. 7. Protocol 1 for missing data (top), reconstruction of missing data (bottom).

Fig. 8. Recovery performance of the first indicators with variable q.

qmax to 100, and the total missing percentage as Q = 5% in this
protocol.

C. Discussion 3: Comparison With Related Works

Over the years, multiple studies on the recovery of missing
data have been conducted in many application scenarios. In
order to carry out a more objective and comparative performance
evaluation, we first evaluated the proposed miniMSDL through
the reproduction of three classic methods, and then made a
comparison with state-of-the-art works.

1) Evaluation Based on Reproducing the Classical Algo-
rithm: The reproduced methods were three-step interpolation
that integrated spline interpolation and cubic spline interpolation
to to recover FHR data, which our team proposed in a previous
study [15]; cubic spline interpolation [16] and K-Singular value
decomposition (K-SVD) [18], which represent typical mathe-
matical algorithms or sparse dictionary learning. As explained
in Section IV. C, the recovery performance on missing FHR
had a strong relationship with the total missing percentage Q
and length of each missing q. Therefore, we reproduced these
methods through the following two simulations, in which the
experimental data in Figs. 9 and 10 was based on 100 groups
from the CTU-UHB database:

1) In the case of Protocol 1, Qincreased from 5% to 40%,
with a step of 5; and q ranged from 8 to 64, increasing in
steps of 8. In Fig. 9(a) (b), all algorithms have achieved the
ideal reconstruction with a small total missing percentage

Q. When the total missing percentageQincreased to 30%,
the performance of Algorithms 2 and 3 decreased notably.
Fig. 10 shows the best performance of these four meth-
ods in Protocol 1 (Q = 5%, num = 8). The closer the
secondary indicators of each algorithm are to the original
complete FHR, the better the recovery of the algorithm. It
can be seen that Algorithm 1 and the proposed miniMSDL
provided optimal performance, nearly independent from
the missing data pattern.

2) In the case of Protocol 2, Q = 5%, while q ranged from
25 to 100. From Fig. 9(c), (d) we can see that Algorithms
1 and 2 were the most sensitive methods to length of
each missing qvalues. This was no surprise since they
were partially or completely calculated based on the
mean value of the sample points before and after the
current missing position. The longer the missing length,
the more difficult it is to recover. Sub-graphs (a) -(c) in
Fig. 10 show that all algorithms are quite different from
the original complete FHR in STV and LTV, especially
Algorithms 1 and 2. By studying Fig. 10 we can see that
the challenge of using Algorithm 1 and 2, meanwhile,
was that it introduced artifacts which increased the need
for the subsequent denoising step.

The obtained results show that the total missing percentage
that all regression methods could withstand was limited. To
some extent, this is indeed a common drawback in regression
algorithms. However, both the FHR acquisition requirements
and equipment ensure that the Qwill not be too large. Therefore,
the impact of such drawbacks is acceptable.

2) Comparison With State-Of-The-Art Inpainting Methods:
In addition to the comparison with classical methods, we com-
pared the performance of the proposed miniMSDL with the
state-of-the-art methodologies. Table V summarizes represen-
tative research that has been conducted in the past few years.
Since the datasets used and the amount of missing data in each
study are not in complete accord, it is difficult to evaluate directly
from indicators such as MAE. We analyzed them and compared
them with the following three aspects.

Compared with statistics-based inpainting like that proposed
by G. Feng et al. [7] and SK Lee et al. [9], an important
advantage of the method outlined in this paper is that through
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Fig. 9. Comparison of four classical approaches: Recovery performance of the primary indicators, with variable Q and q.

Fig. 10. Comparison of four classical approaches: The best performance of the secondary indicators in Protocols 1 (left) and 2 (right).

TABLE V
COMPARATIVE TABULATION OF THE EXPERIMENTAL RESULTS FOR VARIOUS ALGORITHMS



288 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 26, NO. 1, JANUARY 2022

learning from the signal class, the dictionary introduces fewer
artifacts during feature extraction and time-frequency analysis.
It should be noted that in contrast to the methods used by
V.P. Oikonomou et al. [18] and F. Barzideh et al. [19], which
generated dictionaries based on pre-specified dictionary and a
standard sparse coding solution based onL0−normrespectively,
we provide an Lp−norm-based MSDL approach to generating
and updating the dictionary and sparse coefficient matrix. Also,
we considered a conjugate gradient and mini-batch version to
reduce the computational burden.

Based on the above analysis, the proposed miniMSDL ap-
proach provides optimal performance in all the conditions con-
sidered and guarantees reduced distortion of the original signal
features.

VI. CONCLUSION

The study and recovery of missing FHR recordings has very
important practical value for the development of modern intel-
ligent auxiliary diagnosis technology to detect fetal distress in
late pregnancy, and is an important research direction in the
field of intelligent health applications. The major concerns for
normal inpainting methods appear to be long missing length and
suitability for the online mode with timely data recovery.

In this study, we developed a new inpainting method for the
recovery of missing FHR data, optimizing the model by com-
bining mini-batches and minimized sparse dictionary learning,
which addresses the problem of inpainting missing samples
which can be used in both antepartum and intrapartum FHR
measurements. We designed two protocols and used 100 clinical
FHR recordings to simulate two missing data scenarios.

Then 7 evaluation indicators (4 metrics typical in data analysis
and 3 clinical indicators) were applied to adjust and determine
4 major parameters (block length N = 400, batch size M =
125,Lp−norm, p = 0.6, and genetic factor λ = 0.6). These are
the only parameters that need to be adjusted in the algorithm.
Therefore, it is not difficult to solve the algorithm. Our study
identified the following key points:

1) The proposed mini-batch-based minimized sparse dictio-
nary learning algorithm relies exclusively on a reduced set
of samples and has low computational burden, making it
compliant with online implementation.

2) Compared with the traditional methods such as K-SVD,
the computational load is greatly reduced due to the
mini-batch solution, and memory learning and training
for dictionaries.

3) For dictionary learning-based methods, missing length
qand total missing percentage Qare important parameters
when attempting to recover the missing data in 1D signal.

Of course, the main limitation of this paper is that in order to
obtain an optimal dictionary, we went through all the possible
options to choose the best one. A possible direction for future
work is to find a more efficient way to identify the best dictionary.
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