
JBHI-02116-2020.R2 
 

1 

 
 

Abstract— In this paper, we introduce a new variation of the 

Convolutional Neural Network Inception block, called Sinc, for 

sleep stage classification in premature newborn babies using 

electroencephalogram (EEG). In practice, there are many medical 

centres where only a limited number of EEG channels are 

recorded. Existing automated algorithms mainly use multi-

channel EEGs which perform poorly when fewer numbers of 

channels are available. The proposed Sinc utilizes multi-scale 

analysis to place emphasis on the temporal EEG information to be 

less dependent on the number of EEG channels. In Sinc, we 

increase the receptive fields through Inception while by 

additionally sharing the filters that have similar receptive fields, 

overfitting is controlled and the number of trainable parameters 

dramatically reduced. To train and test this model, 96 longitudinal 

EEG recordings from 26 premature infants are used. The Sinc-

based model significantly outperforms state-of-the-art neonatal 

quiet sleep detection algorithms, with mean Kappa 0.77 ± 0.01 

(with 8-channel EEG) and 0.75 ± 0.01 (with a single bipolar 

channel EEG). This is the first study using Inception-based 

networks for EEG analysis that utilizes filter sharing to improve 

efficiency and trainability. The suggested network can successfully 

detect quiet sleep stages with even a single EEG channel making it 

more practical especially in the hospital setting where cerebral 

function monitoring is predominantly used. 

 

 

Index Terms— Convolutional Neural Networks, CNN, 

Inception networks, multi-scale EEG analysis, sleep stage 

classification, neonatal EEG analysis. 
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I. INTRODUCTION 

leep Wake Cycling (SWC) is one of the main neuro-

developmental markers for newborn infants (neonates) [1]. 

Preterm babies who are born at <37 weeks Postmenstrual Age 

(PMA, the age since the last menstrual cycle of the mother) are 

especially susceptible to long-term neurodevelopmental 

consequences if their early-stage sleep maturation is disturbed 

by environmental stresses. Similarly to adults and older babies, 

preterm neonates cycle between stages of Wakefulness, Rapid 

Eye Movement (REM, Active Sleep (AS)), and non-REM 

(Quiet Sleep (QS)). However, unlike in older ages, there are no 

sub-states in preterm AS and QS. AS is mostly associated with 

(semi)-continuous background EEG patterns across all 

frequency bands and synchronous occipital delta activities, 

while QS is discontinuous with burst (high amplitude) and 

inter-burst-interval (IBI, low amplitude) patterns [1]. AS EEG 

has similar morphologies to wakefulness EEG such that 

polygraphic signals (e.g. electrocardiogram, respiration) are 

required to differentiate these states if needed [2]. The current 

gold standard for detecting these sleep stages is visual labelling 

of polysomnographic recordings using predominantly 

continuous Electroencephalogram (EEG). However, this visual 

labelling is time-consuming and needs particular expertise that 

may not be available around the clock. Automated sleep staging 

can alleviate the workload of the clinicians and a bedside 

monitor equipped with such algorithms could reduce 

unnecessary sleep disturbances to the vulnerable baby (e.g. the 

timing of feeding) improving the quality of perinatal care [1]. 
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Consequently, previous studies have developed various 

machine learning approaches to automated sleep staging (with 

a focus on QS) using multichannel EEG. Clustering of 

discriminative features extracted from adaptively segmenting 

the EEG was an early suggestion by Barlow et al. [3], improved 

by Krajca et al. [4], [5], before being developed into the fully-

automated unsupervised ‘CLASS’ algorithm by Dereymaeker 

et al. [6]. As an alternative approach, Gerla et al. combined EEG 

features with a decision tree classifier and evolutionary 

optimization using a supervised approach [7]. Subsequently, 

more refined feature extraction and classifiers have been 

applied, such as the Support Vector Machine (SVM) with 

spectral, temporal and spatial features [8], the Least-Squares 

SVM (LS-SVM) with multi-fractal features [9], a Multilayer 

Perceptron (MLP) using entropy features [10], and other 

extensions that utilised multi-scale entropy [11], [12] . De Wel 

et al. also suggested a tensor decomposition approach for 

unsupervised classification [13], while Pillay et al. incorporated 

a large number of data-driven features in a combined Hidden 

Markov Model-Gaussian Mixture Model (HMM-GMM) which 

has been extended to additionally subclassify the 4 stages of 

sleep (AS I, AS II, QS I and QS II) that differentiate by term 

age (≥37 weeks PMA)  [14].  

Existing unsupervised methods have typically low accuracy, 

while supervised approaches still depend on large numbers of 

hand-crafted features which may not adequately capture the 

extent of the available information. Consequently, in the last 

decade, deep learning for biomedical signal analysis has 

emerged as a more accurate solution [15]–[20] extracting data-

driven features directly from the raw EEG. More recently, 

similar approaches have found their way to neonatal sleep 

staging. Fraiwan et al. proposed a bi-directional Long-Short 

Term Memory (LSTM) for classifying term sleep [21]. 

Ghimatgar et al. further developed a hybrid approach using 

graph clustering, LSTM, and HMM for term sleep classification 

[22].  We have also suggested a network expanded to both 

preterm and term age groups, developing multiple deep 

Convolutional Neural Networks (CNNs) that outperformed the 

aforementioned feature-based approaches [23], [24]. However, 

new complications arise. The high dependency of these network 

architectures on spatial (multi-channel) EEG results in a large 

reduction in accuracy as the number of channels are reduced. 

In general, the number of EEG electrodes for neonatal brain 

monitoring mostly does not exceed 19 - 21 electrodes which are 

usually placed according to the international 10-20 system. 

However, for premature neonates with smaller head 

circumferences, it is mostly limited to 8 - 9 electrodes placed 

using a restricted version of the 10-20 system [2], [25]. 

However, in practice, multi-channel EEG monitoring is not 

commonplace across Neonatal Intensive Care Units (NICUs) 

due to the clinical training and time required to apply and 

acquire each recording. It is more typical for centres to use 

Cerebral Functional Monitoring (CFM) as an alternative, which 

is a derivative of EEG and uses one or two bipolar EEG 

channels. In neonatal sleep stage classification, respecting the 

fact that many EEG characteristics synonymous with sleep 

staging (e.g. EEG ‘bursts’) have strong spatiotemporal 

dependencies, reducing the number of EEG channels leads to a 

severe drop in performance.  

In this study, we present a new end-to-end deep learning 

architecture for automated QS detection. We introduce a multi-

scale deep CNN, that utilises a novel ‘Sinc’ block to better 

extract temporal features across multiple timescales. The Sinc 

block applies a filter sharing approach in Inception which 

reduces massively the number of required parameters when 

different scales are required. We show that including this Sinc 

block allows the model to outperform existing approaches for 

neonatal QS detection especially when fewer numbers of EEG 

channels are available. 

II. MATERIALS AND METHODS 

A. Database 

The database used in this study were recordings from 26 

neonates admitted in the NICU of the University Hospitals 

Leuven, Belgium, between 2012 and 2014. All babies were 

born prematurely with Gestational Age (GA) <32 weeks and 

were recruited after approval by the Medical Ethics Committee 

of the hospitals and parental consent. 2-4 EEGs were recorded 

during each baby’s stay in the NICU resulting in 96 longitudinal 

EEG recordings with Postmenstrual Age (PMA) range 27-42 

weeks. All 26 neonates had a normal neurodevelopmental 

outcome at 9- and 24-months follow-up (Bayley Scores of 

Infant motor Development-II) [26]. Furthermore, patients with 

severe cerebral lesions or use of sedative or anti-seizure 

medication were excluded during recording.  

The original EEG recordings included F1, F2, C3, C4, T3, 

T4, O1, O2 and referenced Cz channels (totalling 8 channels) 

according to the restricted standard 10-20 electrode placement 

system [2]. Recordings were acquired at a sampling frequency 

of 250 Hz using the BrainRT EEG recording system (OSG 

BVBA Rumst, Belgium) and were annotated as states of QS and 

non-QS (NQS – combining AS and Wakefulness) by an expert 

clinical neurophysiologist (AD). All recordings were 

anonymized by the clinicians before analysis and further details 

about the demographics are given in [1], [27]. This database 

was also previously used in [6], [9], [13], [23], [24]. Additional 

technical and medical details about this database are provided 

in [1]. 

 

B. Data preparation and pre-processing 

In order to develop and validate the proposed model, the 

database was randomly split into a training and testing dataset 

by patient such that each group included the recordings from 13 

neonates (50-50 split). This fixed split was previously used in 

[6], [23], [24] for developing the previous QS detection 

methods and thus provides a fair comparison when evaluating 

model performance. Each EEG recording was under-sampled 

to 64 Hz with an antialiasing (zero-phase low-pass FIR) filter. 

Data was then segmented into epochs of length 30s with 50% 

overlap.  

In order to evaluate these considered algorithms using fewer 

number of EEG channels, we simulated the channel reduction 

in a structured manner to resemble the common outputs of CFM 

monitors, using all 8 available channels as 8 channel 

arrangement, C3, C4, T3, and T4 as a reduced 4 channel 

arrangement, C3 and C4 for 2 channels, and finally a bipolar C3 
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– C4 montage for the single channel case. From a clinical point 

of view, these central EEG channels can reflect many of the 

sleep-related patterns that mature from preterm to term age [1]. 

 

C. Multi-scale deep learning networks 

An important feature in the proposed model architecture is 

multi-scaling which results in different Receptive Fields (RFs) 

across the network. The term ‘receptive field’ emerged in early 

20th century research to describe the region of the body surface 

where a stimulation results in a specific neuronal response [28]. 

Subsequently, the deep learning field adopted this concept for 

artificial neural networks to define the region or cluster of data 

which stimulates a specific neuron (node) in the network.  

Typically, the RF size for a CNN layer is directly defined by 

the layer’s kernel (or filter) length used in the convolution 

operation. For instance, the RF of a CNN layer with kernel size 

3 and stride (step size) of 1 would be 3. This essentially means 

that each output sample of the layer is the result of the 

combination of 3 samples in the input to the layer. In a time-

series signal (such as EEG), calculation of the RF with respect 

to the initial input to the network can be very helpful for 

designing and interpreting the network dynamics. As an 

example, if the RF of the output of an arbitrary CNN layer (with 

respect to some input EEG) were 50, it means that this layer 

effectively extracts features over 0.5 seconds of the original 

EEG (assuming a sampling frequency of 100 Hz.). Thus, we 

cannot expect that an EEG burst pattern (present in QS) lasting 

for 1s to be fully characterised by this particular layer. 

In conventional CNNs, the RF of each layer with respect to 

the network input can be mathematically formulated in a simple 

manner. A layer with kernel size 𝑘 increases the RF by  

(𝑘 − 1) ∏ 𝐷𝑖, where 𝐷𝑖 is the downsampling factor of the 

previous layers (e.g. a 𝐷𝑖 is 2 after a maxpool with stride of 2). 

One drawback of such a conventional, sequential CNN is that 

the input RF to the subsequent layer is a single value. Previous 

EEG studies have shown that the extraction of features across 

multiple scales provides a better representation of the EEG 

information [29], [30]. One classic example are frequency band 

decompositions (using Fourier Transforms, Wavelet 

decomposition, Empirical mode decompositions etc.) that 

require longer timescales to represent the lower frequencies but 

are proven strong candidates for successful sleep classification 

[23].  

To similarly extract features across multiple frequencies 

using a CNN layer, a multi-scaling approach that provides 

multiple input RFs should be provided. This idea was first 

proposed in the GoogLeNet architecture and dubbed the 

‘Inception’ block [31]. An inception block typically consists of 

processing the same input using 3 parallel convolutional 

‘streams’ with kernel size (𝑘) 1, 3, 5, respectively (and an 

additional pooling layer). This produces 3 different RF outputs 

for a subsequent layer. Subsequently, it has been shown that the 

inception block can perform better if the larger convolutions are 

split (or factorized) to two consecutive convolutions that 

achieve the same output RF [32]. We will see that this 

factorization approach is a key element of our proposed 

architecture. 

While these inception blocks are well validated in computer 

vision tasks [32]–[35], initial testing of such model derivatives 

to preterm EEG analysis were inefficient due to the large 

increase in the number of parameters as a result of the 

parallelised architecture. In EEG time series, when the 

sampling frequency is tens or hundreds of Hz, some scales may 

simply represent noise and cause overfitting. The proposed 

architecture modifies the inception block in order to share some 

of the filters as a means to control this overfitting risk. The 

resulting shared inception block is called ‘Sinc’. 

 

D. The proposed Sinc block 

Fig. 1 shows the block-diagram of the factorized Inception 

(A) and the proposed Sinc (B). In the proposed Sinc, inspired 

from the original inception architecture, three streams are used: 

1) a convolution (𝑘 = 1) with 𝑁 filters to project the input 

feature maps (projection convolution), namely Conv1, 2) a 

maxpool (of size 3) followed by a second projection Conv1, 3) 

a third projection Conv1 followed by a series of 𝑀 

convolutional layers (𝑘 = 3) with 𝑁 filters, namely Conv3. 

Projection convolutions decrease the computational cost as it 

performs dimensionality reduction, while simultaneously 

increasing the depth and nonlinearity of the network [31]. The 

key difference between Sinc and the original inception model is 

the efficient generation of additional RF outputs within the 3rd 

parallel stream by using the factorisation principle. In the 3rd 

stream of Inception, for each RF, there is an isolated path 

between the input and the concatenation layer. In Fig. 1 A) there 

are two paths (= Conv1-Conv3 for RF=3 and Conv1-Conv3- 

Conv3 for RF=5) as proposed in the original paper. One can 

show that the size of the block, and therefore the number of 

parameters, is quadratically expanded by increasing the RF of 

 
Fig. 1.  the block-diagram of the original factorized Inception block (A) and 

the proposed Sinc block (B). The layers that are marked with asterisks denote 

the layers in Inception with similar receptive fields that should have shared 

weights to be equal to a Sinc layer with M = 2. 
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the Inception, as needed in this EEG analysis. Now, one can 

make the first Conv3s of all paths (RF = 3, 5, 7, etc.) identical 

(or share their parameters) and similarly for the second Conv3s 

and so on (see the asterisks in Fig. 1 A). This will convert the 

Inception block to a Sinc block. In this way, the first Conv3 

produces an output RF of 3. This is then combined with a 

second Conv3 to produce the next RF of size 5, and these two 

layers link with a third layer to generate the RF output of size 

7, and so on. In general, 𝑀  convolutions are used consecutively 

and the outputs of these and the first two parallel streams are 

concatenated together for subsequent processing. Unlike 

Inception, the number of parameters in a Sinc linearly increases 

by increasing the RF size.  

 

In Sinc, for all convolutions (Conv1/Conv3),  𝑁 filters are 

trained such that each Sinc block has only two hyperparameters: 

𝑀 = the number of consecutive convolutions (with maximum 

RF size = 𝑀 + 1), and 𝑁 = number of filters. Similar to the 

original inception block, the stride of the maxpool and the 

convolutional layers are 1. As with typical CNN layers, an 

activation layer is also used after the convolutions to add non-

linearity to the network. In this Sinc block, an exponential linear 

unit (ELU) is used. Unlike the more typical Rectified Linear 

Unit (ReLU), ELU permits negative values that can reduce the 

bias shift and tends to converge faster in training [36].  

 

E. The complete network architecture 

Fig. 2 shows the block-diagram of the complete Sinc-based 

network and Table I shows the output size and receptive fields 

of each layers, with respect to the input layer. The input of the 

network is a normalized multichannel 30-second EEG segment. 

By the first convolution stage, the EEG has been temporally 

filtered and the channels spatially integrated. We subsequently 

refer to this as ‘early integration’. Afterwards, a maxpool with 

stride 2 and a batch-normalization layer downsamples and 

normalizes the activations respectively. This is then processed 

by a first Sinc block with 𝑀 = 15 convolutions (producing 16 

different scales/RFs covering 0.2s to 1.1s of the EEG). A further 

maxpool downsamples the data by a factor 2, with additional 

 
Fig. 2.  the proposed Sinc network. 

  

TABLE I 

THE LAYERS OF THE PROPOSED NETWORK 

Layer/ 

Block Parameters Output shape Max RF*  

Input  - 1920 * 8 - 

Conv   k: 10, s: 1, N: 16 1920 * 16 10 (0.2 s) 

Maxpool k: 2, s: 2 960 * 16 11 (0.2 s) 

B-Norm  960 * 16 11 (0.2 s) 

Sinc 1  M: 15, N: 16 960 * 272 71 (1.1 s) 

Maxpool k: 2, s: 2 480 * 272 73 (1.1 s) 

Sinc 2 M: 8, N: 16 480 * 160 137 (2.1 s) 

Maxpool k: 2, s: 2 240 * 160 141 (2.2 s) 

Sinc 3  M: 8, N: 32 240 * 320 269 (4.2 s) 

Maxpool k: 2, s: 2 120 * 320 277 (4.3 s) 

Sinc 4 M: 3, N: 32 120 * 160 373 (5.8 s) 

Maxpool k: 2, s: 2 60 * 160 389 (6.1 s) 

Sinc 5 M: 3, N: 64 60 * 320 581 (9.1 s) 

Maxpool k: 2, s: 2 30 * 320 613 (9.6 s) 

Sinc 6 M: 4, N: 64 30 * 384 1125 (17.6 s) 

Maxpool k: 2, s: 2 15 * 384 1189 (18.6 s) 

Sinc 7 M: 4, N: 128 15 * 768 1920 (30.0 s) 

Maxpool k: 2, s: 2 7 * 768 1920 (30.0 s) 

Conv k: 1, s: 1, N: 256 7 * 256 1920 (30.0 s) 

Avgpool k: 7, s: 1, global 256 1920 (30.0 s) 

Dropout α = 25% 256 - 

Dense - 20 - 

Dropout α = 20% 20 - 

Dense softmax 2 - 

Max RF: the maximum receptive field (scale) with respect to the input layer 

in samples and (in seconds). 

M: number of shared filters in each Sinc block 

N: number of filters in each convolution 

k: kernel size 

s: stride 
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Sinc blocks and maxpool layers repeated (with different choices 

of 𝑀 and 𝑁) until each output sample contains information from 

the whole 30-second EEG input. Finally, a projection 

convolution and a global average-pooling decreases the 

dimensionality to control the parameter numbers, before two 

dense layers (with regularizing dropout layers) perform the 

classification. Across the network, ELU is used as the activation 

layer with the exception of the last layer where a softmax 

generates the class probabilities. 

 

F. Post-processing 

After running the network on all the segments for each 

recording, a moving average filter (of length 3 minutes) 

smoothens these outputs. As shown in previous models, this 

decreases the risk of spurious false positives due to short, high 

power EEG artefacts [23], [24]. As a side-analysis, we also 

tested an LSTM layer after the CNNs as is a typical approach 

in time series analyses [20]. However, it did not meaningfully 

improve the results over the simpler moving average filter. 

 

G. Benchmark algorithms and the state-of-the-art 

1). Multiscale Entropy Tensor Decomposition (METD): an 

unsupervised QS detection algorithm proposed in [13]. In this 

method, first the multichannel EEG is tensorized via multiscale 

entropy and is then factorized by canonical polyadic 

decomposition (CPD) in a sum of multiple rank-1 tensors. Next, 

the best CPD component corresponding to the sleep stages is 

automatically detected using an autocorrelation analysis. 

Finally, the QS intervals are detected by applying k-means 

clustering on the smoothed temporal signature of the selected 

component. Since the used core tensor in this algorithm needs 

spatial information, it does not support channel reduction.  

 

 2). Cluster-based Adaptive Sleep Staging (CLASS): an 

unsupervised QS detection algorithm developed in [6]. In this 

method, after removing high-power, short-duration muscle 

artefacts using the artefact subspace reconstruction technique, 

the EEG is split into smaller quasi-stationary segments. Then, 

nine time and frequency-domain features are extracted for each 

segment. The segments are then grouped into 12 clusters using 

k-means. Smoothing and thresholding the resulting ‘cluster vs 

time’ signals define the QS cycles. This method does not 

support channel reduction. 

 
3). Feature-based QS Detection (FBD): a supervised classical 

machine learning approach using hand-crafted features and 

SVM proposed in [37]. In this method, 9 time and frequency-

domain features are extracted from each channel of every 30-

second EEG epoch. Then, all features are input to an SVM with 

Radial Basis Function (RBF) kernel to detect QS epochs. This 

method does not support channel reduction. 

 

4) and 5). A 2-dimensional (2D) CNN network proposed in 

[23] and its improved version proposed in [24] for neonatal 

sleep staging: these networks exploit both spatial and temporal 

information by using 2D kernels. The EEG channels are 

integrated in the intermediate layers across multiple steps. 

These are the current published state-of-the-art [24]. 

 

6). A 1-dimensional (1D) CNN network proposed in [16] 

first developed for neonatal seizure detection: The main feature 

of this architecture is that the EEG channels are integrated at 

the last layer of the CNN. This design makes the network able 

to exploit temporal information for the majority of the 

processing, requiring limited retraining in cases with fewer 

numbers of EEG channels.  

 

7). A modified version of [24] with earlier channel 

integration: In the first  convolutional layer, all EEG channels 

are integrated and the remaining CNNs are 1D. The kernel size 

of the 1D filters and number of filters are the same as the 

original network described in 2.) [24].  

 

8). A newly designed Conv-LSTM network: a Conv-LSTM 

unit is an extension of the LSTM, where both input and 

recurrent transformations are convolutional [38]. This network 

has 4 layers of Conv-LSTM and 2 further convolutional layers. 

The initial filtering layers and final dense layers are the same as 

the Sinc network. More details are provided in Appendix A. 

 

9) and 10). ‘Dilated’ and ‘Dense’: the proposed Sinc network 

where the Sinc blocks are replaced by ‘Dilated CNN’ and 

‘Dense blocks’. These two blocks are two of the well-known 

multi-scale versions of CNN for computer vision and image 

segmentation tasks, which were respectively proposed in [39] 

and [40]. The former uses dilation of (2, 4, 6, and 8) and the 

latter utilizes 4 densely connected convolutional layers in each 

block. The number of filters increases corresponding to the 

layer depth so that the total number of trainable parameters are 

comparable with the proposed Sinc network.  

 

11). ‘Inc’: the proposed Sinc network where the convolution 

layers within the Sinc blocks are not shared and ReLU is used 

as the nonlinear function (as proposed in the original Inception 

network). This comparison highlights the effects of the 

proposed modifications.  

 

H. Training methodology 

The Sinc network, as well as the benchmarked algorithms, 

was implemented in Python using Tensorflow 2.1 (Keras) and 

trained with an NVIDIA GPU (RTX 2080Ti) using the same 

training and testing data splits. An early stopping was used 

which monitored the validation loss and checked 10 further 

epochs after the minimum loss. For model-selection and early-

stopping, a fixed validation set was additionally separated from 

the training dataset. This was generated by removing one 

random recording from each PMA group: (27-29, 29-31, …, 

41-43 weeks). The loss function and the optimization approach 

were the categorical cross-entropy and Adam [41], respectively. 

An 𝐿2 norm regularization (weight decay) was used across all 

convolutional layers in the main stem and the Sinc blocks (with 

regularization factor = 0.001). Finally, the moving average 

post-processing step in the Sinc model was also applied to the 

estimates from the alternative networks, for consistency.  

All models were trained with 5 different random weight 

initialisations, and the best performing version (assessed on the 

validation dataset) was taken forward for final assessment on 
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the test set. This was also repeated using a series of reduced 

channel arrangements. We simulated the channel reduction in a 

structured manner to resemble the common outputs of CFM 

monitors, using C3, C4, T3, and T4 as a reduced 4 channel 

arrangement, C3 and C4 for 2 channels, and finally a bipolar C3 

– C4 montage for the single channel case. 

 

I. Statistical analysis, ablation study, and visualization 

The main metric that we used in this paper to evaluate the 

performance is Cohen’s Kappa. Kappa is a metric that was 

originally proposed for interrater agreement measurement. 

Nowadays, it is also widely being used in machine learning as 

a normalized version of typical accuracy. A key feature of 

Kappa is that it is less sensitive to unbalanced classes, such as 

in neonatal sleep staging (where NQS predominates QS), and is 

thus a good alternative for accuracy. It is calculated as follows: 

 

 𝜅 =
𝑝𝑜−𝑝𝑒

1−𝑝𝑒
   (1) 

 

where 𝑝𝑜 denotes the observed agreement (equals accuracy) and 

𝑝𝑒 is the expected agreement (agreement by chance). Kappa 

values range from -1 (absolute disagreement) to +1 (absolute 

agreement) and 0 represent chance agreement. The standard 

error of the kappa is also analytically calculable [42].  

 In order to understand the role of each Sinc block, an ablation 

study inspired from [43] is performed on the network. To this 

end, after training, the outputs of the Sinc blocks are used as 

input of a simple classifier composed of a Flatten, Dropout 

(25%) and Dense layers to predict the sleep stages. This new 

classifier block is trained using the same training data while the 

rest of the network is frozen. The kappa value for both 

validation and test sets are reported for each block. This 

analysis shows how the features extracted by each of the Sinc 

blocks are discriminative for the QS detection task. 

To visualize the network parameters and outputs during 

training, two methods are applied. To visualize the (many) 

features generated by each of the Sinc blocks, a 2D UMAP [44] 

is used. The key feature of the UMAP is to preserve both local 

and most of the global data structures in a reduced 

representation (a form of dimensionality reduction). From this 

approach, we can monitor how the Sinc blocks discriminate 

between QS and NQS and the contributions of each layer to the 

overall classification. We also generate a UMAP to show the 

structure of the data with respect to the PMA distribution of the 

recordings.  

The second visualization method is based on the activation 

of the convolutional layers in the Sinc blocks. To this end, for 

each convolution, the output of the ELU is stored for all QS and 

NQS segments in the test dataset. Then, the average values for 

the QS and NQS segments are separately calculated and 

compared together to determine at which sleep stage the neuron 

is most activated. The neurons that always produce negative 

values are called dead neurons and can be pruned in further 

steps. 

 

III. RESULTS 

Table II compares the Cohen’s Kappa values with analytical 

confidence intervals (CIs) of the benchmarked networks and 

with the reduced channel arrangements. For the first three 

algorithms, as the confidence interval was not reported in the 

corresponding papers, the standard deviation is listed. In this 

table, it is shown that the proposed Sinc network significantly 

outperforms the alternative algorithms. When all 8 EEG 

channels are available, the proposed Sinc has a better 

performance. When decreasing the number of available 

channels, the Sinc network has an increasing superiority and its 

performance with a single EEG channel is comparable or higher 

than the alternative networks (even when these utilise the full 

EEG). In addition to the listed 95% confidence intervals, a 

bootstrap hypothesis test also indicates the statistical superiority 

(𝑝<0.05) of the Sinc model over all cases (except 8-ch “Inc”, 

though the proposed model still maintains a higher 

performance). For more details on the bootstrap hypothesis 

testing, see [45], [46].  

These results also suggest that integrating the EEG channels in 

the first layers resulted in better performance. This is especially 

evident when the two Conv-1D models (with late and early 

integrations) are compared. Another observation is that the 

Dense network, which also has a multi-scale characteristic, has 

almost constant performance when fewer numbers of channels 

TABLE II 

COMPARISON OF THE BENCHMARKED NETWORKS FOR NEONATAL QUIET SLEEP DETECTION 

 

Method chan. integ.1 

Cohen's Kappa (95% confidence interval) 

8-ch 4-ch 2-ch 1-ch 

METD  [13] - 0.50 (std2 : 0.38) NA NA NA 

CLASS [5] - 0.66 (std: 0.24) NA NA NA 

FBD [21] - 0.70 (std: 0.21) NA NA NA 

Conv-2D [23] Mid  0.71 (0.704 - 0.718) NA NA NA 

Conv-2D [24] Mid  0.75 (0.742 - 0.756) 0.70 (0.691 - 0.705) 0.65 (0.645 - 0.660) 0.51 (0.505 - 0.523) 

Conv-1D [16] Late 0.58 (0.574 - 0.591) 0.70 (0.695 - 0.709) 0.59 (0.582 - 0.597) 0.26 (0.251 - 0.264) 

Conv-1D 3 Early   0.72 (0.715 - 0.728)  0.69 (0.681 - 0.695) 0.64 (0.630 - 0.645) 0.61 (0.607 - 0.622) 

Conv-LSTM  Early 0.67 (0.661 - 0.676) 0.73 (0.719 - 0.734) 0.60 (0.590 - 0.606) 0.70 (0.691 - 0.706) 

Dilated  Early 0.71 (0.699 - 0.714) 0.70 (0.692 - 0.707) 0.54 (0.536 - 0.554) 0.54 (0.531 - 0.548) 

Dense  Early 0.68 (0.675 - 0.689) 0.71 (0.703 - 0.717) 0.69 (0.687 - 0.702) 0.69 (0.680 - 0.695) 

Inc Early 0.76 (0.756 – 0.769) 0.74 (0.737 – 0.750) 0.70 (0.696 – 0.711) 0.69 (0.678 – 0.693) 

Sinc  Early 0.77 (0.761 - 0.774) 0.76 (0.751 - 0.765) 0.74 (0.730 - 0.744) 0.75 (0.746 - 0.760) 
1  channel integration indicating the network depth where the EEG channels are merged together 
2  for these reference algorithms the 95% confidence intervals were not reported. Instead, the standard deviations (std) are listed. 
3  a modified version of [24] with an early EEG integration 
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are used (similarly to Sinc) though Sinc has an overall higher 

performance. To see more performance metrics, similar tables 

for the Area Under the Curve (AUC) and Accuracy (ACC) are 

also provided in Appendix-B.  

Table III shows the results of the ablation study of the Sinc 

blocks. The study was done for both validation and test datasets 

and for the 8-channel and 1-channel configurations. The first 

observation is that each of the first 6 Sinc blocks play an 

important role so that excluding any of them can drop the 

performance. Furthermore, the other finding is that the layers 

after Sinc6 have no meaningful added value so that the Sinc7 

and following Conv1, pool, and the first Dense layers can be 

eliminated with no cost. These findings are also supported by 

the UMAP visualization. Fig. 3 (A-G) provides the UMAP of 

the outputs of each Sinc blocks for the test dataset. The blue and 

red dots correspond to the NQS and QS segments respectively. 

In these maps, we observe that the Sinc blocks can be 

categorized into three groups: (Sinc 1,2,3) extracts local 

features with receptive fields of 0.2 to 4.2s (such as EEG bursts) 

and no clear class discrimination, (Sinc 4,5) combines the local 

features with bigger receptive fields of 4.3 to 9.1s, and finally 

(Sinc 6,7) enables the class separation using predominantly 

TABLE III 

COHEN'S KAPPA VALUES OF THE ABLATION STUDY  

 

 

Validation  Test 

8-ch 1-ch 
 

8-ch 1-ch 

Sinc1 input 0.39 0.26  0.36 0.44 

Sinc1 output 0.54 0.40  0.51 0.50 

Sinc2 output 0.66 0.54  0.63 0.68 

Sinc3 output 0.66 0.58  0.65 0.67 

Sinc4 output 0.70 0.62  0.69 0.70 

Sinc5 output 0.70 0.66  0.73 0.72 

Sinc6 output 0.73 0.66  0.76 0.75 

Sinc7 output 0.73 0.67  0.77 0.75 

 

 
Fig. 3. UMAP visualization of the outputs of different Sinc blocks from 1 to 7. In A to G, blue and red dots correspond to the NQS and QS EEG segments, 

respectively. In H, red, olive, and blue colors correspond to different post menstrual ages of the non-quiet sleep segments (PMA groups are indicated in the 

legend). 
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more global features. Similarly to the results of the ablation 

study, it seems that Sinc7 does not increase the discrimination. 

In the last graph (H), the colors indicate three different PMA 

groups (<32w, 32w-44w, >44w). This reveals that the 

extremely premature babies (<32 PMA weeks) have the most 

difficult EEG segments to discriminate. 

 

Fig. 4 presents the number of feature-maps activated by QS 

and NQS for each neuron (node) in each Sinc block. Here, 

‘conv1’, ‘conv1-m’, and ‘conv1-s’ correspond to the isolated 

projection convolution, the projection convolution before the 

maxpool, and the projection convolution before the shared 

filters, respectively (see also Fig. 1). The y-axis denotes the 

number of feature-maps (𝑁). The dead neurons always 

produced negative values and were counted as being ‘never 

activated’.  

IV. DISCUSSION 

In this study, a novel deep learning architecture for 

automated QS detection is proposed. The proposed network can 

successfully outperform the state-of-the-art single-scale 

approaches trained and tested on the same database. This 

proposed multi-scale CNN can be seen as an extension of the 

well-known Inception networks. Inception networks have been 

shown as a successful classifier in computer vision problems. 

Although the multi-scale characteristic of Inception seems 

useful for EEG analysis, it had not been previously used in this 

domain to the best of our knowledge. The main reason, as 

mentioned, may be the fact that the original structure of the 

Inception network is not well suited for time-series with very 

noisy patterns, such as EEG. In this paper, we increased the 

number of convolutional layers in the Sinc block to increase the 

 
Fig. 4. Activation of the neurons in the Sinc blocks. In each graph, conv1, conv1-m, and conv1-s respectively correspond to the projection convolution, the 

projection convolution before the maxpool, and the projection convolution before the shared convolutions (see also Fig. 1). The navy blue, light blue and grey bars 

correspond to the number of neurons that were activated by non-quiet sleep, quiet sleep, and none, respectively. 
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number of receptive fields, while sharing the parameters of the 

convolutional filters to reduce the number of trainable 

parameters and help to improve model generalization (reduce 

overfitting risk). As a result, in Table II, it was shown that the 

proposed Sinc significantly outperforms the other algorithms, 

including the Sinc network without filter sharing (i.e. Inc). 

Furthermore, comparing across a different number of channels 

showed that with more spatial information (8 or 4 channels), the 

Sinc model has only marginally better performance because the 

spatial characteristics of sleep-related patterns, such as EEG 

bursts and ‘inter-bursts’ (the low-amplitude suppression of the 

EEG between successive bursts), are also extractable by the 

alternative single-scale networks. However, when decreasing 

the number of EEG channels to only 1 or 2, temporal 

information must be solely used to detect such patterns. In this 

case, the superiority of the proposed multi-scale Sinc is clear.  

Another interesting finding from Table II is that the 

performances of the considered methods with 2 channels are not 

necessarily better than with 1 channel (and sometimes even 

worse). This seems somewhat counterintuitive. In the 2-channel 

configuration, C3-Cz and C4-Cz are used (as Cz is the reference 

electrode) while, in the 1-channel case, a bipolar C3-C4 is used. 

It seems that Cz does not provide extra information for this task 

and, therefore, the simpler model (1-channel) with less 

parameters performs better.  

In the UMAPs of Fig. 3 and Table III, we observe how the 

two sleep stages (QS and NQS) are separated block-by-block 

and to what extent the derived features depend on PMA. It is 

also shown that the most difficult segments for this 

classification are from the extremely premature infants (<32 

weeks PMA). There are two possible reasons: 1) the biological 

fact that the neural sleep organization system is still developing 

in these babies [1] and, therefore, the corresponding EEG sleep 

patterns do not manifest clearly in this age group, and 2) the 

methodological fact that the number of training samples for this 

age group is smaller than the middle-age group. Nevertheless, 

the group with the oldest age (>44 PMA weeks) have almost 

the same data size as the <32 weeks group but exhibit a much 

better discrimination. 

In the original inception block, the number of filters for each 

of the 1 × 1, 3 × 3, and 5 × 5 kernels are a separate 

hyperparameter and should be chosen before training. Although 

the network is not very sensitive to these numbers, a small or 

large value can lead to underfitting or overfitting, respectively. 

An ideal solution could be to optimize these hyperparameters 

using a big validation dataset. However, in the Sinc model with 

this limited database, we use an equal number of filters (defined  

by 𝑁) in all convolutions including the projections. This 

reduces the number of hyperparameters in the Sinc block and 

made the domain less diverse for designing and tuning the 

model. This said, a possible limitation is that it can cause 

redundant computations. Fig. 4 reveals that there are some dead 

filters in this network particularly when the receptive field 

increases. This did not cause overall adverse performance in the 

model but, in the presence of a bigger validation set, a further 

pruning could exclude such dead neurons to increase the 

computational efficiency and potentially aid generalization. 

Another finding from Fig. 4 is that the number of neurons 

activated by the NQS inputs are greater than those activated by 

QS in the first Sinc blocks. However, in the latter blocks, this is 

the opposite. This could be due to the fact that QS is mainly 

constructed by cycles of burst and inter-burst interval patterns. 

In order to extract this cyclic pattern, a wider scale is needed to 

capture at least two bursts. This longer timescale is only 

provided in latter Sinc blocks, such that excluding the final Sinc 

(Sinc7) block decreases Kappa in both the validation and test 

datasets.  

A limitation of this study is that since the number of 

recordings are limited and deep learning generally needs large 

amounts of training data, a minimum size for the validation set 

is chosen. This prevents further hyperparameter optimization. 

The hyperparameters used in this proposed Sinc network (𝑀, 

𝑁, RFs, number of blocks, and dropout ratios), are selected 

largely based on intuition. Nevertheless, we attempted to keep 

all benchmarked networks under similar conditions, with 

identical pre/post processing, overlapping, training, early 

stopping etc. routines to ensure a fair comparison. In the future, 

incorporating more data (when available) to facilitate extra 

hyperparameter optimization may increase the performance 

even further. In addition, extended techniques such as using an 

ensemble model or incorporating data augmentation could have 

additional improvements on the results. 

V. CONCLUSION 

The purpose of this study is to present a new algorithm that 

can satisfactorily detect neonatal QS from preterm EEG 

recordings. To this end, we suggest a novel multi-scale 

convolutional neural network based on the newly-introduced 

Sinc block. In this proposed network, a variety of features are 

extracted across different EEG temporal scales at each layer. In 

order to decrease the number of parameters, the filters of those 

convolutions are shared. We show that this network 

significantly outperforms the state-of-the-art algorithms across 

all reduced channel arrangements. Further research will explore 

other capabilities of such a multi-scale deep network for 

supervised and unsupervised EEG problems including sleep 

staging in older age groups and seizure detection. Crucially, the 

high accuracy of the Sinc network with only a single-channel 

EEG (often the only existing EEG configuration in many 

centres) makes it primed for translation into a real-time clinical 

assessment tool.  

 

APPENDIX A – CONV-LSTM LAYERS 

In Table IV, more details about the architecture of the 

considered Conv-LSTM are provided.  

 

 

APPENDIX B – AUC AND ACCURACY 

In Table V and Table VI, the performance of the 

benchmarked networks is respectively presented with the Area 

Under the Curve (AUC) and Accuracy metric. 
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TABLE IV  

THE LAYERS OF THE CONV-LSTM NETWORK 

Layer/ 

Block Output shape Parameters 

Input  1920 * 8 - 

Conv1D  1920 * 32 k: 8, s: 1, N: 32 

Maxpool BN 960 * 32 k: 2, s: 2 

Reshape 30 * 32 * 32  

ConvLSTM BN 30 * 32 * 32 k: 3, s: 1, N: 32 

ConvLSTM BN 30 * 32 * 32 k: 3, s: 1, N: 32 

Maxpool 30 * 16 * 32 k: 2, s: 2 

ConvLSTM BN 30 * 16 * 32 k: 3, s: 1, N: 32 

ConvLSTM BN 30 * 16 * 32 k: 3, s: 1, N: 32 

Conv2D BN 28 * 14 * 64 k: 3, s: 1, N: 64, vld 

Maxpool 14 * 7 * 32 k: 2, s: 2 

Conv2D BN 12 * 5 * 64 k: 3, s: 1, N: 64, vld 

Maxpool 6 * 2 * 64 k: 2, s: 2 

Flatten 768  

Dropout 768 α = 25% 

Dense 20 - 

Dropout 20 α = 20% 

Dense 2 softmax 

BN: followed by a batch-normalizer 

vld: valid size without zero-padding 

N: number of filters  

k: kernel size 

s: stride 

 

 

TABLE V 

THE AUC VALUES FOR DIFFERENT NETWORKS 

Method 

Area under the curve (AUC) 

8-ch 4-ch 2-ch 1-ch 

METD  [13] 0.85 NA NA NA 

CLASS [6] 0.92 NA NA NA 

FBD [23] 0.94 NA NA NA 

Conv-2D [23] 0.93 NA NA NA 

Conv-2D [24] 0.95 0.94 0.91 0.86 

Conv-1D [16] 0.90  0.93 0.89 0.74 

Conv-1D * 0.94 0.94 0.92 0.92 

Conv-LSTM  0.91 0.93 0.88 0.93 

Dilated  0.92 0.94 0.89 0.88 

Dense  0.95 0.95 0.94 0.94 

Inc 0.96 0.95 0.95 0.94 

Sinc  0.95 0.96 0.95 0.96 
* a modified version of [24] with an early EEG integration 

 

 

 

 

TABLE VI 

THE ACCURACY VALUES FOR DIFFERENT NETWORKS 

Method 

Area under the curve (AUC) 

8-ch 4-ch 2-ch 1-ch 

METD  [13] 0.79 NA NA NA 

CLASS [6] 0.87 NA NA NA 

FBD [23] 0.89 NA NA NA 

Conv-2D [23] 0.88 NA NA NA 

Conv-2D [24] 0.90  0.88 0.87 0.84 

Conv-1D [16] 0.85 0.89 0.84 0.61 

Conv-1D * 0.89 0.87 0.85 0.84 

Conv-LSTM  0.88 0.90  0.84 0.89 

Dilated  0.89 0.88 0.84 0.84 
Dense  0.87 0.89 0.89 0.88 

Inc 0.91 0.90  0.90  0.89 

Sinc  0.91 0.91 0.90  0.91 
* a modified version of [24] with an early EEG integration 
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