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Abstract—Objective: To develop, train and test neural networks
for predicting heart surface potentials (HSPs) from body surface
potentials (BSPs). The method re-frames traditional inverse
problems of electrocardiography into regression problems, con-
straining the solution space by decomposing signals with multi-
dimensional Gaussian impulse basis functions. Methods: Impulse
HSPs were generated with single Gaussian basis functions at
discrete heart surface locations and projected to corresponding
BSPs using a volume conductor torso model. Both BSP (inputs)
and HSP (outputs) were mapped to regular 2D surface meshes
and used to train a neural network. Predictive capabilities of
the network were tested with unseen synthetic and experimental
data. Results: A dense full connected single hidden layer neural
network was trained to map body surface impulses to heart sur-
face Gaussian basis functions for reconstructing HSP. Synthetic
pulses moving across the heart surface were predicted from the
neural network with root mean squared error of 9.1 ± 1.4%.
Predicted signals were robust to noise up to 20 dB and errors
due to displacement and rotation of the heart within the torso
were bounded and predictable. A shift of the heart 40 mm toward
the spine resulted in a 4% increase in signal feature localization
error. The set of training impulse function data could be
reduced, and prediction error remained bounded. Recorded HSPs
from in-vitro pig hearts were reliably decomposed using space-
time Gaussian basis functions. Activation times calculated from
predicted HSPs for left-ventricular pacing had a mean absolute
error of 10.4 ± 11.4 ms. Other pacing scenarios were analyzed
with similar success. Conclusion: Impulses from Gaussian basis
functions are potentially an effective and robust way to train
simple neural network data models for reconstructing HSPs
from decomposed BSPs. Significance: The HSPs predicted by
the neural network can be used to generate activation maps that
non-invasively identify features of cardiac electrical dysfunction
and can guide subsequent treatment options.

Index Terms—Electrocardiogram decomposition, Gaussian
Functions, Electrocardiogram prediction, Inverse Problem.

I. INTRODUCTION

Predicting heart surface potentials (HSPs) from body sur-
face potentials (BSPs) is known as the inverse problem of
electrocardiography [1]. Good predictions enable non-invasive
heart surface analysis which can assist source localization for
cardiac anti-arrhythmic procedures such as ablation [2]. The
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forward relationship between HSPs and BSPs is described
in Eq 1, where A characterizes the geometric relationship
between the body and heart surface potential at any instance
in time. The inverse problem of estimating A−1 given in-
stances of concurrent BSPs and HSPs is known to be ill-
posed and underdetermined [1], [3]. Therefore the inverse
problem is difficult to solve. Current approaches such as
electrocardiographic imaging (ECGI) [4], [5] estimate the
HSP ( ˆHSPλ) by minimizing the error or L2-norm residual
(||A ×HSP − BSP ||22) with an additional penalty term λR
(Eq 2), where λ is a specialized regularization parameter and
R is the regularizor. A large regularization parameter results
in overly smooth HSP predictions, and a parameter too small
causes oscillating predictions [1], [6]. ECGI resolves this
issue by using a number of electrophysiological constraints
and special smoothing operators [5]. While methods exist for
estimating the quasi-optimal regularization parameter, there is
no single technique which performs best for all geometries
and signal-to-noise ratios [7], [8], [3]. Nevertheless, ECGI is
a well documented technique for solving the cardiac inverse
problem [9], [10], and comprehensive reviews of methods and
validation can be found in [3], [11], [12].

BSP = A×HSP (1)

ˆHSPλ = argmin(||A×HSP −BSP ||22 + λ2R) (2)

Predicting HSPs from BSPs can also be solved via unsu-
pervised learning regression data driven approaches, which
model the BSP-HSP relationship by using simultaneously
recorded BSP-HSP pairs. Examples of regression solutions
include clustered support vector machine [13], time-delayed
neural networks [14], [15], relevance vector regression [16],
and auto-encoder [17], [18], [19] methods. These are different
from data driven regularization techniques [20], [21], which
explicitly rely on a regularization parameter within the model.
A common challenge encountered by data driven models is
generating a sufficiently rich set of data to form a comprehen-
sive training set [18], [14]. This difficulty arises when data
models are trained or fitted using full BSPs and full HSPs.
Trained data driven models can only predict data similar to
those found in the training set, so generalizing a regression
solution for the BSP-HSP problem requires many paired
BSP and HSP recordings across widely different heart states.
However, detailed simultaneous HSP and BSP recordings
from hearts spanning all possible states is difficult to obtain.
Previous studies have augmented data using simulations of
full HSPs and BSPs [17], [14], [16]. In this work, it is hy-
pothesized that the neural network solution for the cardiac
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inverse problem can be learned using impulse basis functions
that span the space of HSPs under different heart conditions.
Recorded potential signals can then be decomposed into the
same impulse basis functions and each component predicted
separately and then combined to reconstruct the complex
signal.

To test this hypothesis, HSP and BSP impulse basis function
pairs are generated with a volume conductor model in a heart-
torso domain [22]. Gaussian impulse basis functions have been
shown to be effective for decomposing cardiac signals [23].
They have been used to model signals under different drug
and disease conditions [24], [25], [26]. Unlike orthonormal
basis functions such as sinusoidal or wavelets which often have
multiple peaks or troughs, the energy in Gaussian functions
is concentrated in a single peak with bound support, which
makes it suitable for physiological interpretation [27].

In this work, we develop an approach for predicting heart
surface potentials using signal decomposition, signal projec-
tion, and neural networks. Our contributions are: (1) showing
that HSPs can be effectively modelled and generated using
Gaussian 3D basis functions; (2) demonstrating that a single
neural network trained on Gaussian basis functions can be used
to predict unseen physiologically relevant synthesized HSPs
from BSPs; (3) performing prediction of HSPs from experi-
mental heart recordings. The proposed method is significant
as it generalizes the BSP-HSP regression problem by learning
in the Gaussian function space which can represent electro-
cardiographic signals from various disease and drug states.
Our approach predicts the output of a system by learning the
system characteristics through basis function driven responses.

II. METHODS

Figure 1 is a visual representation of the Gaussian basis
neural network pipeline. The forward model is used for
generating training and testing data. It can be replaced or
augmented with experimental data when sufficient of these
are available.

A. Data Context

Heart and body surfaces were abstracted to regular 2D
meshes [28]. These provided a standard context for training
and applying neural network data models. They are also
consistent with the topology of electrode matrices used for
electrical mapping on both the heart and body surfaces [29].
Consequently, the heart surface was represented by a mesh
of 9-by-12 points and the body surface a mesh of 16-by-16
points. The body surface mesh dimensions were specified as
powers of 2, with the total numbers of points just greater than
the typical numbers of body surface electrodes.

The arrays of heart surface points were obtained directly
from the “sock” of recording electrodes used experimen-
tally [29] and the body surface points from electrodes embed-
ded in a torso tank. The body surface points were projected
onto a cylindrical torso approximation and the cylinder was
then unwrapped via a cut along the projected left anterior
descending artery line identified in the heart surface data. The
location of the artery line was projected to the cylinder in the

same way as the body surface points. The unwrapped cylinder
surface was then re-sampled onto a 16-by-16 body surface
mesh using linear interpolation. See Supplementary Materials
for more details on the 2D abstractions.

B. Neural Network Data Model

1) Neural Network Design and Implementation: This work
shows that a neural network approach can capture the ba-
sic relationship between HSP impulses and their respective
BSPs. To that end, a simple neural network with one dense
fully connected hidden layer architecture was implemented in
Python using Keras with a Tensorflow back-end [30], [31].
This common network architecture is mathematically proven
to be capable of approximating any smooth continuous func-
tion given enough neurons and appropriate activation func-
tions [32], [33]. The network was designed to capture the
relationship in the x-y plane between 2D Gaussian basis HSPs
and the simultaneous 2D BSPs. Therefore, the input layer
consisted of 256 neurons corresponding to the 16-by-16 body
surface 2D abstraction points, and the output layer consisted
of 108 neurons corresponding to the 9-by-12 heart surface
electrodes. Neuron bias was turned off, as we expected a zero
BSP input to produce a zero HSP output.

2) Training Data Generation: Gaussian functions have
been successfully used to decompose cardiac signals into
linear sums of bases[23], [25], [24]. Decomposition enables
signals from different states to be expressed in a common
parameter space so that objective representation and quan-
titative comparisons can be made. Other studies have used
orthonormal basis functions, such as wavelets [20], [21], for
efficient representation of electrocardiographic signals. How-
ever, projecting multiphasic wavelet signals from heart to body
surface through the effectively low pass torso filter causes
loss of discriminatory information such as signal peaks. In
contrast, we used monophasic Gaussians to generate a feature
rich training set. A Gaussian basis function at a integer point
(x, y) on the 9-by-12 heart surface mesh (Fig 1) is:

G(x, y) =

A× exp(−((x− µx)2 + (y − µy)2)/(2σ2)) (3)

The Gaussian width parameter, σ, is the same in both x
and y. The position (µx, µy) is the center of the Gaussian
and A is the amplitude. A library of training impulses was
constructed by enumerating σ in steps of 0.02 between 0.01
and 0.5 (of full mesh size). For each combination of µx, µy
and σ values, the amplitudes (A) a vary in value according
to a half Gaussian function with peak value of +1 or -1 (to
give both positive and negative impulses for training) and a
Gaussian width of 0.15 sampled at 24 equispaced intervals. A
width of 0.15 ensured a variety of amplitudes between -1 and
1 were selected. In total 129600 distinct Gaussian impulses
were generated on the heart surface mesh.

Each heart surface impulse was projected to the body
surface using a volume conductor torso model [22]. The
model was based on the realistic geometry from a porcine
heart in a human shaped torso tank experimental set up [29].
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Fig. 1: Neural network training and prediction pipeline.

The specific forward model is not a critical component of
this work and could be substituted by other models or ex-
perimental simultaneous and comprehensive heart and body
surface recordings if these are available. The experimental
recordings would need to be for impulse stimuli or the impulse
components of the stimuli separable from the remainder of the
heart surface signals. The 129600 HSP-BSP pairs were used
as the neural network training and testing data set.

3) Training Regime: A 70-30 training-validation split was
applied to the data pairs. A 0.1 dropout rate was used to
reduce over-fitting. The hyperparameters for the neural net
were tuned through grid search of possible parameter pairings.
The grid search was performed in Python with GridSearchCV
from scikit-learn. The hyperparameter search space is shown
in Table I, with the best hyperparameters highlighted in green.
Training was done using the Adaptive Momentum Estimation
(ADAM) optimizer with root mean squared loss function.
Training was completed over 100 epochs.

TABLE I: Hyperparameter Search Space

Hidden Neurons [100, 150, 200, 250, 300, 350, 400]
Activation Function [ReLU, Sigmoid, TanH]

Regularization [None, L1, L2]
Batch Size [16, 32, 64]

Learning Rate [0.1, 0.01, 0.001]

C. Predictions using Parameterized Neural Networks

Predictions used data sets not seen by the neural network
during training. During prediction, the inputs to the neural
network are the 2D BSPs, and the outputs from the neural
network are the 2D HSPs. All predicted stationary HSPs
were evaluated using error, which was calculated per 2D
potential surface (x-y plane) as percent root mean squared
error (RMSE) (Eq 4), where p̂ is the predicted by the neural
network and p is the the Gaussian specified by Eq 3 for that
data pair.

RMSE(p̂, p) = 100

√
mean((p̂− p)2)

max(p)−min(p)
(4)

Input and predicted Gaussians were also compared using
Euclidean distances between signal peaks (peak Euclidean
distance) measured on the HSP mesh. Predicted experimental
HSPs were compared using activation time, which was defined
to be the time point for the most negative signal gradient
(dV/dt).

1) Pure Moving Gaussians: A physiologically relevant
testing set was generated comprising signals moving across the
2D heart surface array. Gaussian functions of fixed amplitude
and standard deviation were displaced along straight line
paths between two points in the 9-by-12 array (p1 and p2
in Table II). The Gaussians were evaluated with their peaks at
100 discrete points along each path. Fig 2 shows an example
for three positions along Path 1. In this example σ was set
to 0.177. The six paths were chosen to abstractly reflect
common cardiac pacing locations and activation paths. Each
HSP Gaussian in the testing set was passed through the volume
conductor torso model to generate 600 BSP-HSP pairs for
testing. The BSPs were used as input for the neural network
and used to predict 2D HSPs.

TABLE II: x, y Dimension Location of Test I Points

Path 1 2 3 4 5 6

p1 [1, 1] [1, 6] [1, 12] [4.5, 1] [4.5, 12] [9, 1]
p2 [9, 12] [9, 1] [1, 6] [9, 12] [9, 1] [9, 12]
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Fig. 2: Synthesized moving Gaussian data Path 1 (from point [1, 1] to [9,
12]) with contours of the moving Gaussian.

Additionally, moving Gaussian signals were used to explore
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the impacts of three modifications to training data on predicted
HSPs:

1) Noise Robustness Test: Recorded signals are often
noisy, and this contributes to poor predictions from
neural networks. Using similar approaches to previous
studies [14], BSPs generated from moving Gaussian
signal HSPs were augmented with Gaussian white noise
(MATLAB® awgn function) at 2dB, 5dB, 10dB, 20dB,
and 50dB signal-to-noise ratio. This dataset enabled
quantification of the trained neural net sensitivity to
noise in the BSP signal.

2) Geometry Robustness Test: Between subjects, the heart
location varies relative to the torso and body surface.
We simulated these variations and/or body geometry
measurement errors by: (1) translating the heart position
toward the spine in steps of 5 mm, up to 40 mm; (2)
rotating the heart around its long axis in 10◦ incre-
ments between −40◦ and 40◦. The rotation axis was
determined using principle component analysis on the
heart electrode locations. A positive rotation is clockwise
around the axis pointing toward the base of the heart.
These translations and rotations were performed in 3D to
modify the heart location. The torso tank geometry was
unchanged throughout. The subsequent altered forward
models were then used to produce BSPs from HSPs
along all 6 paths of the moving Gaussian testing set.
The BSPs were used to predict HSPs using the neural
network trained for the original heart position.

3) Reduced Training Set Test: Reductions in the training
set were used to explore how this would affect the
prediction results. An effective training data set for
neural networks should include examples from all ex-
pected prediction outcomes [34]. We applied 3 reduction
schemes for the x-y dimension peak location as shown
in subplots B, C, D of Fig 3. We split the original
G3D training set into 25 different σ reduction schemes
consisting of training sets with a single x-y dimension
σ at 0.02 intervals between 0.01 and 0.5 for HSPs. Each
of the reduced training sets were used to train a separate
neural network.

Fig. 3: The locations of training set peak (µ) locations in the x-y (9-by-12)
plane of the HSP surface. Red dots indicate the points in the x-y plane with
a training set peak. A) original training set from Section II-B1; B) reduction
scheme 1; C) reduction scheme 2; D) reduction scheme 3.

The prediction results from the three data modification tests
were compared against the pure moving Gaussian predictions
from the neural net trained on the full training set.

2) Experimental Recorded Data: All procedures were ap-
proved by the ethical committee of Bordeaux CEEA50 and
adhered to Directive 2010/63/EU of the European Parliament
on protection of animals used for scientific purposes. A single
excised porcine heart was Langendorff perfused within a
human torso shaped tank and an epicardial sock with 108
electrodes was placed around the ventricles [29]. The tank
contained 128 embedded surface electrodes and was filled
with saline solution (conductivity 0.3 mS/mm). Simultaneous
epicardium and body surface electrical potential recordings
were made for sinus rhythm. Afterwards, left bundle branch
block was induced via lesions produced by ablation. Left,
right, and bi-ventricular pacing recordings were subsequently
recorded [29]. The geometry of the heart in the tank was ex-
tracted from CT images. This geometry was used to construct
the volume conductor forward model for this study and as the
basis of ECGI comparative predictions [29].

We used averaged beat recordings from the experimental
data which are time 649 samples in length, recorded at a
sampling rate of 2048Hz [29]. This resulted in an LV HSP
recording matrix of 9-by-12-by-649 after 2D abstraction at
each sample in time.

The 2D spatial Gaussian of Eq 3 was extended to include
time as:

G3D(x, y, t) = A×G(x, y)× exp( (t− µt)
2

2σ2
t

)) (5)

The HSP 9-by-12-by-649 array was determined from fit-
ted G3D basis functions using an extension of generalized
orthogonal forward regression [24], [26]. Potential values were
normalized between -1 and 1 while maintaining relative scale
and sign. To fit each G3D component, the unexplained signal
was first correlated against a library of G3D basis functions. A
description of the library can be found in the Supplementary
Materials. Then, the library function with the largest absolute
correlation value was set as the initial point for loss function
minimization using MATLAB® function fmincon. The loss
function employed was the sum of squared differences (Eq 6),
where v is the 1D form of the 3D matrix to be fitted and v̂ is
the 1D form of the current fit of the 3D matrix. The bounds
of optimization are shown in Table III.

SSD(v, v̂) =
∑

(v − v̂)2 (6)

TABLE III: Table of fmincon Optimization Bounds

Bound µx µy µt A σ σt

Upper 9 12 1 Max pot. 0.5 0.5
Lower 1 1 0 Min pot. 0 0

The bounds on µ ensure the peaks of the G3D components
were bounded within the recording, the A bounds allow
the amplitude of the G3D peak to vary between the range
of potentials within the recording, the σ and σt bounds
enable fitted G3D components to have visible effect across
the whole heartbeat. The bounds here are similar to those
of [26], which have been shown as effective for describing
electrocardiographic signals. The fitted G3D component was
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subtracted from all basis functions in the G3D library leaving
an unexplained signal to be fitted in the subsequent iteration.
The process iterated until the number of predefined G3D
components were fit to the 3D recording matrix. The final G3D
fit of the recording was evaluated per 2D potential surface (x-
y plane) using RMSE where the potential range is 2 from
the normalization of potential between -1 and 1.

The HSP from a left ventricular averaged heartbeat was
fitted with 100 G3D basis functions. Each basis function was
split into the 649 time instances, and each time instance was
an HSP boundary condition to the volume conductor torso
model to simulate corresponding BSPs. This created a testing
set of 64900 2D surface BSPs that were used as inputs for
the neural network to back-predict HSPs for comparison with
experimental recordings.

III. RESULTS

A. Prediction of Moving Pure Gaussian HSPs

A neural network trained solely with Gaussian impulses on
discrete HSP and BSP grids reliably reconstructed continuous
Gaussian signals moving across the heart surface grid. An
example of time series comparison for Path 3 can be seen
in Fig 4A-C. Fig 4D shows the RMSE between original and
predicted moving Gaussians on the heart surface. Across the
six paths described in Table II, the RMSE is 9.12± 1.37%.
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Fig. 4: Moving Gaussian predictions. A) Time series prediction results for
best prediction correlation at electrode (x = 3, y = 11) for Path 3 in Table II.
B) Time series prediction results for worst prediction correlation at electrode
(x = 9, y = 7) for Path 3 in Table II. C) Path 3 on the heart surface 9-by-12
grid, along with the time series correlation between predicted and synthetic
data at each electrode. The electrode with the worst prediction in correlation
is marked with a red triangle, while the electrode with best prediction in
correlation is marked with a red star. D) RMSE for the predicted 2D sample
slices (along x-y axis) for all 6 paths of synthesized HSPs moving from point
to point.

B. Robustness Tests

The moving Gaussian BSP was augmented with five levels
of white noise (Section II-C1) and each signal used as input
to the neural network. Fig 5A shows distributions of RMSE
between raw HSP and predicted HSP signals from noisy BSP.
As expected, the error associated with the prediction increases
as the noise level increases. Fig 5B gives an example of the

HSP time series prediction for none, 40, 20 and 10 dB added
noise.
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Fig. 5: Effects of noise added to BSPs. A) Boxplot of RMSE value across
2D HSP slices (x-y plane) between predicted and expected HSPs at different
noise levels for the input BSP. B) Time series example of predicted HSPs at
different BSP noise levels for path 1 from Table II. The expected prediction
is the synthesized HSPs moving from point to point (dotted line).

The location of the heart relative to the torso was translated
and rotated in discrete steps and BSPs were generated for
moving Gaussians on the heart surface. The altered BSPs
were used as inputs to the neural network trained solely with
Gaussian impulses on the originally positioned heart. Fig 6A
(translation) and Fig 6C (rotation) show that error grows in
a predictable and bounded way. For a sizeable shift of 40
mm toward the spine, the peak of the predicted Gaussian
is a median distance of around 1.6 mm further from the
raw data position than no shift (i.e. 4% increase in error
for a 40 mm shift). Fig 6B shows that for translation the
predicted signal morphology is similar to signals from the
training position but with increasing amplitude and with the
peak offset from the raw data. Fig 6D indicates that a negative
rotation (left ventricle rotates toward the front of the chest)
increases amplitude and decreases width compared to no-
rotation, whereas a positive rotation (right ventricle rotates
toward the front of the chest) has the opposite effect.

C. Effects of Reduced Training Sets

Fig 7A shows a subsection of a heart surface electrode grid
formed by four neighboring electrodes. For training the neural
network, Gaussian impulses with peaks at the electrode points
were used to generate equivalent body surface signals using a
volume conductor forward torso model. The training data (or
electrode) reduction tests (Fig 3) increase the distance between
impulse peaks (dx and dy). To predict an HSP Gaussian with
a peak bounded by the reduced electrode training set the
maximum Euclidean distance error for predicted peak location
is bounded by:

√
d2x + d2y .

Fig 7B shows that Euclidian distance errors for reduced
training data are bounded as expected. Fig 7C shows that
the RMSE increases as the number of examples found in the
training set decreases.

Neural networks were trained using 25 different Gaussian
width reduction sets, each training set included Gaussians of
a single chosen width (σ from Eq 3) at 0.02 intervals between
0.01 and 0.5. Fig 8A shows mean and standard deviation
changes of the Euclidian peak distance over the altered widths,
for predicted and expected signals. Fig 8B shows mean and
standard deviation of RMSE over the altered widths, for
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Fig. 6: Effect of moving and rotating heart positions on neural network
predictions. A) Boxplot of Euclidean distance between predicted and expected
peaks of HSPs at different spatial shifts for the heart geometry in the forward
model. B) Time series example of predicted HSPs at different shifts in heart
geometry for Path 3 from Table II. C) Boxplot of Euclidean distance between
predicted and expected peaks of HSPs at different rotation angles for the heart
geometry in the forward model. D) Time series example of predicted HSPs
at different shifts in heart geometry for Path 3 from Table II. In B and D, the
expected peak timing is marked as the red dotted vertical line.

predicted and expected signals. The standard deviation σ for
the moving Gaussian in the testing set is 0.177 (red star). In
Fig 8, both Euclidian distance and RMSE are minimized as σ
for the training data approaches 0.1768.

D. G3D Decomposition of Recorded HSPs

The 3D space-time matrix of size 9-by-12-by-649 for the
left ventricular recording was fitted using 100 G3D compo-
nents. Original signals were approximated by summing the
100 components. Figs 9A and 9B compare activation times
extracted from the raw experimental signal with those ex-
tracted from the G3D signal model. The potential isosurfaces
around 0 mV in space and time are contrasted between the
raw data and the 100 component G3D model in Figs 9C
and 9D. The development of the approximation is shown
in Fig 9E where 10% of the G3D components are used to
show the model captures principal space-time features. For
the full reconstruction of HSP on the heart surface grid, the
peak RMSE is less than 5% (Fig 9F), with mean RMSE of
1.34± 1.30%.

E. Prediction of Recorded HSPs

In Fig 10, left ventricular paced activation times derived
from experimental recorded signals are compared with neural
network predicted HSPs and ECGI predicted HSPs across the
ventricular epicardial electrode sock. The absolute difference
in calculated activation times from experimental recordings
and neural network predictions, across all electrodes, was
10.4 ± 11.4ms for impulse prediction and 8.10 ± 7.17ms for
ECGI. The RMSE in predicted activation times is 17.7% for
impulse prediction and 12.4% for ECGI. Fig 10E and 10F

compare predicted HSP signals with G3D fits of the corre-
sponding recording. Fig 10G summarizes the spatial RMSE
between HSP predicted by the neural network and the G3D
description of raw recorded data following left-ventricular pac-
ing of an in-vitro heart [29]. The mean RMSE is 16.5±4.18%.
Peak differences occur during the plateau and repolarization
phases of the activation. Using the same techniques and neural
network as left-ventricular pacing, predictions of activation
sequences for sinus rhythm, bi-ventricular pacing and right-
ventricular pacing were compared with experimental record-
ings. The corresponding activation maps for these scenarios
can be found in the Supplementary Materials.

IV. DISCUSSION

In this paper, we present the concept for an impulse ba-
sis function neural network approach to solving the inverse
problem of electrocardiography. We have shown that a neural
network can be used to model the data relationships between
components of electrical signals on the body and heart sur-
faces, for a torso model. We trained the neural network with
static Gaussian bases and used it to predict synthetic signals
and recorded heart surface signals. The proposed method is
significantly different from traditional neural network models
which learn the relationship between full HSP and BSPs. In
the context of our problem the method is robust to noise
and perturbed heart locations. This is an important first step
toward developing a new approach to the inverse problem of
electrocardiography.

The Gaussian basis function impulses on the heart surface
along with simultaneous forward model calculated data on
the body surface were used to train a neural network which
predicted both synthesized HSPs and recorded decomposed
HSPs from BSPs. The network performs well for predicting
the synthesized moving Gaussian data set described by Ta-
ble II, with low mean RMSE value of 8.46% across all 6
paths. As the neural net was only trained using basis functions
with peaks at integer x and y mesh locations, the prediction
error and Euclidean distance are expected to fluctuate (Fig 4D)
along all 6 paths which include peaks at non-integer x and
y dimensions. Interestingly, Fig 4A suggests that the time
series at electrode locations that are closer to the points of
activation (i.e. along the path) achieve better prediction results
when compared to electrodes which are far from the point of
activation. This is most likely due to the distant electrodes
having near zero values in time series (Fig 4B), which is
difficult to predict for an neural net largely trained on impulse
or non zero time series data.

One of the advantages of the proposed data driven model
is that it learns the relationship between impulse HSPs and
their respective BSPs. Previously we showed that Gaussian
impulses with finite parameter bounds can effectively represent
electrocardiographic signals from a variety of drug and disease
states [25], [26]. An impulse data driven model trained on
appropriate data within these finite bounds can predict HSPs
under a variety of heart conditions through linear combination
of predicted Gaussian impulses. We show that the proposed
method predict HSPs under different pacing conditions, before
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Fig. 7: Effects of reduced size training data sets. A) A small section of the HSP electrode grid. Electrodes are shown as red circles and expected peak of
the predicted HSP is shown as the yellow star. The distance between electrodes is dx and dy in the x and y direction, respectively. B) Euclidean distance in
the x-y plane between predicted and expected Gaussian peak locations for the synthetic moving Gaussian testing data set. The proposed limits on maximum
Euclidean distance between predicted and expected Gaussian peaks is shown as the blue line for each box plot. C) RMSE per 2D slice.
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Fig. 8: The mean of the errors when predicted using neural networks trained
with σ reduction scheme sets is shown as the blue solid line, the 95%
confidence intervals are marked by the black dotted lines. The σ of the testing
set Gaussian is shown as the red star. For comparison, the mean of the errors
when the full training set is used is the red dotted line. A) Euclidean distance
in the x-y plane between predicted and expected Gaussian peak locations for
the synthetic moving Gaussian testing data set; B) RMSE per 2D slice.

and after ablation induced left bundle branch block, but the
technique is equally applicable to other heart states, if they are
not already in the training set. To predict HSPs from subjects
under new heart states, the neural network training set would
need to be augmented with Gaussian impulses which are
similar to those decomposed from the new heart states. This
is a fundamental property of predictive data driven models, as
they can only predict what it has seen before in the training
set.

The trained neural network is susceptible to noise in the
input BSPs as seen in Fig 5. There is a large drop in predicted
HSP quality when going from BSP inputs with 20dB to
10dB signal-to-noise ratio in Fig 5A. Furthermore, Fig 5B
suggests that, noisier BSPs will produce noisier HSPs as neural
network outputs. Similar prediction error trends are observed
by spatial adaptation time delayed neural networks from [14].
This is expected as the network is trained on data without
noise. Appropriate BSP pre-processing can improve prediction
of HSPs for ECGI [35]. It is feasible to consider similar
techniques for BSP noise reduction for the proposed neural
network approach.

The proposed impulse response method addresses data
driven model generalization across different cardiac rhythms.
In the same way inter-subject geometric variability can be
sampled and encoded in the data models. Fig 6A shows that
the neural network prediction is worse for hearts that are in-
creasingly distant from the spatial location of the heart used to
generate the training set. The time series in Fig 6B shows that
the shapes of the predicted HSP signal are largely unchanged
between 0mm and 40mm heart location shifts. Furthermore,

Fig. 9: Comparisons between G3D representation of real-world recordings.
A) The activation map corresponding to LV recordings. B) The activation
map from the G3D representation. C) Isosurfaces for the full 9-by-12-
by-649 matrix for the left ventricular recording. D) Isosurfaces for the
G3D representation. E) Isosurfaces for the sum of the first 10 fitted G3D
components. All isosurfaces are drawn at values of -0.1, -0.05, 0.05, and 0.1
mV to show the various potentials found within the 3D signal matrices. F)
RMSE per 2D slice (x-y plane) for the G3D representation.

in Fig 6, there is a non-random change in predicted signal
amplitude, peak time, and width as the heart shifts and rotates.
Ongoing work looks to extend heart and torso projections
into common reference frames [16]. The common reference
projections implicitly encode geometry. One way to augment
this is to modify neural network architecture and explicitly
include geometry measures as model inputs.

We observe several important factors for constructing an
effective training set for prediction of Gaussian basis HSPs
using neural nets. We evaluated the effectiveness of training
sets based their effect on the Euclidean distance between
predicted and expected Gaussian peaks. This is an important
measure, as most interesting heart behaviors occur when the
electrical potential on the heart surface is non-zero. We show
that the maximum Euclidean distance error between predicted
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Fig. 10: Comparisons between recorded and predicted heart surface activation and normalized signals. A) Recording electrode sock in place on heart. B)
Recorded activation sequence for left-ventricular pacing. C) Impulse predicted activation sequence for left-ventricular pacing. D) ECGI activation sequence
for left-ventricular pacing from [29]. E) and F) Comparison between recorded fitted normalized signals and predicted signals for indicated points. G) Global
root mean squared error for 2D potential surfaces across time.

and expected Gaussian peaks on the heart surface is related
to the distance between Gaussian peaks found in the training
set. Specifically, if the training set has examples of peaks at
distance dx in the x dimension of the heart surface, and dy in
the y dimension of the heart surface, then the maximum error
in Euclidean distance of the predicted peak is

√
d2x + d2y . This

limit is made for the proposed model under the assumption
that the training set HSP-BSP pairs at neighbouring electrodes
are sufficiently different, and the difference between training
set HSP-BSP pairs between neighbours’ neighbours are larger
than for neighbours alone. In Fig 8 we show that the neural
network trained on the full training set outperforms any
of the neural nets trained on reduced sets with G3D basis
functions having a single σ. Therefore, for our proposed data
driven model, an effective training set must include a fair
representation of data from varying σ values. This is similar
to the guidelines for effective training sets proposed by [34].

We have shown that a G3D basis model can effective capture
the morphological behavior found within HSPs expressed as a
3D matrix (x, y, t). The G3D basis model offers descriptions
of the HSP 3D matrix which improves with the number
of G3D components fit (Supplementary Materials). This is
common behavior for basis function models [27]. Due to the
smooth nature of the Gaussian basis, its representation of a
given recording is good but not exact, as seen in Fig 9. This is
similar to the behavior noted in [26], where small components
electrocardiographic signals were sometimes not captured by
the Gaussian model. The G3D basis function decomposition
technique proposed here is not signal dependent, and can
decompose, and therefore express, HSPs from varying heart
states in the same basis function space. The optimization
bounds found in Table III and loss function can be modified
based on domain knowledge for effective representation of
different heart states [26], [25].

The neural network prediction of G3D decomposed HSP
left ventricular recordings is notable, as the neural network

is trained on the Gaussian basis function HSPs and forward
model BSPs solutions, and not with a data set of simultane-
ously recorded BSPs and HSPs. The proposed impulse trained
model predicts real-world HSP data with an error of 16.5%
(Fig 10G), which is similar to prediction errors found using
other neural networks trained on full real-world HSP and BSP
data [18], [14]. The predicted activation map (Fig 10C) are
similar to those found via ECGI (Fig 10D). The dynamic
behavior of the recorded HSP is predicted well. This can be
seen in the volatile activation within the first 200 samples, the
relatively flat period between 200 and 400 samples, and the
repolarization period after 400 samples in which the potential
returns to baseline for both the recorded and predicted time
series in Figs 10E-G. This is further supported by the mean
absolute difference in predicted and expected activation time
of 10.7 ms.

We present the prediction of real-world signals based on
neural networks trained with basis function data to serve
as a case study for how such an approach can be used to
solve clinical problems. Source localization accuracy is an
important factor to establish before the use of HSP prediction
techniques in clinical settings. For ECGI, in vivo validation
studies [36], [29] require significant organization, certifica-
tion, and authorization to carry out. While the proposed Gaus-
sian impulse data trained neural network model can predict
experimentally recorded HSPs and activation maps, validation
studies must be done to establish its localization accuracy
before its use in clinical settings. To that end, the forward
model used to generate the training set could be replaced by
measured data, or limited measured data can be augmented
by a model. While developing this method, a model-based
BSP generator reduces some uncertainties, and furthermore,
impulse data from heart and body surface is currently not
widely available. Currently, stimulus artifacts from pacing
experiments provide limited data [37]. In the future, it can be
hypothesized that these impulse experimental recordings can
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be made by applying Gaussian impulse patterns on the surface
of a model heart, with realistic conductivity and geometries,
similar to the manikin human head used to record impulse
response characterizations in the audiology domain [38].

Unsurprisingly, we find that the quality of predictions in-
creases as the number of HSP-BSP pairs in the training set
increases. In particular, we show that there is a maximum
error in Euclidean distance of predicted Gaussian peaks. This
limit can be used to calculate the target distance between
stimulus and recording electrodes for experimental HSP-BSP
recordings to train our approach and produce HSP predictions
at a desired error level. Based on successful decomposition
of HSPs into Gaussian components, ongoing research uses
similar curve fitting techniques [26], [25] to decompose BSP
into components similar to those in the training data set. A
robust fitting solution to decompose BSPs is an important step
towards clinical adoption.

V. CONCLUSION

In this work we propose a Gaussian basis function decom-
position approach to bypass the rich training data problem of
neural network models for the inverse problem of electrocar-
diography. We have shown that a network trained on basis
function HSPs and their respective generated BSPs can be
used to predict experimental recordings of HSPs decomposed
into the same basis function set. The proposed data driven
model can also be trained using experimentally recorded HSP
impulse and their respective BSPs.
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