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A network-based analysis of disease modules
from a taxonomic perspective

Giorgio Grani , Lorenzo Madeddu , and Paola Velardi

Abstract— Objective: Human-curated disease ontologies
are widely used for diagnostic evaluation, treatment and
data comparisons over time, and clinical decision support.
The classification principles underlying these ontologies
are guided by the analysis of observable pathological
similarities between disorders, often based on anatomical
or histological principles. Although, thanks to recent ad-
vances in molecular biology, disease ontologies are slowly
changing to integrate the etiological and genetic origins
of diseases, nosology still reflects this “reductionist” per-
spective. Proximity relationships of disease modules (here-
after DMs) in the human interactome network are now
increasingly used in diagnostics, to identify pathobiolog-
ically similar diseases and to support drug repurposing
and discovery. On the other hand, similarity relations in-
duced from structural proximity of DMs also have several
limitations, such as incomplete knowledge of disease-gene
relationships and reliability of clinical trials to assess their
validity. The purpose of the study described in this paper
is to shed more light on disease similarities by analyzing
the relationship between categorical proximity of diseases
in human-curated ontologies and structural proximity of
the related DM in the interactome. Method: We propose
a methodology (and related algorithms) to automatically
induce a hierarchical structure from proximity relations
between DMs, and to compare this structure with a human-
curated disease taxonomy. Results: We demonstrate that
the proposed methodology allows to systematically ana-
lyze commonalities and differences among structural and
categorical similarity of human diseases, help refine and
extend human disease classification systems, and identify
promising network areas where new disease-gene interac-
tions can be discovered.

Index Terms— Disease modules, human interactome,
disease ontology, Network Medicine, taxonomy induction.

I. INTRODUCTION

Network medicine is a new paradigm of medicine that
applies network science and systems biology approaches to
study diseases as a consequence of pathobiological processes
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that interact in a complex network. Pieces of evidence in
this field show that if a gene or molecule is involved in a
disease, its direct interactors might also be suspected to play
some role in the same pathological process. According to this
hypothesis, proteins involved in the same disease show a high
propensity to interact with each other, a property referred to
as “disease module hypothesis” [1], [2]. This hypothesis
suggests that, if we identify a few disease components, the
other disease-related components are likely to be located in
their network-based “neighbourhood”, called disease module.
Under a biological perspective, “a disease module represents
a group of network components that together contribute to
a cellular function whose disruption results in a particular
disease phenotype” [1]. Furthermore, subsequent studies have
shown the tendency for biologically similar diseases to have
their respective modules located in adjacent or overlapping
areas of the interactome [2]–[4]. According to Loscalzo et
al. [4] and Menche et al. [2], “proximity and degree of
overlap of two disease modules (in the human interactome)
has been found to be highly predictive of the pathobiological
similarity of the corresponding diseases” and “network-based
location of each disease module determines its pathobiologi-
cal relationship to other diseases”. Indeed, different disease
modules can overlap, so that perturbations caused by one
disease can affect other disease modules that could lead to
co-morbidity and pathogenetic mechanisms [1]. Analysing
interconnections within disease modules can help reveal new
disease genes, disease pathways, and identify possible drug
targets or biomarkers for drug development and drug re-
purposing [1], [5]. The tendency of phenotypically similar
diseases to be close or to overlap in the interactome suggests
the possibility of inducing a hierarchical and possibly cat-
egorical structure of disease modules, with specific and yet
unexplored relationships with existing disease classification
taxonomies. Disease taxonomies play a key role in defining
the mechanisms of human diseases, potentially impacting both
diagnosis and treatment. However, as remarked in [1], [6],
[7], contemporary approaches to the classification of human
diseases are mainly based on anatomical pathological data and
clinical knowledge. Yet, modern molecular diagnostic tools
have shown the shortcomings of this methodology, reflecting
both a lack of sensitivity in identifying pre-clinical diseases
and a lack of specificity in defining diseases unequivocally.
On the other hand, inducing disease relationships solely from
disease modules in the interactome is hindered by incomplete
knowledge of disease-related genes [1], [8].
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In this study we propose a methodology to systematically
compare categorical relationships automatically induced from
proximity of disease modules in the human interactome net-
work, with manually crafted categories in human-curated on-
tologies. Detected commonalities and differences may suggest
latent and unknown molecular properties of diseases, help
improve the current understanding of the disease mechanisms,
and facilitate precise clinical diagnosis consistent with molec-
ular network properties [5], [9]–[11].

II. AIMS AND METHODS
Network-based analyses of gene interaction data have

helped to identify modules of disease-associated genes, here-
after referred to as disease modules (DMs), widely used to
obtain both a systems level and a molecular understanding
of disease mechanisms [12]. Disease modules have been
successfully used, for example, to prioritize diagnostic markers
or therapeutic candidate genes, and in drug repurposing [1],
[5], [13]. However, according to Barabási et al. [1], these
results have marginally influenced the disease taxonomies and,
conversely, to the best of our knowledge, disease taxonomies
have not been used to analyse disease modules. In this study
we aim for the first time to integrate taxonomic and network-
based disease categorization principles, with the following
innovative contributions:

1) to automatically induce a full-fledged hierarchical struc-
ture from proximity relations between DMs in the hu-
man interactome;

2) to compare this structure with a human-defined disease
taxonomy (such as the Disease Ontology1));

3) to systematically identify categorical analogies and dis-
crepancies between molecular and human-defined tax-
onomies.

Our research hypothesis is that a study of the
relationships between molecular-based and human-curated

disease taxonomies could help refine our knowledge on human
diseases and identify limitations and perspectives of current
module-based computational approaches to the study of dis-
eases. As shown in the experimental Section VI, our study has
some possibly relevant clinical implications:

1) To identify promising regions of the human interactome
where new disease-gene relationships could be discov-
ered2;

2) To identify unexplored molecular relationships among
diseases;

3) To extend, correct and refine human-curated taxonomies.
Figure 1 shows the workflow of the proposed approach,
described in detail in the next Sections. The main phases are
the following:
1. Induction of a Taxonomy of Disease Modules: First, we
automatically induce a hierarchical structure of diseases based
on proximity relations of DMs in the human interactome. This
taxonomic structure is hereafter referred to as the Interactome
Taxonomy (I-T).
2. Taxonomy alignment and labeling: Next, we align the I-T

1https://disease-ontology.org
2either exploiting data-driven methods or clinical experiments

taxonomy with a human-curated reference ontology (hereafter
R-T), by creating a mapping between disease nodes in both
taxonomies (red arrows in Box 2 of Figure 1). Finally, a
labeling algorithm finds the best map between categorical
nodes in the R-T and the unlabeled inner nodes of the I-T
(purple arrow in Box 2 of Figure 1).
3. Systematic Comparative Analysis of I-T and R-T tax-
onomies: The alignment between I-T and R-T supports a
large-scale analysis of a vast collection of diseases jointly from
an ontological and molecular perspective. We provide insights
to refine state of the art nosology and knowledge on disease
interactions, by using our methodology to investigate the
efficacy of the anatomical disease classification principle at the
molecular level, identify nomenclature errors in disease-gene
associations and discover unexplored molecular mechanisms
among diseases.

I-T
Human Interactome Disease Modules

ResultsAnalytic 
Promising network areas for 
disease gene prediction

Unexplored disease molecular
relationships

Identification of nomenclature
errors in disease-gene
associations

1

2

Taxonomy
Induction

3

Alignment

I-T R-T

Labeling

Disease-gene
associations

Fig. 1: The work-flow of our study. Box 1 shows the taxonomy
induction phase, Box 2 represents the phase of taxonomy alignment
and labeling and Box 3 summarizes the results of the analytic phase.

III. CONSTRUCTION OF THE INTERACTOME TAXONOMY
(I-T)

We induce a disease taxonomy (named Interactome Taxon-
omy, I-T) by applying hierarchical agglomerative clustering to
the human interactome network, exploiting proximity relations
of disease modules. Hierarchical agglomerative clustering
(HAC) is a set of greedy approaches that create a hierarchy
of clusters from unlabeled input data [14]. Given a distance
matrix of seed clusters, the HAC algorithm iteratively merges
two clusters based on a selected inter-cluster distance measure.
Common methods to merge clusters are Average and Complete
linkage [14]. In our context, clusters are DMs in the human
interactome network. However, due to the high incomplete-
ness of the disease-gene associations modeled in the human
interactome [15], disease modules are not molecularly well-
defined and devoid of a clearly dense network-structure [2].
To cope with this problem, we use two alternative definitions
of modules adopted in network science, which have been
commonly used in Network Medicine literature to physically
identify disease modules [2], [16].
Given the human interactome network G = (V,E) and a
disease d in a set of diseases Dit:

1) Induced Module: The Induced Module Id = (Vd, Ed)
is a subgraph of G, where Vd ⊆ V is the set of genes-
nodes associated with d and Ed is the set of gene-gene
interactions Ed = {(u, v)|(u, v) ∈ E and u, v ∈ Vd}

https://disease-ontology.org
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[2]. This definition includes in a DM all the disease
genes but, due to the incompleteness of the network,
it is usually a graph with many connected components
lacking a strong local structure [16].

2) Largest Connected Component (LCC) Module: The
LCCd module is the largest connected component of
Id [2], [16]. Unlike for the induced module Id, LCCd

usually has a denser local structure but may not include
all the disease-related nodes d.

Given the human interactome G, a set of diseases Dit and
their disease modules DMit in G, hierarchical clustering is
performed using a distance matrix of disease modules (defined
as previously explained), based on the following network-
based distance measure (Eq.(1)) (used, e.g., in [2], [4], [17]):

dist(A,B) =

∑
a∈A minb∈BSP (a, b) +

∑
b∈B mina∈ASP (a, b)

|A|+ |B|
(1)

where A, B are respectively the set of nodes in modules DMA

and DMB associated to diseases dA, dB ∈ Dit and SP is the
shortest path length between two given nodes in G.

In our experiments, we used two DM definitions (Induced
Module and LCC) and two cluster-merge methods (Average
and Complete). The best solution among the four resulting I-
Ts alternatives is identified using the methodology described
in Section IV-B.

IV. TAXONOMY ALIGNMENT AND LABELING

The result of the hierarchical clustering algorithm is a binary
tree taxonomy, hereafter referred to as Interactome Taxonomy
(I-T). I-T is a connected directed acyclic graph T (VT , ET )
in which nodes VT represent disease concepts and edges
represent “is-a” semantic relationships3. In our context, leaf-
nodes (i.e. nodes with out-degree equal to zero) are “specific”
diseases Dit, physically represented by the corresponding
modules DMit, while inner nodes (i.e. non-leaf nodes) are
disease categories DCit.

Note that inner nodes c ∈ DCit are unlabeled, and exten-
sionally defined by the set of their subsumed disease nodes,
referred to as the clusters Cc of nodes c. Similarly, given
a “reference” human-crafted taxonomy, denoted as R-T, let
T (VR, ER) be the set of its nodes and edges, Drt its disease
(leaf) nodes, DCrt its categorical (inner) nodes and Cc′ the
clusters associated with categorical nodes c′ ∈ DCrt. Contrary
to the I-T, inner nodes in the R-T have also a human-defined
label, the category name.

A. Taxonomy Alignment
Whatever the choice of the R-T, the R-T and the I-T are

expected to be defined on different sets of diseases nomen-
clatures, Drt and Dit. Furthermore, they are also expected
to be structurally diverse. For example, R-T has usually a
polyhierarchical structure, while I-T is by construction a binary
tree.

To compare I-T and R-T we first need to create a mapping
M from Dit to Drt nomenclatures, and next, to prune the

3Edge (v, u) with u, v ∈ VT means that v is a kind of u.

hierarchies so that they include the same set of leaf disease
nodes, a process that we call taxonomy alignment.

Let M be an available mapping of disease nomenclatures
(see Section V for details). In Figure 2, mappings among nodes
of the two taxonomies are highlighted using the same colours.
As shown, M is usually not one-to-one and we identify four
cases:

1) Case 1: Some leaf nodes Dit in I-T may map onto inner
nodes in the R-T.

2) Case 2: Some Dit nodes may map onto multiple nodes
in the R-T.

3) Case 3: Some Dit nodes may map onto the same node
in the R-T.

4) Case 4: Some Dit nodes may have no mappings in
the R-T and vice-versa. These nodes without mappings
are depicted in Figure 2 as white leaf nodes in both
taxonomies.

Our taxonomy alignment procedure consists of three algo-
rithms: merge, split, and prune. We apply merge and split to
the R-T to solve cases 1, 2 and 3; instead, prune is applied to
both the R-T and the I-T, to solve case 4. The merge algorithm

I-T R-TI-T

Case 1

Case 2 R-T
Merge

Case 3

Fig. 2: Visual example of the merge algorithm.

Algorithm 1: Merge
1 Function Merge(rt, mapping):
2 diseases = keys(mapping);
3 rtmapped = newMapping = Hashmap() for diseaseId in

diseases: do
4 rtmapped.union(mapping[diseaseId]);
5 newMapping[diseaseId] = [];
6 end
7 ancestors = rt.getColouredAncestors(rtmapped) ; // Get the

RT’s coloured nodes with no R-T’s coloured
node among their ancestors

8 for ancestor in ancestors: do
9 diseasesDesc = rt.getMappingDescendant(ancestors,

mapping); // Get the diseases linked to
RT’s nodes descendant of the coloured
ancestors

10 for diseaseId in diseasesDesc: do
11 newMapping[diseaseId].append(node);
12 end
13 end
14 for ancestor in ancestors: do
15 descs = rt.getDescendants(ancestor);
16 rt.removeNodes(descs); // Turn every ancestor

into a leaf
17 end
18 mapping = newMapping;
19 return rt, mapping;

(see Algorithm 1) turns in leaves all the R-T coloured inner
nodes. If the node has non-coloured descendants (that is, its
descendands do not map onto any disease module in I-T),
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these descendants are removed. Else, the node and its coloured
descendants are aggregated into a single multi-coloured node,
as shown in Figure 2 (right).

After the merge, the split algorithm (see Algorithm 2) splits
all the nodes with multiple colours (see Figure 3). Note that
these nodes inherit the ancestors of the splitted multi-coloured
node. As a result of merge and split, all coloured R-T nodes are
now leaf nodes, and every I-T node points to its correspondent
R-T node. Furthermore, polyhierarchy in the R-T is preserved,
as shown in Figure 4.

I-T R-T I-T R-T
Split

Fig. 3: Visual example of the split algorithm.

I-T R-T
Split

Merge
+ I-T R-T

Fig. 4: Visual example of the merge and split algorithms for a
polyhierarchical case.

Algorithm 2: Split
1 Function Split(rt, mapping):
2 diseases = keys(mapping);
3 for diseaseId in diseases: do
4 nodes = mapping[diseaseId]; // The RT’s nodes

linked to diseaseId
5 parents = rt.getParents(nodes); // Get the set of

parents of the given set of nodes
6 rt.addNode(diseaseId, parents);
7 mapping[diseaseId] = diseaseId;
8 end
9 return rt;

Finally, the prune algorithm (see Fig. 5 and Algorithm 3)
prunes both the R-T and the I-Ts by recursively removing
survived leaf nodes not linked by any mapping relation in M .
These are shown with a double circle in Figure 5. As a final
result, the R-T and the I-T have as leaf nodes the same set of
diseases, denoted as D∩.

I-T R-T
Pruning

I-T R-T

Fig. 5: Visual example of the prune algorithm.

B. Selecting alternative Induced Taxonomies
As remarked in Section III, the I-T is built using differ-

ent definitions of disease modules and different inter-cluster

Algorithm 3: Prune
1 Function Prune(taxa, diseaseID):
2 drop = taxa.leaves() - diseaseID;
3 for leaf in drop: do
4 taxa.remove(leaf); // Remove the leaf from the

taxonomy
5 end
6 for leaf in taxa.leaves(): do
7 if —rt.parents(leaf)— == 1 and

rt.parents(leaf)[0].outDegree() == 1: then
8 taxa.replace(leaf); // Recursively substitute

the leaf with its parent until the
leaf get a parent with out-degree >
1 or more than one parent

9 end
10 end
11 return taxa;

similarity functions during agglomerative clustering. In this
Section, we present a method to select the “best” I-T, among
four I-Ts4, based on its structural and semantic similarity
with the R-T. Note that a similarity function between two
taxonomies can be computed only if they have been aligned.
Our method to compute the similarity between two taxonomies
is based on the Lin semantic similarity [18]:

ST (a, b) :=
2 ∗ ICT (LCST (a, b))

ICT (a) + ICT (b)
(2)

where IC is:

ICT (x) := −log(
|leavesT (x)|+ 1

MaxLeavesT + 1
) (3)

where a, b are two leaf nodes in a taxonomy T , and
LCST (a, b) is the least common subsumer of a and b in
T ; leavesT (x) is the set of leaves descendant of x and
MaxLeavesT is the number of leaves in T .
The Lin similarity increases when two nodes are structurally
close in a taxonomy, and decreases otherwise. Furthermore, by
construction, the distance between two nodes is normalized
with respect of the maximum distance, a property that is
particularly useful when extending this measure to compare
taxonomies with different depths. This is a desirable property
since the I-T is a binary tree and has a much higher depth
than the R-T.

To compare each of the four induced I-Ts with a selected R-
T, first, we calculate the pairwise Lin similarity ST (di, dj) for
each taxonomy T , where {(di, dj)|di, dj ∈ D∩ and di 6= dj}.
Next, for each taxonomy T , we construct a vector vT of
ST (di, dj) similarity values. Finally, we calculate the cosine
similarity between each of the induced taxonomies vectors
vITk

(k = 1 . . . 4) and vRT . The intuition is that, if two
taxonomies are similar, disease pairs that are “close” in one
taxonomy should be “close” also in the other taxonomy, and
those who are far apart in one taxonomy, should be far apart
also in the other. The “best” I-T is selected according to:
argmaxk(cosSim(vITk

, vRT )).
The experimental application of this methodology is de-

scribed in Section VI.
4Four aligned I-Ts resulting by the combination of the Induced and LCC

disease module definitions with the Average and Complete clustering methods
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C. Semantic Labeling of the Interactome Hierarchy (I-T)

As previously noted, the inner nodes of the aligned I-T have
no semantic labels. To facilitate a comparative analysis of I-T
and R-T, we defined an algorithm to label each inner node
in the I-T with the most similar category label in the R-T. In
order to find the most similar R-T category node, we exploit
the notion of cluster Cc associated with a category node c in a
taxonomy, defined as the set of all its descendant disease nodes
that are also in D∩. Then, a labeling algorithm (see Algorithm
4) labels every I-T disease category c with the name of the
R-T category c′ with highest similarity score sim(Cc, Cc′)
between the clusters of c and c′5 . To compute the similarity
between two clusters, we use the Jaccard coefficient, a popular
measure of set similarity.

Algorithm 4: Labeling
1 Function labeling(it, rt):
2 categories = it.nodes() - it.leaves() labels = empty dictionary;
3 for category in categories: do
4 clusterIT = getCluster(it, category) catRT =

getLabel(clusterIT, rt); // Get the most similar
R-T category

5 labels[category] = catRT;
6 end
7 return labels;

V. EXPERIMENTAL SET UP

This Section describes the data sources used in our exper-
iments. To conduct a disease module analysis, we considered
the most recent release of the human protein-protein interac-
tion network published by Barabasi et al. [5], which is an
extension of a highly cited and popular interactome used by
Menche et al. [2]. The network has |V | = 16 677 proteins and
|E| = 243 603 physical undirected protein interactions.

To construct disease modules, we collected disease-gene
associations from DisGeNET [19] with a GDA6 score greater
or equal of 0.3. Finally, we selected as disease modules the
948 diseases with a set of disease genes of size at least 107.

We selected the Disease Ontology (DO) as Reference
Taxonomy (R-T) [20]. An alternative widely used reference
ontology is ICD-9 (used, for example, in a work by Zhou
et al. [7]). However, ICD-9 was built to facilitate the statis-
tical study of disease phenomena, and arranged according to
epidemiological properties and anatomical site. Hence, ICD-
9 does not represent a good categorical framework for inte-
grating network-based disease properties. Instead, the Disease
Ontology is a classification of human diseases organised by
etiological agents such as infectious agents, clinical genetics
and cellular processes. Therefore, even though the “localist”
(i.e., anatomic and disciplinary classification) view of diseases
is still a guiding principle, the DO also integrates the molecular
insights of disease phenotypes.

5Note that the labeling method uses the full set of R-T categories to obtain
more fine-grained labels but the node clusters Cc are defined on the common
disease set D∩ of the aligned taxonomies.

6GDA is a “reliability” score, for details see www.disgenet.org/
dbinfo#section43

7smaller modules imply a limited knowledge of the related disease-gene
associations to date, and may lead us to unreliable results.

By parsing the DO “obo” file8, we generated a directed
acyclic network hierarchy of 10012 diseases and disease
categories, 10061 edges and 12 levels. To create a mapping
M between the two different nomenclatures, we used partial
mappings directly provided in DisGeNET and in the DO, that
we further extended with the support of clinicians to cover all
the 948 DMs.

To begin, we applied the method described in Section IV-C
to select the best induced I-T taxonomy, i.e., the one with the
highest similarity with the selected R-T (namely, the Disease
Ontology). Table I shows the result of this comparison. Note
that similarity values are compared against those obtained by
a random shuffling the disease nodes. Based on the results of
Table I, we select the I-T taxonomy obtained using Induced
Modules to represent DMs, and the Average linkage method
to merge clusters during hierarchical clustering. This induced
taxonomic structure shows a higher similarity with the Dis-
ease Ontology and therefore represents a good basis for our
study. Note however that all the compared methods produce
taxonomies with a similarity value significantly higher than
the random baseline. The observed differences are mainly due
to some structural differences and to the positioning of outliers
(isolated DMs in the interactome).

Induced LCC
Measure Complete (RD) Average (RD) Complete (RD) Average (RD)

Cos. Sim. (%) 43.59 (28.55) 46.33 (29.84) 39.94 (28.58) 43.7 (29.71)

TABLE I: Comparison of Lin-similarity vectors of the aligned R-T (the
Disease Ontology) and I-T taxonomies obtained with four different variants
of the proposed taxonomy induction method. The variants were obtained
adopting two different network-based definitions of DMs (Induced and LCC)
and two different techniques to merge clusters (complete and average). The
value in the round brackets represents the average of values generated by ten
random distributions of leaf nodes, leaving the taxonomy structure unchanged.

VI. RESULTS

Our research hypothesis in this work is that jointly an-
alyzing the structural proximity of disease modules in the
human interactome network and the semantic proximity of
corresponding diseases in human-cured taxonomies could help
both refine the classification of human diseases and identify
the limitations and perspectives of current module-based com-
putational approaches to the study of diseases. In this Section,
we summarize the major outcomes of a clinical analysis
supported by the methodology presented in previous Sections.
Our analysis is based both on the study of matching and
unmatching pairs of R-T and I-T categories.

A. Finding disease categories with a corresponding
dense neighbourhood in the interactome.

First, we conducted an analysis to reveal in the human
interactome large neighbourhoods of disease modules asso-
ciated with disease categories in R-T. Dense neighborhoods
of diseases in the interactome network are useful to iden-
tify promising disease categories for disease gene prediction,
drug repurposing and comorbidities detection. To find these
large neighbourhoods, we verified the existence of topmost
disease categories of the DO (our selected R-T) with a high
overlapping with some inner (categorical) nodes in the I-T. A

8http://www.obofoundry.org/ontology/doid.html

www.disgenet.org/dbinfo#section43
www.disgenet.org/dbinfo#section43
http://www.obofoundry.org/ontology/doid.html
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DO disease category c′ that is “well-represented” by an I-T
category c implies a strong molecular proximity relationship
among the diseases in cluster Cc. Symmetrically, this implies
that there exists a molecular mechanism that strengthens the
classification principle of the DO category.

We considered the 8 disease categories in the first level of
the DO as the most general disease categories. To evaluate
the degree of similarity between these DO categories and
their most similar correspondents in the I-T, we used the
Jaccard similarity, i.e. the “label score” computed by the
labeling algorithm of Section IV-C. We also calculated the
statistical significance of our results by computing the p-value
over a random distribution. Table II provides an overview
of the topmost DO disease categories and their similarity
degree with correspondent I-T categories induced from DM
molecular network-proximity. In particular, we found that the
DO disease categories that show a higher localization in a
network neighborhood are “disease of cellular proliferation”
and “genetic disease”. This means that tumors and genetic
diseases are highly localized in two neighbourhoods of the
human interactome. From a biological network perspective,
close DMs of “disease of cellular proliferation” are motivated
by the fact that cancer diseases have similar genetic causes in
differentiation and proliferation control genes such as the well-
known P53 [1], [3], [21]. The second best matching category
is “disease of anatomical entity”, i.e., disease grouped by hu-
man experts according to an anatomical localization principle.
However, as shown in the Table II, the similarity value is high
but not statistically significant. This is motivated by the fact
that diseases belonging to this topmost category are grouped
in diverse sub-categories scattered over the network rather
than in a large “anatomical” neighbourhood. To confirm this
hypothesis, we performed a systematic automated pair-wise
comparison among sub-categories of “disease of anatomical
entity”. We found that very rarely category pairs belonging to
different anatomical sub-systems have overlapping clusters in
the I-T, with some obvious and well documented exception,
like nervous and respiratory systems, gastrointestinal and
integumentary systems, musculoskeletal and cardiovascular
systems [22]–[24]. In other terms, our experiments show that
the validity of the anatomical classification principle is not
disproved by the DM localization hypothesis, at least, given
our state-of-the-art knowledge of disease-gene associations.
This observation leads us to consider one limitation of the
study presented in this Section, which stems from the high
incompleteness of the human interactome [15]. It follows
that, while positive results (disease categories corresponding
to highly overlapping disease modules) are useful pieces of
evidence to identify interesting areas of the interactome to
discover new disease-gene associations, the absence of such
evidence could be either motivated by the non existence of
a similarity relation, or by a lack of knowledge on gene
interactions in specific areas of the interactome.

B. Finding unexplored structural relations between
disease categories.

A more interesting result would be to identify “unexpected”
and unexplored neighborhoods in the I-T, e.g., disease cat-

R-T (Disease Ontology) Induced I-T
Disease Category Name (size) Best Label Score (P-value)

disease of cellular proliferation (255) 54.77% (3.14 · 10−20)
disease of anatomical entity (434) 50.05% (0.08)

genetic disease (12) 41.66% (6.14 · 10−10)
disease by infectious agent (10) 30% (1.92 · 10−7)

physical disorder (21) 26.09% (1.51 · 10−9)
disease of mental health (76) 21.51% (1.06 · 10−13)

syndrome (42) 21.27 % (8.69 · 10−11)
disease of metabolism (55) 16.36% (4.66 · 10−11)

TABLE II: Correspondence among topmost DO categories and the
induced taxonomy.

egories that are not presently connected in human-curated
taxonomies but whose strong molecular similarities suggest
that one such connection should be exploited to enrich the
R-T ontology. To help finding these relations we developed
a visual tool to explore the I-T in a more systematic way.
Supported by this tool, clinical experts have identified, among
the others, the following interesting results: there exist strong
unexpected molecular relationships between glaucoma and
pulmonary arterial hypertension, cholestasis and chronic ob-
structive pulmonary diseases (COPD), peroxisomal diseases
and ciliopathy-related syndromes. We remark that these cate-
gorical relationships can be detected in the I-T thanks to the
labeling algorithm.

By delving into these relationships, we were able to find
confirmations in very recent clinical studies. For example,
Gupta et al. [25] and Lewczuk et al. [26] shed light on common
molecular mechanisms and manifestations between pulmonary
hypertension and glaucoma through multiple case reports.
Instead, Tsechkovski et al. [27] observed that cholestasis and
COPD patho-mechanisms are mediated by common molecular
components like the Alpha 1-antitrypsin protein. However, the
relationship between Alpha 1-antitrypsin mutations and liver
disease is debated and yet to be elucidated [28]. It is interesting
to note that there is an emerging hypothesis connecting gut,
liver and lung as playing a key role in the pathogenesis of
COPD [29]. Finally, Miyamoto et al. Zaki et al. [30] found
biological mechanisms between peroxisomal diseases and cil-
iopathy related syndromes (e.g. Joubert syndrome, Bardet-
Biedl syndrome, Jeune syndrome). In conclusion, recent clini-
cal evidence confirms that these detected relationships could be
used to extend the DO. Other unexplored strong relationships
that we identified lack at the moment support from published
studies9, however the results reported above demonstrate the
relevance and potentials of our proposed methodology.

C. Detection of nomenclature errors in disease-gene
associations.

Finally, we tried to identify “unconvincing” strong matches
between R-T and I-T categories. An in-depth analysis by
clinicians has led to the detection of a number of nomenclature
errors in DisGeNET.

Disease modules in the interactome have been identified,
as discussed in Section V, using disease-gene associations in

9a clinical confirmation of our findings is clearly outside the scope of this
research, although it represents a study hypothesis for further research by
clinicians in the field.
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DisGeNET, one of the most widely used association databases.
Publicly available disease-gene associations databases are
manually or computationally curated and some of them in-
tegrate other disease-gene collections. However, especially for
ambiguous diseases with similar names, all these mechanisms
are prone to nomenclature errors resulting in wrong disease-
gene associations. Although in our work we selected only
associations with a high GDA score, errors might still survive.

The identification of wrong disease-gene associations is
of primary importance both for disease gene discovery and
clinical diagnoses. Indeed, on the one hand, disease gene
discovery tools, using wrong disease-gene associations, would
make wrong predictions. On the other hand, clinicians usually
make and justify diagnoses using the disease-gene associations
contained in public databases (as we said, DisGeNET is one
among the most widely used resources) leading to wrong
diagnoses or therapies for a patient. Here, we demonstrate that
our framework may facilitate the detection of wrong disease-
gene associations in public databases, caused by nomenclature
errors. To this end, supported by clinicians, we identified
a number of DO disease categories with an unconvincingly
high overlapping with I-T inner nodes. Specifically, a clinical
expert analyzed all DO/I-T categories pairs with a Jaccard
similarity score greater or equal than 90%. Then, we manually
verified the DisGeNET pieces of evidence supporting the
related disease-gene associations.

Several nomenclature errors were found, among which we
cite the following: “hyper-IgM Immunodeficiency Syndrome”,
“obstructive lung disease” and “bone remodeling disease” have
several wrong disease-associations. For example, the “hyper-
IgM immunodeficiency syndrome” is divided into five types
by genetic association. In particular, “hyper-IgM immunode-
ficiency syndrome” type 2 is characterized by mutations of
the AICDA gene; type 3 by mutations of the CD40 gene,
type 5 by mutations of the UNG gene. However, DisGeNet
links the three disease types to the same three genes10.
This error is probably due to a wrong integration of the
disease-gene associations of the CTD database that does not
characterize the “hyper-IgM immunodeficiency syndrome” in
types11. More in detail, in “obstructive lung disease” the pul-
monary emphysema, focal emphysema, panacinar emphysema,
centrilobular emphysema diseases have the same 12 disease-
gene associations almost all supported by the same published
study, but related only to the pulmonary emphysema or the
generic category of emphysema. The same happens in “bone
remodeling disease” for the following diseases: osteoporosis,
age-related osteoporosis, post-traumatic osteoporosis, senile
osteoporosis.

VII. DISCUSSION

We believe that the biomedical understanding of diseases is
on the edge of a radical change. The disease module hypothe-
sis, with its relevant applications to disease-gene discovery and
drug repurposing, is leading the revolution of bio-medical re-
search of the future. For these reasons, we deem it fundamental

10https://www.disgenet.org/browser/0/1/0/C1720956/
11http://ctdbase.org/detail.go?type=disease&acc=

MESH%3aD053306#descendants

to discover the degree of correspondence between disease
similarity relations induced from the proximity of their related
disease modules, and categorical similarity in human-curated
disease taxonomies. We developed a methodology to analyse
relationships between diseases by leveraging, in a novel way,
both taxonomic and molecular aspects. The proposed method-
ology supported a systematic analysis of human-crafted dis-
ease categories and their relationships with the DM molecular
network-proximity. In particular, we found that some disease
in “disease of cellular proliferation” and “genetic disease”
form promising large disease network-neighbourhoods that
could be exploited by network analysis methods for disease-
gene detection. Next, we evaluated the consistency of the
“disease anatomical entities” at the molecular level and found
that there is no strong evidence of a network-neighbourhood
of anatomical entities but, contrarily, disease neighbourhoods
related to anatomical systems are scattered. Furthermore, we
used our methodology to find unexplored strong molecular
relationships between “specific” disease categories, such as
glaucoma and pulmonary hypertension, diseases that are dis-
tant in human-crafted taxonomies but appear to be related by
co-morbidities and pathogenesis at the molecular level. Finally,
we have been able to detect wrong disease-gene associations
caused by nomenclature errors in public databases, that could
potentially bias disease gene prediction methods and induce
wrong clinical diagnoses.

VIII. RELATED WORKS

To the best of our knowledge, only one study has analysed
in detail the molecular and categorical properties of DMs, as
proposed in this project. Zhou et al. [7], as a response to the
limits of the contemporary disease taxonomies, demonstrate
the inconsistency of the ICD-9 diagnostic classification system
with the disease relationships in molecular networks. They
propose a New Classification of Diseases (referred to as NCD)
to capture the molecular diversity of diseases and define clearer
boundaries in terms of both phenotypical similarity and molec-
ular associations. The purpose of their study is to reform the
ICD-9 by constructing a NCD in three steps. First, they create
a network of diseases connected by molecular and phenotypic
similarities. The disease nodes of the network define the
low level of NCD, that is, the leaf nodes of the hierarchy.
Then, the authors apply an overlapping community detection
algorithm to the disease network to generate overlapping
disease categories, representing the middle level of the NCD.
Finally, they apply a non-overlapping community detection
algorithm to the previously identifies network communities
and generates disease categories for the top level of the NCD.

As highlighted by Zhou et al. [7], NCD is a simplified three-
level hierarchical structure without explicit mappings with the
reference classification system, the ICD-9. We build on [7], by
proposing a method to create a full-fledged taxonomy with cat-
egory labels, to favour a more systematic comparison between
the automatically induced and manually created taxonomies.
Furthermore, as mentioned in Section V the use of ICD-9
as a reference taxonomy has some drawbacks. ICD-9 has
been designed to promote international comparability in the

https://www.disgenet.org/browser/0/1/0/C1720956/
http://ctdbase.org/detail.go?type=disease&acc=MESH%3aD053306#descendants
http://ctdbase.org/detail.go?type=disease&acc=MESH%3aD053306#descendants
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classification and presentation of epidemiology and mortality
statistics. Its hierarchical structure is not based on aetiology,
but rather on anatomical and disciplinary principles, to facil-
itate the statistical study of disease phenomena, and arranged
according to epidemiological properties and anatomical site.
Hence, ICD-9 does not represent a good categorical framework
for integrating network-based disease properties. Instead, the
Disease Ontology (DO) has the purpose of identifying “com-
monalities of diseases located in a common molecular location,
originating from a particular cell type or resulting from a
common genetic mechanism” [20]. Therefore, even though the
“localist” view of diseases is still a guiding principle, the DO
also exploits the molecular insights of disease phenotypes, thus
representing a more appropriate baseline ontology.

IX. CONCLUSIONS

We presented a novel disease module analytic strategy lever-
aging both a molecular and taxonomy perspective, providing
new insights into the molecular mechanisms of diseases and a
way to refine human-curated taxonomies. Our methodology
has supported clinically relevant findings, such as promis-
ing areas of the interactome to discover new disease gene
associations, unexplored disease molecular relationships, and
nomenclature errors in disease-gene databases.

One limitation of our study arises from the highly incom-
plete state of the art knowledge on disease-related genes.
This resulted in a limited mapping between human-crafted
taxonomies and our induced hierarchy of disease modules
(about 12% of DO diseases), and furthermore prevented the
interpretation of some evidence concerning unobserved molec-
ular relationships, which could be either motivated by the non
existence of such relations, or by the lack of knowledge on
gene interactions in specific areas of the interactome.
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