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Labeling Self-Tracked Menstrual Health Records
With Hidden Semi-Markov Models

Laura Symul and Susan Holmes

Abstract—Globally, millions of women track their men-
strual cycle and fertility via smartphone-based health apps,
generating multivariate time series with frequent missing
data. To leverage this type of data for studies of fertility or
studies of the effect of the menstrual cycle on symptoms
and diseases, it is critical to have methods for identifying
reproductive events, such as ovulation, pregnancy losses
or births. Here, we present a hierarchical approach relying
on hidden semi-Markov models that adapts to changes in
tracking behavior, explicitly captures variable– and state–
dependent missingness, allows for variables of different
type, and quantifies uncertainty. The accuracy on simulated
data reaches 98% with no missing data and 90% with realis-
tic missingness. On our partially labeled real-world time se-
ries, the accuracy reaches 93%. Our method also accurately
predicts cycle length by learning user characteristics. Its
implementation is publicly available (HiddenSemiMarkov R
package) and transferable to any health time series, includ-
ing self-reported symptoms and occasional tests.

Index Terms—Hidden semi-Markov models (HSMM),
digital health, gynecology, fertility, mobile applications,
unsupervised learning, semisupervised learning, statistical
learning.

I. INTRODUCTION

H EALTH tracking apps have become increasingly popular
and self-reported health records collected via apps or con-

nected devices are progressively adopted by the scientific com-
munity for personalized health or epidemiological research [1].
Menstrual cycle and fertility tracking apps are among the most
used health apps [2]. These apps are now used by millions
of women worldwide, generating very large datasets of self-
reports related to the menstrual cycle and reproductive events.
Users of these apps typically report their period bleeding along
with physical or psychological symptoms and/or fertility-related
body-signs.

These large datasets have already been used to characterize
the duration of the menstrual cycle and the follicular (before
ovulation) and luteal (after ovulation) phases [3]–[5], to evaluate
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the association between sexually transmittable infections (STI)
and pre-menstrual symptoms [6], and to evaluate the association
between cycle length irregularities and reported symptoms [7].
In addition to these findings, this data indubitably holds addi-
tional information on fertility, pregnancy losses and menstrual
health in general. This information can be used to tackle sci-
entific challenges and address unanswered questions about the
human reproductive biology. For example, this data can be used
to evaluate whether seasonal and geographical variations of
fertility [8] is due to changes in ovulation or loss rates or to
study, at large scale, the predictability of mental health variations
throughout the menstrual cycle [9], [10]. Beyond the potential of
these large retrospective datasets, apps and/or connected devices
also provide a scalable way to prospectively collect longitudinal
data of menstrual-health related body signs and symptoms for a
large population size over a long period of time without requiring
in-person visits to a clinic. The prospective digital collection
of data related to fertility and menstrual health provides an
opportunity to evaluate the association between the menstrual
cycle or reproductive status and other health variables at large
scale.

A first challenge in using such self-reported data is the contex-
tualization of each observation within the reproductive timeline
of an individual. The interpretation of a reported symptom varies
greatly if the individual is pregnant or going through a long
anovulatory phase. This contextualization requires the labeling
of users’ time series with biologically-relevant states such as
“pregnant” or “ovulating”.

Labeling self-tracked datasets can be a challenging process
given the multivariate nature of the datasets, the prevalence of
missing data, and the lack of available ground-truth. To our
knowledge, there are no available labeled datasets for menstrual
self-tracked data. Thus, supervised labeling methods such as
Long-Short-Term-Memory (LSTM) models [11], [12], or Trans-
formers [13], cannot be used. Fortunately, this lack of available
labeled samples is balanced by a good knowledge of the under-
lying reproductive biology. This knowledge can be translated
into statistical priors and inform the design of unsupervised or
generative models.

For example, it has been well documented that cervical mucus
properties and quantities are controlled by cycling reproductive
hormones [14]–[16] and that these changes can be observed and
reported by app users [3], [5]. Body temperature at wake-up
has been shown to increase after ovulation and in early preg-
nancy [15], [17]. Concentration in luteinizing hormone (LH)
surges before ovulation [15], [18] and this surge can be detected
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by cheap at-home urine kits [19]. Bleeding, the most obvious
body-sign to report in a menstrual-cycle tracking app, is highly
correlated with menses (periods), pregnancy losses or births.
Light bleeding may also be indicative of ovulation or be reported
in early pregnancy [20], [21].

Hidden state models are appropriate for labeling self-tracked
time series because the underlying biological states can be
matched to the model’s hidden states. In the medical literature,
the menstrual cycle is frequently split into successive phases
(menses, early follicular phase, peri-ovulatory phase, early and
late luteal phases) and pregnancies are frequently divided into
trimesters. Given that these phases have been well characterized,
they can be naturally translated into a discrete state model: each
latent state matches one of the menstrual or pregnancy phases. In
previous work, hidden Markov models (HMM), the most com-
mon discrete hidden state model for time series, have been used
to label menstrual-cycle time series [3]. However, the Markovian
property imposes a geometrical distribution for the duration
of each state, which does not accurately model the menstrual
or pregnancy phases. Hidden Markov models only performed
well in labeling single cycles whose start and ends were already
identified and where users had reported enough data to constrain
the duration of each phase. Others have proposed cyclic HMM
(CyHMM) to recover cycle characteristics from menstrual cycle
app data [22]. While this framework is successful in identifying
cycles, it did not include prior biological knowledge beyond
the average cycle length. Consequently, the hidden states can
not directly be matched to and interpreted as biological states.
Additionally, because that framework assumed cycles with rel-
atively small variations in length, it was suitable for identifying
menstrual cycles but not pregnancies or post-partum states,
preventing the labeling of such events.

Hidden semi-Markov models (HSMM) allow for non-
geometric distributions of state duration, called “state sojourn”
in the semi-Markov context. HSMMs can be approximated,
often exactly, by HMMs in which HSMM states are divided into
chains of sub-states with specific transition probabilities [23].
The HMM approach is especially efficient when the sojourns
of each state remain relatively short. However that approach
loses its benefits if some states are very long or if one wishes
to impose constraints on the type of sojourn distribution. Given
the duration of states, such as pregnancy or breast-feeding, and
the prior knowledge available on the duration of pregnancies,
the HSMM approach is more suited to the task.

While hidden semi-Markov models have been used in a large
variety of applications, ranging from biological sequence analy-
ses [24] to modeling financial market variations [25], [26], there
are, to our knowledge, no previous implementations that fulfill
the requirements of our task. In particular, the ‘hsmm‘ package
by Bulla et al. [27] did not allow for decoding of sequences
with missing observations. The ‘mhsmm‘ package by O’Connell
et al. [28] allows for missing data-points and for users to define
their own functions for various emission distributions. However,
four features were critically lacking for our task. First, while it
allows for missing time-points, it only enables all variables to be
missing at a given time-point. If only one variable is missing, the
values of the other variables were not taken into account. In our

case, given the sparsity of our dataset, this implied losing over
90% of our data. In addition, this package did not allow users to
define state-dependent censoring probabilities. However, users
of fertility apps modify their tracking behavior depending on
their biological state and their reproductive objectives. We thus
wanted a method which took advantage of this “informative
missingness”. Third, while the ‘mhsmm‘ package allows for
multivariate time-series, its current implementation relies on
multivariate Gaussian variables. Finally, the ‘mhsmm‘ package
does not allow users to define different sojourn distributions for
each state. In our case, reproductive states might be best de-
scribed by different distributions. Consequently, we developed
a new package, which addressed all of our task requirements,
offers more flexibility in terms of variable distributions, and
provides a suite of visualization and interactive labeling tools to
facilitate its use.

Our contributions are (a) the adaptation of hidden semi-
Markov models to decode censored multivariate time series,
(b) the implementation of these changes in a publicly avail-
able Rpackage (HiddenSemiMarkov),(c) the definition of
a HSMM describing the reproductive biology and (d) a hierar-
chical method relying on HSMMs which accounts for long-term
changes in tracking behavior.

We evaluate the performances of our method on a real-world
dataset and compare them to those of a HMM and of a HSMM
with weak priors. In order to quantify the sensitivity of the
decoding accuracy to increased levels of sparsity, we simulated
a synthetic dataset with varying amounts of missing data. Fi-
nally, we evaluate the ability of our model to learn individuals’
cycle characteristics by quantifying the error on cycle length
prediction.

Our real-world data is a de-identified dataset provided by the
menstrual cycle and fertility tracking app Kindara (see Materials
and Methods). This dataset was composed of the self-tracked
logs of 64 long-term users of the app. The features reported
by users were (1) their bleeding flow (none, spotting, light,
medium, heavy), (2) the consistency of their cervical mucus
(none, creamy, egg-white, watery, sticky) and the quantity (little,
medium, lots) when it was not missing, (3) their body tempera-
ture, in Fahrenheit, and whether they marked their temperature
measurement as “questionable,” which is recommended by the
app if the value is oddly low or high or if the user did not
sleep enough hours, (4) the results of LH tests (positive or
negative) and (5) the results of pregnancy tests (Fig. 1). Each
of these features can be reported daily by users. However, users
do not report all of these features every day and there is a large
variability in tracking frequency between users [3]. Missing data
are very frequent. The average tracking frequency is just above
50%, which means that on average users open and log a feature
in the app approximately every other day, but it may be as
low as 16% or as high as 100% for some users (see Table I).
Fig 1(b) provides two examples of time series logged by app

users.
Given the generative nature of our model, a synthetic dataset

was simulated from our HSMM with various amounts of missing
data so that the effect of tracking frequency on accuracy could
be evaluated (Methods).
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Fig. 1. Data acquisition and time series examples. (a) Snapshot of the tracking screen of the Kindara app. (b) Examples of time series tracked
by two users of the app. For all features, the absence of vertical line indicates missing data for that variable. In the bleeding line (top), gray lines
indicate ‘no bleeding,’ orange/red lines mean that bleeding was reported. Darker reds indicate heavier bleeding flow. In the LH and pregnancy test
lines (2nd and last lines), red lines indicate negative tests, blue lines positive ones. Temperature is depicted by a gradient ranging from blue for
temperatures below the user’s median value to red for temperatures above the median value. No mucus (3rd line) is depicted by gray lines, while
fertile mucus is indicated in blue, sticky mucus in yellow and creamy one in beige.

TABLE I
STATISTICS ON USERS’ TRACKING BEHAVIOR

II. MATERIALS AND METHODS

In the first part of this section, we detail the adaptations
brought to hidden semi-Markov models for multivariate time
series with state– and variable– dependent missingness. The
second part of this section details our HSMM of the female
reproductive biology. The third one describes our hierarchical
approach to account for changes in tracking behavior. Fourth,
we describe the datasets used to assess performances, and fi-
nally we define the experiments and metrics used to assess the
performances of our model.

A. Hidden Semi-Markov Models for Multivariate Time
Series With State– and Variable– Dependent
Missingness

Our task is to label time series with a sequence of hidden
states. In the context of hidden (Semi-)Markov models, two
algorithms may be used for this purpose: the Viterbi and the
Forward-Backward algorithms. The Viterbi algorithm returns
the most likely sequence of hidden states, i.e. the sequence of
hidden states that maximizes the likelihood of the sequence
of observations (see below). The Forward-Backward algorithm
returns the probability of each state at each time-point, i.e.
P (St = j|X), where St is the state at time-point t, j is one
of the J hidden states of the model and X is the sequence of
observations. Efficient versions of these algorithms for hidden
semi-Markov models have been proposed by Guédon et al. [29]
and implemented in C by O’Connel and Hojsgaard [28]. This C
implementation is used in ourR package, with a minor correction
of the backtracking step for the Viterbi algorithm. Below, we
introduce the HSMM notation and methods and describe the
adaptations introduced to decode censored multi-variate time-
series.

1) Notation and Model Parameters: In general, hidden semi-
Markov models are defined by the following set of parameters:
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J is the number of states, π are the initial probabilities (πj =
P (S1 = j)), T are the transition probabilities (Tj,k = P (St =
j|St−1 = k)), {dj(u)}j=1...J are the sojourn distributions for
each state, i.e. the distributions of the time spent in a given
state (u is the relative time variable since the last state tran-
sition), and ex,j are the emission probabilities for each state, i.e.
P (X = x|S = j). This set of parameters is represented by θ. X
is a random variable measured at a sequence of time-points and
may be discrete, continuous or categorical. It is either observed,
taking a value x, or missing, taking the value ∅. We use the
shorthand notation X for a sequence of observations of length
N :X = (x1, x2, . . . , xN ). A sequence of hidden state is written
as s = (s1, s2, . . . , sN ); si or xi is the shorthand notation for
st=i or xt=i.

2) Likelihood of a Sequence of Observation and Hidden
State Predictions: The likelihood of a sequence of observations
given a sequence of hidden states and the model parameters is
given by:

P (X|s; θ) = πs1ds1(u1) TsR−1,sRDsR(uR)(
R∏

r=2

Tsr−1,sr dsr (ur)

)
N∏
i=1

P (xi|si)

where πs1 is the probability associated with the first state of the
sequence, ds1(u1) is the sojourn probability of the first state,
with u the relative time spent within a state, r is an index going
through the sequence of states (regardless of their duration)
while i is an index running along the observation sequence
(time-points), sr is the rth state in the state sequence, Tsr−1,sr

is the transition probability between the state preceding the rth
state and the rth state, dsr (ur) is the sojourn probability of the
rth state, R is the length of the state sequence and DsR(uR) is
the “survivor” sojourn probability of the sequence’s last state,
i.e. is it the probability that the state lasts uR or longer.

3) Fitting Model Parameters to Observations: HSMMs are
usually fitted to sequences of observations using an Expectation-
Maximization (EM) approach which alternates between E-step,
in which the hidden states sequence is estimated and the like-
lihood is computed given the current parameter values, and
an M-step, in which the parameters are updated to maximize
the likelihood. These two steps are repeated until the gain in
likelihood is smaller than a given threshold. The fitted model
is the set of parameters maximizing the likelihood of the ob-
served sequences, i.e. the maximum likelihood estimator θ̂∗ =
argmaxθ P (X|θ)

The Forward-Backward algorithm proposed by Guédon
et al. [29] is used in the E-step to obtain the probability of
each state at each time-point. In the M-step, the emission
parameters are updated using these probabilities as weights on
the observations.

4) Multivariate Data: In the case of multivariate data, each
time-point i is associated to a random vector of length K:
(X1

i , X
2
i , . . ., X

K
i ). In our case, the first variable is bleeding,

the second is mucus, the third is temperature, etc. To adapt for

multivariate data, we need to specify the joint emission prob-
abilities at time-point i, i.e. P (X1

i = x1
i , X

2
i = x2

i , . . . , X
K
i =

xK
i |Si = j) and define how potential within-state dependencies

between the variables are accounted for.
Past research in reproductive biology has mostly focused on

experimentally measuring marginal probabilities. For example,
variations in temperature and in cervical mucus have been de-
scribed separately and there is no available literature to inform us
about potential correlations within a particular hormonal state.
We thus assume conditional independence of the variables given
the hidden state when initializing the joint emission probabili-
ties. Each variable is specified as a non-parametric distribution
or by a distribution family and set of parameters. For example,
temperature, a continuous variable, may be specified as a normal
distribution. Cervical mucus is a categorical variable and may be
described by a non-parametric distribution. LH and pregnancy
tests results are binary variables (positive or negative results)
and may be described as Bernoulli variables.

These initial specifications are used to list all possible ob-
servable combinations of values and initialize the probability
associated with each combination as the product of the marginal
probabilities assuming independence conditionally on the states.
As the model parameters are fitted to sequences of observa-
tions, potential within-state dependencies may be learned as
the joint emission probabilities are updated without assuming
independence. In the online supplementary material (see the
code and data availability section), we show how a model
is able to learn such dependencies when the direction of the
correlation between two variables is the only difference be-
tween two states. Computationally, within-state dependencies
can be learned because continuous variables are discretized
into a given number of bins so that all possible combina-
tions of variable values can be stored in a table. The number
and/or size of the bins can be specified as one of the model
parameter.

5) Missing Data: The Censoring Model: Self-reported health
records are subject to a high level of missingness with large
inter-subject variations, and the tracking frequency of a user may
also change over time. Missing observations may be modeled as
a two-step process: first, users must open the app on a given day,
and second, they must measure and report a specific variable on
that day. Both processes can be modeled as a Bernoulli events
with state-dependent probabilities. The probability that a user
does not open the app on a given day is pj . The probability that
a user did not report a specific variable k after opening the app
is qj,k.

Altogether, when a hidden semi-Markov is specified, joint
emission probabilities are initialized as:

P (X1, X2, . . . , XK |S = j) =⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

pj + (1− pj)
∏K

k=1 qj,k

if all variables are missing, i.e. ∀kXk = ∅

(1− pj)
∏

k∈M qj,k
∏

o∈O(1− qj,o)P (Xo = xo|S = j)

otherwise
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TABLE II
STATES OF THE HSMM FOR REPRODUCTIVE EVENTS

with M and O being the set of missing/observed variables.
The previous equation reflects that all variables may be miss-

ing because a user did not open the app on a given day (with
probability pj) or because the user opened the app but (with
probability (1− pj)

∏K
k=1 qj,k) neither measured nor reported

any of the variables. If at least one variable is reported, that
implies that the user opened the app on that day (with probability
1− pj), that all missing variables were missing with probabil-
ity qj,k and those not missing were reported with probability
(1− qj,k) multiplied by their specific emission probability.

These initial probabilities are updated in the M-step of
the fitting procedure so that potential dependencies between
variables, including missingness dependencies, may be learned
from sequences of observations.

B. Generative Models of the Female
Reproductive Cycles

We defined the simplest hidden semi-Markov model that
would as accurately as possible reflect our current knowledge
of the menstrual cycle and pregnancy. States are listed in Ta-
ble II. Fig.s. 2(a–b) show the model graph and the prior sojourn
distributions of most states.

We specified a 19-state model composed of 2 main loops
(Fig.. 2(a)). The first loop is a 7-state chain describing the
successive phases of the menstrual cycles while the second
loop describes the successive events following a conception.
The conception loop further splits into two sub-loops: one in
the event of a pregnancy loss and one in the event of a birth.
The birth branch splits into two scenarios depending on whether
or not the mother breastfeed their newborn since breastfeeding
typically delays the return of menstrual cycles. In addition to
these main loops, two states capture anovulatory phases. The
first one corresponds to cycles in which quasi-constant bleeding
(light or heavy) is reported and in which no signs of ovulation,

such as a positive LH test or a rising temperature, would be
reported. The second one corresponds to the scenario in which a
low temperature is reported consistently between two bleeding
episodes without abnormal bleeding being reported.

All state transitions are uni-directional except for the transi-
tion between the ‘high estrogen’ state and the ‘low estrogen’
state. This transition is initialized with a low probability and
allows the description of cycles typically experienced by users
suffering of poly-cystic ovary syndrome (PCOS).

The model parameters (sojourn and emission distributions)
were specified to match the observed biological ranges and
typical values. Menses last between 2 and 8 days [20]. The
early follicular is the most variable phase of the menstrual
cycle. Its typical duration is 3 to 8 days but can last longer
in individuals with long cycles [30]. We thus specified its
sojourn with a long tail. This phase is characterized by low,
slowly increasing estradiol levels, medium-high FSH levels, and
low progesterone levels. Consequently, cervical mucus, whose
production depends on estradiol [31], is rarely observed [3],
and temperatures are low as progesterone levels are low [32].
In the late follicular phase, estradiol levels are rising sharply,
leading to mucus production, while FSH levels are decreasing.
This phase has been reported to last 2-5 days [30]. We defined
a pre-ovulatory state (pre-O) with a fixed sojourn of one day,
distinct from the late follicular state because the probability of
a positive LH test is higher in ‘pre-O’ since LH starts pulsing
in the day leading to ovulation. The ovulation state has a fixed
sojourn of one day as ovulation is a brief event and that the
temporal resolution of our data is of 1 d. The duration of the
luteal phase, which starts after ovulation, is known to vary less
inter– and intra–individually than the follicular phase [3], [5],
[33]–[36]. In the luteal phase, given elevated progesterone levels,
the basal body temperature is higher than in the follicular phase.
However, past studies have shown that it takes a few days before
the temperature reaches its highest plateau [3]. Thus, we divided
the luteal phases into two states. The first one (post-O), of fixed
duration (two days), follows the ovulation state. The second
one (Luteal), lasts about 11 days with a slight skew for shorter
durations.

Although anovulatory cycles are not well described in the
literature, owing to the difficulty of assessing the absence of
ovulation, we included an ‘Ano’ state which follows the early fol-
licular phase and is characterized by both frequent observation
and low temperatures. We specified it with a mean duration of
15 days and a 6-day variance, based on the results from Malcolm
et al. [37] and Prior et al. [38].

Anovulation may also be occurring in individuals experienc-
ing prolonged periods of light to heavy uterine bleeding. We thus
defined the ‘Anovulatory with bleeding’ state. This state is not
very well characterized in duration from the existing literature
but has been reported by patients [20] and users of the app. We
thus specified a sojourn distribution ranging from height to a
hundred days for this state.

When conception happens, the 7-8 days following fertiliza-
tion (ovulation) are very similar to a luteal phase when no
conception happens. However, once the fertilized egg implants,
this initiates the production of the HCG hormone, which can be
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Fig. 2. Modeling the data generation process. (a) Graph of the specified HSMM for modelling reproductive events. Arrows indicate possible
transitions, their width is proportional to the transition probability. This graph should be read starting from the red circle (’M’ for menses). From ‘M,’ a
first loop matches the 6 states defining ovulatory cycles (’lE,’ ‘hE,’ ‘pre-O’ are follicular phase states, ‘O’ stands for ovulation, and ‘post-O’ and ‘Lut’
are luteal phase states). After ovulation, a pregnancy may start (’P) and end-up in a loss (’PL’-’L’-’lEpL’ loop) or in a birth (’PB1’-’PB2’-’PB3’-’B’-’PP’
(post-partum without breast-feeding) or ‘BF’ (breast-feeding) loops). Finally, two anovulatory states are defined: ‘AB’ for anovulatory with bleeding
and ‘Ano’ for anovulatory without bleeding. See Methods and Supplementary Material for state definition and descriptions. (b) Prior and initial
sojourn distributions for states which do not have a fixed duration. (c) Graph of the generative model assumed to lead to the observed sequences.
(d) Schematic illustrating the hierarchical approach to account for long-term changes in tracking behavior.

detected in urine by pregnancy tests. Additional progesterone
production leads to an increase or sustained plateau of high tem-
peratures. After implantation, pregnancies may be interrupted
(spontaneous or induced pregnancy loss) or continue, leading to
a birth. Consequently, we designed our model such that, from
an implantation state (P), the model allows two transitions: ones
towards the ‘PL’ state (pregnancy with loss) or one towards the
first trimester of a pregnancy without loss (PB1). We fixed the
duration of the implantation state to 17 days, which is longer than
the longest reported luteal phases. In that state, temperatures
are high, positive pregnancy tests are likely, and censoring
probabilities are lower than in the subsequent states. Indeed,
once a blood test has confirmed the pregnancy, users are less

likely to keep tracking their temperature or to report pregnancy
test results.

The ‘Pregnancy with Loss’ state has a highly skewed sojourn
distribution as losses occurring early in pregnancy are much
more common than late losses [39], [40]. The following state,
the loss (L) state, is associated to the moment when the loss
occurs. Losses often lead to uterine bleeding for a few days,
which the app users may report. After a loss, individuals usually
return to ovulatory cycles [41]. However, pregnancy test results
may remain positive for a few days after the loss, likely due
to the residual presence of HCG hormone in urine. To account
for that, we created an additional state, ‘lEpL’ (for low-Estrogen
post-loss) with the same sojourn and emission distributions than
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TABLE III
ADAPTATION OF OUR HSMM DEPENDING ON TRACKED VARIABLES.

B: BLEEDING, LH: LH TESTS, P: PREGNANCY TESTS, T: TEMPERATURE,
M: MUCUS. PARENTHESES INDICATE OPTIONAL TRACKING

the ‘lE’ state, except that positive pregnancy tests are more likely
in that state.

If there is no loss, the model progresses through the three
trimesters of pregnancy. We fixed the duration of the first two
trimesters so that the sojourn distribution of the third trimester
embeds the whole observed variability in pregnancy duration.
Indeed, pregnancies last about 38 weeks but preterm birth rates
reach 4-10% depending on countries [42]. Post-term births are
less frequent as births are usually induced when past term.
Consequently, the sojourn duration of the third trimester of
pregnancy is specified as a skewed normal distribution with a
heavier tail for shorter duration.

Finally, following birth, the mother may or not breastfeed her
newborn child. In the absence of breastfeeding, menses return
6-8 weeks after delivery [43], which means that estradiol levels
rise 4-6 weeks after delivery. The duration of the ‘post-partum’
state (PP, when mothers do not breastfeed) is thus described by a
normal distribution of mean 5 weeks and a standard deviation of
10 days. If the mother breastfeeds, this usually delays the return
of ovulatory cycles [44]. Given that the breastfeeding duration
is highly variable [45], the sojourn for that state is specified as
a flat distribution ranging from 7 weeks to over two years.

C. Hierarchical Approach to Adapt for Changes in
Tracking Behavior

In principle, the tracking behavior does not affect an in-
dividual’s biology. However, it affects our ability to detect
specific reproductive events (Fig. 2(c)). For example, if a user
only tracks their bleeding, it may be impossible to differentiate
early pregnancy losses from long cycles or to pinpoint the day
of ovulation. To lift these identifiability issues, we adapt our
HSMM of reproductive events described in the previous section
to the tracking behavior by fixing the sojourn of some states or
preventing specific state transitions (Table III).

We proceed in four steps (Fig. 2(d)). First, we decode the
time-series of reported bleeding to roughly identify cycles and
pregnancies. Menses are ideal sub-sequences boundaries as they
are the most likely reproductive event that users would report
in a menstrual cycle tracking app. Second, we determine the
tracking behavior category of each sub-sequence by examining
which variables are reported with sufficient frequency. Third, we
decode each sub-sequence of the multivariate time-series with
the appropriate model, i.e. with the model for which reported
variables within that sub-sequence will allow identifiability. Fi-
nally, because the decoding at the first step might have contained

mistakes since based on a single variable, we look for discrepan-
cies in predicted states at the transitions between sub-sequences.
If any discrepancy is found, we decode the time-series from the
last menses preceding the problematic time-points to the next
menses following it.

The four ways that our HSMM for reproductive events needs
to be adapted are as follow (see summary in Table III). First,
if temperature is not reported throughout the cycle, anovulatory
cycles cannot be detected from the other variables. The transition
to the “Ano” state is thus removed. Second, if mucus is not
reported, the sojourn of the “hE” state is fixed to two days since
mucus is the only identifying variable of that state. Third, if
there are no variable allowing for the identification of ovulation,
the sojourn of the luteal phase is fixed. Finally, if only bleeding
is reported, there is no information to differentiate long cycles
from early pregnancy losses. The transition probability from the
“hE” to “lE” state is set to zero.

D. Datasets

1) Real-World Dataset: A de-identified dataset was provided
by Prima-Temp (Boulder, Colorado), the company owning the
menstrual cycle and fertility tracking app Kindara. This study
was exempted by the Stanford IRB given the de-identified nature
of the dataset. The dataset was lightly pre-processed before
being labeled using our hidden semi-Markov models we define
in the next section. Temperature reports were transformed into
temperature differences from their median value because the
inter-individual variations in temperature are larger than the
within-cycle variations. Specifically, for each user, temperatures
marked by the app users as questionable were removed from
the time series and their median temperature, computed on the
remaining values, was subtracted from their reported values.
Additionally, the 13 different possible mucus readings were
grouped into 5 categories (none, creamy, fertile, very fertile,
sticky) because mucus readings are subjective and the literature
is too sparse to allow the distinction between these categories
(see online supplementary material). Finally, because bleeding
is the most remarkable body-sign associated with the menstrual
cycle, if bleeding was missing on days when other features were
reported, it was assumed to have the value ‘none’.

2) Synthetic Dataset: To evaluate the robustness of our
framework to varying amount of missing data, we generated Nu

synthetic time series mimicking actual observations by reverting
our decoding approach. We first specified the censoring proba-
bilities pj and qj,k such that they matched those of diligent app
users. These probabilities were then scaled up or down to create
five levels of tracking assiduity (Fig. 4, online supplementary
material). In addition, slight modifications are brought to the
HSMM to reflect person-specific characteristics such as a typical
luteal phase duration, a specific temperature shift, etc. Once
time-series are simulated, the set of reported variables within
each cycle is randomly selected to reflect changes in tracking
behaviors.

The synthetic dataset is decoded using our hierarchical ap-
proach relying on HSMM (h-HSMM, see below). Performance
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Fig. 3. Performances on the Kindara dataset. (a) Accuracy (light green) and weighted mean of sample accuracy (blue) for our proposed approach,
the hierarchical HSMMs (h-HSMM) with several baseline methods. (b) Confusion matrix normalized by the number of time-point in each ground-truth
state (the sum across rows is equal to 1). (c) Distribution of the duration of pregnancies with loss (dark purple) and with birth (light pink) as detected
by our method and the three baseline methods. (d) Example of a time series from a Kindara users with the manual labels (first row), and the
predicted labels by the different methods (second to fifth rows).

metrics (see below) are computed as a function of the tracking
frequency and the set of reported variables.

E. Performance Metrics

1) Labeling Performance Evaluation: We evaluate the per-
formances of our framework by measuring its ability to recover
simulated or manually labeled ground-truth. We compute the

accuracy A defined as A = 1
N

∑N
i=1 δ(ŝi − s∗i ) and the state-

specific accuracy which is defined as Aj =
1
Nj

∑Nj

i=1 δ(ŝi −
s∗i ) δ(j − s∗i ).

In order to evaluate whether the model provides a
higher uncertainty on time-points with labeling mistake,
we compute the weighted mean of sample accuracy as Aw =
(
∑N

i=1 wiδ(ŝi − s∗i ))/(
∑N

i=1 wi) where the sample weights wi

are the posterior state probabilities for the most likely state, i.e.
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Fig. 4. Performance on synthetic dataset. (a) Example of a simulated sequence of states (ground truth, first row) and observations (last five
rows) and the sequence of hidden states predicted by our method (second row). The third row shows the difference between the two rows (blue
for agreement, red for labeling errors). (b) Accuracy for different tracking frequency (x-axis) and for different sets of tracked variables (colors).
(c) State-specific accuracy for the periods (menses - M), ovulation (O), implantation (pregnancies - P) and births (B).

wi = P (S(t = i) = ŝi|X; θ). Samples in which states are pre-
dicted with a high probability have more weight than samples in
which the model predicted several states with a low probability.

We compare the performances of our approach (h-HSMM)
with those of three baseline methods: h-HMM, h-weak HSMM
and HSMM. The first one (h-HMM) combines our hierarchical
approach (h-) with a HMM for the modeling of the reproductive
events. The HMM has the same number of state as our HSMM
and the same emission probabilities. Transition probabilities are
specified such that the associated geometric distribution best
fit the HSMM’s sojourns. The second baseline method (h-weak
HSMM) is similar to the proposed approach but the sojourns are
weakly specified; they have a much broader distribution than the
those proposed in our h-HSMM. Finally, to evaluate the benefits
of the hierarchical approach, we compare the performances of
our h-HSMM with those of the HSMM alone. We also eval-
uate the performances of our method and baseline methods by
computing the predicted duration of pregnancies and comparing
them to empirical distributions.

2) Predicting the Next Period Date in Ovulatory Cycles: In
addition to labeling user’s time series, our model can also be used
to predict the date of the next period. While most individuals
have regular cycles (each cycle has approximately the same
duration), many individuals have irregular cycles and it may
be difficult to predict the date of their next period.

To evaluate the ability of our method to learn individual-
specific characteristics, such as their typical temperature in the

follicular or luteal phase or the length of their luteal phase, we
selected users in our dataset with irregular cycles and compared
the predictions from our method with a baseline method which
uses the average cycle length of users.

Specifically, we selected stretches of five consecutive ovu-
latory cycles without pregnancy, fitted our reproductive event
model on the first four cycles and made the prediction for the
length of the fifth cycles. To evaluate if the prediction improves
as the fifth cycle progresses in time, we perform the prediction
from each day since the beginning of the cycle. We decode the
fifth cycle up to a given day, detect the last state transition and use
the fitted sojourn distributions of the remaining states to predict
the total cycle length.

Given that the most variable phase of the cycle is the phase
preceding ovulation, we expected our prediction to improve once
ovulation is detected. We report the mean square error (MSE)
between the predicted and the actual length of the fifth cycle and
compare it with the MSE when using the average cycle length
of the four previous cycle to predict the length of the fifth cycle.

III. RESULTS

A. Labeling Performance on the Kindara Dataset

To quantify the performances on our dataset, we used the in-
teractive app embedded in our HiddenSemiMarkovpackage
to manually label about 11% of our dataset. These labels were
independently validated by a fertility awareness methods expert



1306 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 26, NO. 3, MARCH 2022

(see Acknowledgments) and are shown for the full dataset in the
online supplementary material. Fig. 3(d) provides an example
of a real-world labelled time series.

Overall, the proposed method (h-HSMM) reaches higher
accuracy and weighted accuracy than alternative methods (Fig.
3(a)). Semi-Markov models perform better than the HMM,
demonstrating the advantage of using non-geometric distribu-
tions. Strong priors, i.e. priors closely following the empirical
distributions of biological state duration also contributes to
better performances. Finally, our results highlight the benefit of
the hierarchical approach to account for user’s tracking habits
and long-term changes in tracking behavior. The state-specific
accuracy is also better with the h-HSMM compared to other
methods (Fig. 3(b)). Specifically, the semi-Markov property
allows a more accurate detection of pregnancies and following
events. In particular, Fig. 3(c) (and the example in Fig. 3(d))
shows that the duration of pregnancies detected by the h-HMM
are outside biological ranges.

The weighted mean of sample accuracy, i.e. the accuracy
weighted by the uncertainty on the labels at each time-point (see
Methods), is higher than the accuracy (Fig. 3(a)). This indicates
that, as desired, uncertainty is higher on labels that differ from
the ground-truth. In other words, our method is able to warn
against potential labeling mistakes.

One interesting observation is that the accuracies are higher
for the specified models than for the fitted models (Fig. 3(a)).
When examining the decoded sequences, the differences appear
to originate from sequences with pregnancies during which users
logged few features. For these sequences, only biologically re-
alistic sojourn distribution for these states allows to differentiate
between pregnancies with births or with losses.

B. Labeling Performance on Synthetic Data

Our results on a synthetic dataset (Fig. 4) show that our
method is able to recover the ground truth with an accuracy
of 98% when variables are always reported (persistent tracking,
no missing data). This provides an approximate upper-bound on
our ability to decode real-world time series.

As expected, we observe a higher accuracy when variables
are reported more frequently (less missing data, see tracking
categories on the x-axis of Fig.. 4(b–c)) and when more variables
are reported, e.g. tests results are reported in addition to bleeding
(see colored lines in Fig. 4(b) and Methods for the definition of
tracking categories and the specification of missing patterns).
With time series mimicking the expected tracking behavior of
a user whose purpose is to identify their fertile window and
pregnancies early on, the accuracy is 92%. The accuracy is of
89% when the tracking behavior is “occasional,” i.e. with an
average tracking frequency of about 10% (Fig. 4(b) and online
supplementary material).

States recovered with the highest accuracy are the menses and
pregnancy states (Fig. 4(c), online supplementary material). The
states surrounding ovulation suffer the most from a low tracking
frequency; without a high tracking frequency, it is impossible to
pin-point the day of ovulation. A low accuracy is expected for
these states when tracking frequency is low.

TABLE IV
MSE ON THE PREDICTED CYCLE LENGTH

C. Predicting the Next Period

Table IV provides the mean square error (MSE) on the cycle
length prediction for the baseline method (i.e. average cycle
length of the past four cycles) and for our method, using a HSMM
fitted to the user’s past four cycles data. The table shows the MSE
for predictions done at two different moment of the on-going
cycle. The first row provides the MSE when the prediction is
made on the first cycle day. The second row provides the MSE
when the prediction is made after ovulation, 10 days before
the next period. While both method perform similarly at the
beginning of the cycle, our method is able to detect ovulation
and learn the typical luteal phase duration for that user, providing
a much more precise estimate (MSE is 2.88 times smaller) as
one progresses through the cycle.

IV. DISCUSSION

Unsupervised labeling of self-reported health records with
biologically-relevant states is a challenging, multivariate prob-
lem given the high frequency of missing data and the changes in
tracking behavior. Here, we presented a hierarchical generative
method based on hidden semi-Markov models. Our results on
synthetic data and real-world data, here self-reported fertility
body-signs, show accurate recovery of the hidden states se-
quence. This framework returns the likelihood at each time-point
of this most likely sequence in addition to the most likely
sequence of hidden states. Our results show that the decoding
accuracy is higher when the likelihood is high which implies that
our model is able to adequately quantify uncertainty. In contrast,
most medical or psychological studies currently use methods
which are unable to quantify the uncertainty or the likelihood of
their estimates, such as manual labeling or deterministic rules, to
identify the timing of reproductive events such as ovulation day.
Because our method, i.e. hierachical HSMMs, is able to capture
biological states of specific duration by adequate initialization
of the sojourn distribution and adapt to long-term changes in
tracking behavior, its accuracy is much higher (93%) than that
of a hierarchical HMM (61%) or of a single HSMM (75%). In
addition, our method predicts cycle lengths of ongoing cycles
with a 2.88 times lower error on average than the baseline method
for users with irregular cycles.

Beyond modeling reproductive events, our adaption of hidden
semi-Markov models allows (i) for missingness patterns that
may differ between variables, (ii) for censoring probabilities
that may differ between states, (iii) for variables of different
types (continuous, discrete, categorical), and (iv) for continuous
variables specified from different marginal distributions (e.g.
poisson and gaussian). We have implemented our method in a
publicly available R package (HiddenSemiMarkov)which
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builds upon the existing implementation of the Viterbi and
Forward-Backward algorithms from the mhsmm package [28].

The proposed model is ideal for decoding any self-reported
time series such as physical activity patterns, or time series of
incomplete diagnosis data. As an example from the current pan-
demic, our hidden semi-Markov model could be fitted to datasets
of covid-19 test results and reported symptoms to identify the
different phases of infection from “uninfected” to “recovered”
over “incubating” and “infectious”. Another example could
consist in inferring someone’s mental health state over time from
various self-reported symptoms in a tracking app or from the
tone of their messages.

In addition to time series labeling, HSMMs are also used
to detect outliers in time series, i.e. values which may be in
the expected variable range of value but that would be un-
expected at that particular moment in the time series. Conse-
quently, our implementation of HSMM could help detect ab-
normal missing data and the failure of a measurement/reporting
process.

One limitation of our framework is that within-state depen-
dencies between variables cannot be specified when initializing
the model. However, our simulations show that these depen-
dencies are successfully learned when the model is fitted to a
sequence of observations where these correlations are present
(see online supplementary material, link in the code and data
availability section). In addition to expected functions of a
hidden semi-Markov package, i.e. functions to specify and fit
censored hidden semi-Markov models, simulate time series,
and predict sequences of hidden states using the Viterbi or the
Forward-Backward algorithm, we also provide several visual-
ization functions for inspecting labeled time series and model
parameters. Finally, we implemented an interactive app which
can be used to manually label time series and/or confirm pre-
dicted labels. This interactive app can be used to create some
ground-truth for time series or to use an interactive boosting
approach to accelerate the fitting process.

This package, in combination with the proposed reproductive
model presented here, provide ready-to-use off-the-shelf tools
that any scientist interested in studying health and biological
variations associated with the menstrual cycle can use. For
example, the labeling method presented here can be used to label
large retrospective dataset from menstrual cycle tracking app and
evaluate the changes in reported symptoms at specific phases of
the cycle before and after pregnancies. And, while users in our
dataset were naturally cycling, the proposed reproductive model
could be extended to allow for the detection of birth-control
changes. Therefore, reported symptoms could be compared
before and after birth control transitions. Our model will also
facilitate the study of associations between the menstrual cycle
and the course of chronic conditions [46], [47]. Indeed, several
studies have already shown that patients which chronic con-
ditions such as inflammatory bowel disease [48], asthma [49]
or systemic lupus erythematosus [50] report different level of
pains or symptoms at different phases of the menstrual cycle.
Our framework could thus encourage medical researchers to
partner with a tracking app or include a few questions related
to participants’ fertility, such as contraceptive use, and their

menstrual cycle, such as daily report of their bleeding. This
would ensure a more comprehensive understanding of the effect
of sex as a biological variable on the course of chronic diseases,
the efficacy of treatments or in epidemiological studies.

Altogether, this study has demonstrated the accuracy of a hi-
erarchical hidden semi-Markov models for labeling multivariate
time series with many missing data-points. Our statistical model
is especially suited for applications in which the hidden states
may impact the frequency of missing data.
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