
1560 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 26, NO. 4, APRIL 2022

A Sensor-Driven Visit Detection System in Older
Adults’ Homes: Towards Digital Late-Life

Depression Marker Extraction
Narayan Schütz , Member, IEEE, Angela Botros , Member, IEEE, Sami Ben Hassen, Hugo Saner ,

Philipp Buluschek , Prabitha Urwyler, Bruno Pais , Valérie Santschi ,
Daniel Gatica-Perez , Member, IEEE, René M. Müri, and Tobias Nef, Member, IEEE

Abstract—Modern sensor technology is increasingly
used in older adults to not only provide additional safety
but also to monitor health status, often by means of sensor
derived digital measures or biomarkers. Social isolation
is a known risk factor for late-life depression, and a po-
tential component of social-isolation is the lack of home
visits. Therefore, home visits may serve as a digital mea-
sure for social isolation and late-life depression. Late-life
depression is a common mental and emotional disorder
in the growing population of older adults. The disorder,
if untreated, can significantly decrease quality of life and,
amongst other effects, leads to increased mortality. Late-
life depression often goes undiagnosed due to associated
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stigma and the incorrect assumption that it is a normal part
of ageing. In this work, we propose a visit detection system
that generalizes well to previously unseen apartments -
which may differ largely in layout, sensor placement, and
size from apartments found in the semi-annotated training
dataset. We find that by using a self-training-based domain
adaptation strategy, a robust system to extract home visit
information can be built (ROC AUC = 0.773). We further
show that the resulting visit information correlates well
with the common geriatric depression scale screening tool
(ρ = −0.87, p = 0.001), providing further support for the
idea of utilizing the extracted information as a potential
digital measure or even as a digital biomarker to monitor
the risk of late-life depression.

Index Terms—Telemonitoring, pervasive computing,
domain adaptation, self-training, late-life depression, digital
biomarker.

I. INTRODUCTION

W ITH a progressively ageing population in many coun-
tries, technology-supported ageing to promote indepen-

dent living is becoming a topic of high economic and social
interest [1]. One branch of research in this domain is concerned
with pervasive computing based home monitoring [2]. Usually,
this means the placement of unobtrusive, often contactless,
ambient sensor systems in an older person’s home, with the aim
to improve home care and provide additional safety. Relevant
literature suggests that older adults show good acceptance of
contactless sensor systems - such as passive infrared (PIR)
motion sensors [3]. Simple PIR motion as well as reed switch
based door sensors have been widely used to unobtrusively mon-
itor older adults [4]–[7]. And in comparison to cameras, audio
or radar-based monitoring, they are only minimally privacy-
invading.

Preliminary evidence even suggests better health outcomes for
older adults with pervasive computing assistance, as opposed
to a control group without the same [8]. Measures derived
from pervasive computing systems may be used to monitor
specific, health-relevant metrics, such as for cognitive function
[9], [10] or physical activity. This information in turn could
allow for early detection of health changes and better risk and
disease management, or allow one to monitor the effects of
interventions. Such medically relevant digital measures, derived
by means of modern information technology (usually outside
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the clinical environment), are increasingly being referred to as
digital biomarkers [11]–[13].

One area where such objective markers might have significant
potential is late-life depression, a common condition in older
adults that significantly decreases quality of life [14] and is
associated with a wide variety of negative health outcomes,
including increased risk of mortality [15] or cardiovascular
disease [16]. Late-life depression often goes undetected as it
is associated with a certain stigma or is wrongfully mistaken for
normal ageing [17]. A particular component and risk factor of
late-life depression is loneliness and its more objective correlate,
social isolation [18]–[20].

Detecting behaviors that are associated with late-life de-
pression, could thus help in providing valuable information
to primary care providers, indicating whether further clinical
screening could be necessary. Indicators for social isolation,
measurable by pervasive computing systems, could be time
spent outside the home or frequency and duration of home
visits - particularly for older adults living alone. In this context,
the former has been shown to be associated with perceived
loneliness [21]. However, with declining mobility, this source of
social interaction may become increasingly difficult to obtain.
Home visits likely constitute another important form of social
interaction for older adults, one that is not limited to mobility
constraints. As a result, automatically identifying home visits as
an objective measure of social isolation could be an interesting
way to recognize community-dwelling older adults at risk of
developing or already facing late-life depression.

In earlier work, we have shown that visit detection based
on unobtrusive contactless sensors is feasible in community-
dwelling older adults [22]. However, the results were obtained
for only a very small number of participants and visits. In addi-
tion, the employed one-class support vector machine (OCSVM)
[23] approach, trained on a single apartment, showed difficulties
in generalizing to previously unseen apartments. Furthermore,
the relationship between home visits and health-relevant indica-
tors was not analyzed.

In this work, we aim to develop a robust visit detection system
that adapts better to previously unseen apartments with different
layouts and sensor placements. Moreover, we aim to evaluate the
possibility of using the detected visit information as a potential
digital biomarker for social isolation to better assess risk of
late-life depression. Towards this end, we compare multiple
learning strategies and employ concepts from semi-supervised
learning [24] and domain adaptation [25]. The performance of
the proposed approach is finally evaluated based on a real-world
visit dataset including more than 20’000 hours of streaming data
and 2’106 annotated nurse visits.

Our main contributions are:
1) Introduction of a sensor driven, unobtrusive visit detec-

tion system using a self-training based domain adapta-
tion algorithm that can adapt to heterogeneous feature
spaces.

2) Extensive evaluation of system performance across vari-
ous approaches based on real-world data from free-living
older adults.

Fig. 1. Displays the participant enrollment flowchart of the study within
the used data has been collected [27].

3) Demonstration of the potential medical utility of the pro-
posed system through evaluating not only visit detection
performance but also correlations with medically relevant
geriatric depression scale (GDS) values.

II. MATERIALS AND METHODS

A. Data

The data used in this work stems from a home monitoring
study, where modern pervasive computing technologies for use
in older community-dwelling adults were evaluated. In total,
21 older adults were included for a target monitoring duration
of 12 months (due to attrition, only 13 participants success-
fully finished the study). The research was conducted between
January 2017 and July 2018. Participant recruitment aimed at
representing a naturalistic sample of old, community-dwelling,
and alone-living population in Switzerland. In Fig. 1, a detailed
participant recruitment flowchart is shown. The study was con-
ducted based on principles of the Declaration of Helsinki and
was approved by the responsible ethics committee of the canton
of Vaud (CER-VD: Cantonal Ethics Committee of Vaud on
Research involving humans; ID: 2016-00762). All participants
signed and handed in their informed consent prior to study
participation.

Paticipant homes spanned small and medium-sized apart-
ments and houses. Since we wanted to extract home visit in-
formation, the ground-truth for visits stemmed from nursing
reports, marking when a NOMAD (Neuchâtel public home care
association) nurse visited a participant. For this analysis all par-
ticipants with labeled visits were included, leaving us with a set
Q = {q1, . . . , q15} of participants (age = 86 ± 7.23, sex = 54%
female) and a total of 16’738 valid segments (equalling a total of
21’602 person-hours worth of sensor data - post pre-processing),
of which 2’106 were annotated nurse-visit segments. The motion
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Fig. 2. (a) gives an overview of the kind of sensor system used in an
apartment (the apartment Layout has been adopted from [9]). (b) shows
the resulting sensor streams that are being used throughout this work.

data was collected with a pervasive computing home-monitoring
system (DomoSafety S.A., Lausanne, Switzerland), that com-
prises multiple PIR motion sensors that are placed in relevant
rooms, as well as a magnetic entrance door and a fridge sensor.
The PIR sensors report motion with a 0.5 Hz sampling rate,
while the door sensors report every opening and closing event.
If possible, PIR sensors were placed at a height of about 1.9 m
above the floor on a wall, in a way that their field of view would
not detect motion outside a given room. For very large rooms,
multiple sensors were mounted and assigned to the same room.
All sensors communicate through the ZigBee [26] protocol with
a base unit, which sends the data in real-time to the cloud via the
cellular network. A schematic illustration of an installation in
an apartment, as well as associated sensor streams, can be seen
in Fig. 2.

To extract features that could be used for visit detection,
we first divide the monitoring time of a given participant q
into a set of N time intervals, T = {T1, . . . , TN}, based on
entrance door opening and closing events, referred to as (door)
segments, as illustrated in Fig. 2. Subsequently, a visit label
yi ∈ {0, 1} is assigned to each such segment Ti. Here, y = 1
indicates a visit, and y = 0 no visit. This approach is based

on the idea that the number of people in a home should not
change without the opening and closing of the entrance door.
Under the assumption that all home entrances are equipped with
entrance door sensors, the resulting segments between two such
opening-closing events could be treated as discrete entities with
a single visit label [22]. Since the visit times reported by nurses
were not perfectly accurate, we only label segments with at least
50% overlap between reported nurse visits and door segments
as visit segments. All segments without labels are considered
non-visits. It should be noted, that this leads to the inclusion of
false labels, since there will also be non-nurse visits.

We further filter segments by their duration and time of
occurrence, such that only segments with a duration between
5 minutes and 12 hours as well as occurrences between 4 am
and 11 pm are included. This is done because we found it
would lead to an over-estimation of system performance the
other segments were included, as those segments are extremely
unlikely to contain visits.

Then, each segment, Ti is assigned sequences of PIR sensor
events, Ei = (e1, . . . , ek, . . . , eK), from sensors in the rooms
R. Note that R is the set of all hypothetically possible rooms,
but apartments may only contain a subset of those. To construct
shared features,F, we use a subset,Rε ⊂ R, that we call elemen-
tary rooms. These include a living room, a toilet, an entrance,
and a kitchen. These rooms are present across all apartments and
thus domains. Individual PIR sensor events, ek ∈ N+, describe
the duration of the PIR activation time in seconds.

B. Self-Training based Domain Adaptation

To automatically detect visits, we are facing two major dif-
ficulties. First, we are dealing with considerable label noise,
as we only have access to nurse-visits, while it is obvious
that other visit types are also occurring and are arguably more
important to detect. This could lead to a potentially significant
number of wrongly labeled segments, depending on how many
non-nurse visits a participant received. Additionally, this could
also make a potential learning algorithm prone to specializing
on nurse-visits, thus introducing what we further refer to as
nurse-bias.

Second, it is difficult to calculate a set of general features to
be used for visit detection which are comparable across differ-
ent apartments - and individuals. Constituent factors here are
different room compositions, altering apartment sizes, diverse
sensor-placements, varying number of PIR sensors, and differing
human behaviors. As a result, potential features have to be
rather basic if the distribution between sources (installations
with labels) and target (installation without labels) should be
somewhat similar and thus useful for modelling, posing a certain
risk of underfitting.

These two difficulties leave us with a complex heterogeneous
feature space domain adaptation problem where no labels for
the target domain are available and the source domain labels are
potentially highly noisy. Formally, we have a set of multi-source

domain samples, S = {(x, y)q
s
1

1 , . . . , (x, y)
qs|Q\{qt}|
n }, from the

|Q \ {qt}| participants in the training dataset, as well as a set of

target domain samples from participant qt, T = {xqt

1 , . . . ,xqt
m}

that is treated as a new apartment in a leave-one-participant-out
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cross-validation procedure (details about the training procedure
are presented in II-E). Here, x ∈ Fq denotes a feature vector,
m the number of samples in a target domain, and n the number
of samples in the source domains. Additionally, feature vectors
x from each source, as well as the respective target domain,
stem from overlapping but heterogeneous feature spaces, Fq

due to differing sensor and room combinations. As mentioned
before, the OCSVM approach could not be generalized to some
apartments, likely due to its inability to adapt to conditions of a
specific target domain - a new apartment in our case.

To improve upon this, we adopt an approach similar in nature
to an algorithm proposed in [28]. The concept is based on self-
training [29] and was adapted to allow for domain adaptation. We
further refer to this method as ST-DA. With ST-DA, we first train
a simple base modelMouter on the labelled data from all source
domains (we will henceforth refer to this as the “outer model”).
The idea here is to train a high-bias model with limited learning
capacity on a shared subset, F =

⋂|Q|
i=1 Fqi , of rather generally

valid features, that can be calculated across all domains. By
choosing a simple model with limited learning capacity, we aim
to reduce the risk of overfitting to specficially nurse-visits and
force the model to use features that generalize across domains
instead of modelling each source domain individually. To further
reduce the nurse-bias risk, we try not to introduce any features
into F that could be very specific to nurse-visits, such as visit
duration or time of day. Subsequently, high-confidence predic-
tions of Mouter are used to pseudo-label a subset of samples
from the target domain, T.

High-confidence here refers to the probability of a sample
belonging to the visit or non-visit class, thus Pr(y = 1|x)
and Pr(y = 0|x), respectively. The subset of pseudo-labeled
samples is then defined as a certain percentage of samples with
highest Pr(y = 1|x) and highest Pr(y = 0|x). The respective
inclusion percentage, Pselection ∈ {0.05, 0.15, 0.25}, was se-
lected by means of the inner cross-validation loop (described in
II-E).

These pseudo annotated samples are subsequently used to
train a person and apartment specific inner model in a self-
training fashion. This is achieved by iteratively adding high-
confidence predictions to the pseudo annotated dataset and re-
training the apartment specific model,Minner, on this new data.
The resulting personalized model,Minner, (henceforth referred
to as “inner-model”) is eventually combined with the predictions
from Mouter to get a final visit score for each segment. This
final visit score is given by the segment duration weighted by
the product of the inner and outer models’ visit probabilities.

V Si = wi · |Ti|
wi = PrMinner

(yi = 1) · PrMouter
(yi = 1)

where
� PrMinner

(yi = 1) is the visit-scoring for a door segment,
based on the inner model prediction

� PrMouter
(yi = 1) is the visit-scoring for a door segment,

based on the outer model prediction
One might interpret visit scores as weighted visit time.

Note that we could have also calculated hard labels for visits.
However, in this case we would loose information doing so,

especially since a clear distinction between visit and non-visit
may oftentimes not be possible with the incomplete information
at hand.

While a product rule based combination of inner and outer
model predictions should be more natural when combining
probabilities, we additionally compare against the more com-
monly encountered mean aggregation rule. To test for statistical
significance between the two approaches, we use an unpaired,
two-sided, two-sample t-test.

For Mouter we evaluate two models. First an L1 penalized
Logistic Regression (LR), because of its simplicity and asso-
ciated limited learning capacity, as well as tendency to drive
coefficients of unimportant features to zero, thereby potentially
further increasing domain regularization. Second, a Local and
Global Consistency (LGC) algorithm [30], also referred to as
label spreading. LGC is a semi-supervised approach, similar
to label propagation [31]. Broadly speaking, it iteratively as-
signs labels to data points based on a symmetrically normalized
affinity matrix, the labels of neighbouring data points, as well
as the initially given labels. This approach makes sense in our
scenario since a certain amount of our non-visit instances are
actually visits. Since we assume that visit samples generally lie
on a certain, locally consistent, manifold, LGC can theoretically
correct for the mislabeled data points, such as for instance shown
in [32]. Note that due to computational complexity of running
a nested cross-validation loop, we resort to the use of k-nearest
neighbour based affinity matrices for LGC. Since F is of limited
dimensionality anyways, this should not realistically have a
larger impact on results.

Unlike LR, which makes use of L1 regularization for feature
selection, LGC has no inherent mechanism to perform feature
selection. To still allow for feature selection, we include the
same L1 penalized LR as a separate embedded feature selection
step, when using the LGC algorithm. In this case, the LR used
for feature selection is first optimized by means of the inner
cross-validation loop and subsequently the set of features corre-
sponding to non-zero coefficients is used for LGC training. Dif-
ferent combinations of ST-DA are reported as ST-DA[Mouter,
Minner].

For Minner, we evaluate multiple higher learning capacity
models. First, a random forest (RF) classifier due to its generally
good performance on a wide variety of learning tasks [33].
Second, a support vector machine (SVM) with Platt scaling
based probability estimates, as it allows to implicitly solve the
classification problem in a high dimensional space by means
of kernel functions, where the two classes may be linearly
separable. Third, a L1 penalized logistic regression with second
order interaction terms (I-LR) due to its simplicity while still
being able to potentially provide higher representational power
as a result of the added interaction terms. A full description of
the ST-DA Algorithm is given in Algorithm 1.

We hypothesize that the proposed approach has two major
benefits: (1) the influence of label noise is reduced in the inner
apartment specific model by using self-training and additionally
due to the usage of LGC as the outer model. Furthermore, the bias
towards nurse-visits is reduced by only including features that
should be indifferent between nurse-visits and other visit types
in the shared feature space F; (2) the higher learning-capacity
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inner model can adapt to individual apartment conditions,
including its own feature space, Fq, thereby leveraging addi-
tional information that is not used in Mouter.

C. Shared Features in F

Here the features of the shared feature space F are presented.
F is a subset of 12 features that are available across domains
and potentially indicate the presence of additional people in the
apartment. What follows is an enumeration of those. Please note
that while some features are motivated by probabilistic models,
we do not necessarily emphasize theoretical correctness of the
respective underlying assumptions.

1) FF
1 : Normalized Location Sequence Log-Likelihood

As visits likely lead to more uncommon room sequences,
we try to capture this information through the normal-
ized log-likelihood of a room transition sequence Si =
((rj , rk) | rj , rk ∈ Rε) given a maximum likelihood pa-
rameterized first order Markov chain (where parameters
are estimated based on all available segments), with
cardinality |Rε| = R. Si represents the room transition
sequence associated with segment Ti.
In essence this means that we calculate a zero diagonal
transition matrix P based on the PIR sensor firing se-
quence and respective sensor localization.

P =

⎛
⎜⎜⎜⎜⎝

Pr(r1,r1) Pr(r1,r2) · · · Pr(r1,rRε)

Pr(r2,r1) Pr(r2,r2) · · · Pr(r2,rRε)

...
...

. . .
...

Pr(rRε,r1)
Pr(rRε,r2)

· · · Pr(rRε ,rRε)

⎞
⎟⎟⎟⎟⎠

where Prrj ,rk represents the probability of transitioning
from location (room) rj to rk, under the constraint that
Prrk,rk = 0, ∀ k ∈ 1, . . . , R and based on the assump-
tion of first order Markov property.
Since the likelihood is dependent on the number of con-
stituent factors, we use a length normalized variant, where
|Si| is the number of transitions in segment Ti:

1

|Si|
∑
tk∈Si

log(Prtk(tk|tk−1))

2) FF
2 : Average Rare-Transition Probability

We assume that visits lead to an increase in rare room
transitions as it is more likely that PIR sensors form non-
adjacent rooms will be triggered in short succession (e.g.
when one person is in the bathroom, while another is in
the kitchen and there is a living-room in between). Such
transitions can not realistically be triggered by a single
person and should thus be a good indicator for a visit. To
capture this intuition, we assume the ten rarest transition
counts to follow a Poisson distribution with rate parameter
λ. This allows us to determine the maximum likelihood
estimate of λ across all segments and then calculate the
probability of a specific count in a segment.
Formally, we assume FF

2 ∼ Pois(λ). Here, FF
2 stands for

the random variable “rare room transition”. The prob-
ability of observing a certain transition number h in a
given time interval Tn is then defined by the respective
probability mass function:

f(h, λ) = e−λ · λh

h!

with λ = l · |Ti| where :
� h is the number of times the sensors detected said

transition within that specific segment.
� l is the rate parameter (number firings per second)

calculated across all available segments of a person.
Subsequently we average the ten rarest transition count
probabilities.

3) FF
3 : Normalized Transition Duration

Refers to the normalized time it takes to move from
one room to another. Visits are thought to lead to faster
transitions as it allows for ‘teleportation’ like behavior.
Given an n-tuple Di of room transition durations (can be
thought of as the room sequence Si but with associated
transition times) in segment Ti, the normalized transition
duration is calculated as follows:

D̃i =
mean(Di)

D̄

where D̄ = median((mean(Di))
N
i=1) is the normalizing

factor. This feature is based on transitions between all
available sensor equipped rooms r ∈ R of an apartment.

4) FF
4 - FF

8 : Normalized Activity Probabilities
Describes the probability of obtaining a room activity
value that is greater than the activity value of a given
segment Ti. We observed that visits tend to lead to
unusually high activity in certain rooms. This notion
is calculated based on the empirical cumulative density
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function (ECDF) of a users normalized activity Âr
q over

all segments:

Âr
q =

Ar
q

m̄r
∀ r ∈ Rε

where m̄r = median({Ar
1, A

r
2, . . . , A

r
N}) refers to the

median activity of a room over all segments.
The ECDF is finally constructed over all normalized
activity values Âr

i . Given the ECDF, the probability of
obtaining a larger normalized activity value than what
was observed for a specific segment is then calculated as

Pr(X > Âr
q) = 1− ECDF (Âr

q).

In addition to individual r the value is also calculated for
the combined activity of all rooms in Rε.

5) FF
9 - FF

12: Activity Percentages
This feature represents the activity share of each included
room r ∈ Rε of a given apartment, per segmentTi, as well
as the same for all rooms combined. It is assumed that
visit segments do exhibit a different activity distribution
among the rooms (people tend to spend time in specific
rooms if they have visitors), compared to following usual
daily routines.

Ãr
q =

Ar
q

Aq
∀ r ∈ Rε

where:
� Ar

q =
∑

e∈Ei
e

|Ti| is the duration of sensor activation per
location r over the length of segment Ti.

� Aq =
∑

r A
r
q is the total duration (over all rooms) of

sensor activation in segment Ti.

D. Specific Features

Every apartment has a set of unique features in addition to the
shared general ones. These are apartment specific or bear the
potential to introduce a bias towards nurse-visits. This includes
segment duration, hour of day, all of the shared features for
additional rooms (where applicable), individual rare transition
probabilities, and room transition durations for each transition
type. The exact number of features thus varies from apartment
to apartment.

E. Training and Evaluation

To evaluate the proposed approach with LR and LGCMouter ,
we compare against the OCSVM approach and in addition to
cases of having only an outer model LR, LGC, RF, I-LR and
SVM. With the OCSVM we use the normalized distance from
the decision boundary as a way to quantify the likelihood of a
segment belonging to the visit (or inlier) class. Outer model
only classifiers are trained on the shared features in F. To
assess performance of the different approaches in an unbiased
manner and find respective hyperparameters, we employ a nested
leave-one-person-out cross-validation loop. This means that for
each iteration one participant is set aside as a test set, while
training and hyperparameter optimization are performed on
the remaining participants. To obtain realistic hyperparameter

Fig. 3. Depicts the training procedure: (1) training dataset is subject
to an inner leave-one-person-out cross-validation loop to find optimal
hyperparameters to eventually train the outer model on; (2) the outer
model is used to create initial high-confidence predictions to initially
label data for the inner self-trained model of the left out (test-set)
apartment; (3) the inner (apartment specific) model is trained using the
semi-supervised self-training procedure; (4) visit scoring is applied and
resulting predictions of the inner model are evaluated against real labels,
resulting in a final ROC AUC value. The whole procedure is repeated for
each apartment.

values, the same procedure is repeated within the training set.
All features are normalized to have zero mean and unit variance.
This is done on the basis of the respective training set. A detailed
illustration is given in Fig. 3. For training of both inner and outer
models we used the respective scikit-learn implementations for
LR/I-LR, LGC, RF, SVM and OCSVM (version: 0.23.1) [34].

Hyperparameters were obtained using grid-search. Table III
shows the hyperparameter search space. Hyperparameters not
mentioned were left at respective default values of the scikit-
learn implementations.

As performance measure, with respect to detecting nurse-
visits, we use the area under the receiver operating characteristic
curve (ROC AUC) [35], since we are eventually interested in
the system’s ability to assign segments where y = 1 higher
visit scorings than segments where y = 0. ROC AUC values
are calculated directly on the basis of model predictions. In the
case of ST-DA, this refers to the inner model. It should be noted
here that a perfect ROC AUC value would indicate significant
overfitting towards the nurse-visit sub-type and is therefore not
desired. A good system should perform well with regards to
ROC AUC values but not too well.

While we can not directly evaluate performance with respect
to non-nurse visits, we aim to get an idea thereof by introducing
the correlation with the GDS as a real-world performance mea-
sure. The GDS is a commonly used and well validated instrument
to screen for late-life depression. The short version of the GDS
results in a score between 0 and 15, where values above 5 are
suggestive of depression. Introducing this additional metric is
motivated by the idea that visits constitute an important part
of social interaction and may therefore counteract isolation in
older adults. As such, one could assume that participants with
more overall visits, beyond just nurse visits, should be less
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TABLE I
VISIT SCORE AGGREGATION COMPARISON

likely to develop late life depression. As a result, we make the
assumption that a visit detection system, which performs well
with regards to general visit detection (not only on the nurse
subset), should also exhibit the highest association with GDS
scores. Moreover, our eventual goal for such a system is for it to
be used to help in detecting social isolation and associated late
life depression, not nurse-visits. To calculate this correlation,
we use the partial non-parametric Spearman’s rank correlation
coefficient, controlling for the effect of potential confounding
variables age, sex and mean nurse-visit duration. Since the GDS
was a point-in-time measure we calculate the correlation with it
based on the median of the daily visit scores DV S. The DV S
are the sum of all individual segment scores V Si of a given day.
Partial correlations with GDS were calculated using R (version
3.6.1; R Foundation for Statistical Computing, Vienna, Austria)
with package “ppcor” (version 1.1) [36]. Note that when the
GDS is involved, we can only include participants that finished
the one-year questionnaire followup, leaving us with n = 13
participants.

III. RESULTS

Here we present results of the different approaches, compared
to the proposed ST-DA approach, and amongst different varia-
tions of ST-DA. ROC AUC values represent the performance on
the nurse-visit detection task, while associations with GDS val-
ues represent a proxy for more general real-world visit detection
performance.

First, looking at the two aggregation rules for combining inner
and outer model prediction to calculate visit scores (see Table I),
it is visible that the product rule (average ρ = −0.68) leads to
significantly higher (p=0.002) average partial correlations with
the GDS, compared to the mean rule (average ρ = −0.35). In
Table II, the AUC and partial GDS correlations of all approaches
are given. Note that the respective correlations are based on the
product rule, as it clearly performs better. In terms of the ROC
AUC metric, ST-DA clearly exhibits the highest values of 0.774
and 0.773 for the LR and LGC variant with RF inner models,
respectively.

With regards to the remaining combinations, ST-DA variants
are showing, in most cases, higher ROC AUC values, when
compared to the respective baseline approaches. However, the
choice of inner model seems to matter here, as visible by the
difference in ROC AUC values between the worst performing
ST-DA[LR, I-LR] (ROC AUC=0.734) and the best performing

TABLE II
VISIT DETECTION PERFORMANCE

Fig. 4. Shows a scatter plot of the median of daily visit scores
(weighted visits) against values from the geriatric depression scale
assessments. Each dot represents one participant.

ST-DA[LGC, RF] (ROC AUC=0.774) approach. The differ-
ences become more pronounced when looking at the partial
correlations with the GDS values. Here, the baseline approaches
are consistently worse, with the highest partial correlation of
ρ = −0.45 (p = 0.196) for the sole RF model and the lowest
one for the OCSVM (ρ= 0.02, p= 0.952). The proposed ST-DA
variants, showcase distinctly higher partial correlations, with ρ
= -0.87 (p = 0.001) being the highest value, achieved by the
[LGC, RF] combination, and ρ = -0.44 (p = 0.208) being the
lowest, achieved by the [LR, I-LR] combination. Coming to
the choice of the outer model, LGC based ST-DA variants have
shown consistently higher partial correlations with GDS values,
compared to LR variants. This is consistent across all ST-DA
variants.

Fig. 4 shows the association of visit scores with GDS values
in form of a scatter plot of medians of daily visit scores, plotted
against GDS values. Here the best performing ST-DA[LGC, RF]
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variant was used to derive the visit scores. It is well visible how
higher visit-scores are correlated with lower GDS values.

IV. DISCUSSION

Based on the hypothesis that home visits can be an indicator
for social isolation and associated geriatric depression, we intro-
duce ST-DA, a self-training based domain adaptation approach
that is specifically tailored towards the scenario of having only
nurse-visit labels available for training a visit-detection system
in a multi-source domain adaptation scenario with heteroge-
neous feature spaces. Using the OCSVM approach of previ-
ous work as a baseline, we compared against other two-class
machine learning methods as well as multiple variants of the
ST-DA approach. Furthermore, we evaluated performance on
the nurse-visit detection labels based on ROC AUC values, as
well as on overall partial correlations with GDS values, which
serve as a proxy for real-world performance.

In terms of ROC AUC values, we found the existing OCSVM
baseline to be in-line with the performance of binary-classifiers.
However, there seems to be a large discrepancy when it comes
to partial correlations with GDS values. There, the OCSVM
baseline performed drastically worse, showcasing zero associ-
ation with GDS values. In this case, it appears that the benefit
of additional information added by the inclusion of negative
examples outweighs the introduction of additional label noise.
We assume a major benefit of the two-class models is based
on fact that the one-class approach tries to find a decision
boundary around the nurse-visit class but the distance from this
boundary does not necessarily imply that we simultaneously
move closer to the non-visit class in some hyper-dimensional
space.

Compared to both OCSVM and the two-class approaches,
performance measures for the ST-DA variants are clearly higher.
This supports the assumption that a main drawback of both
OCSVM and binary approaches is the variance-bias like trade-
off between overfitting to specific apartments (leading to poor
generalization performance on largely different apartments) and
relying on rather general features that are present across apart-
ments but may lead to underfitting. With the ST-DA approach the
inner model has access to additional apartment specific features,
as well as features that were excluded because they could have
introduced a nurse-bias. This not only allows a Minner model
to better adapt to features in F of a specific apartment and
the behavior of its inhabitant, but also gives it more potential
information that is available exclusively in a given apartment’s
unique feature space Fq . An additional factor explaining the
better performance of ST-DA could be related to the impact of
label noise, which may be corrected for when using the LGC
Mouter model, and could also be further alleviated by the usage
of pseudo-labels for Minner training. While ST-DA with LGC
and LR obtained very similar ROC AUC performance, the LGC
variant achieved consistently higher partial GDS correlations.
This supports the idea that LGC helps with label noise in the
training data, which in turn increases real-world performance
but therefore will not necessarily increase performance on the
mislabeled nurse-visit sub-type.

When it comes to the combination of information from
Mouter and Minner, the product rule leads to significantly
higher partial correlations with GDS values. While we are not
exactly sure why the difference is so clear, one reason may be
the partially independent feature spaces, which could favor the
product of probabilities, although this should only even play a
factor in multi-class settings [37]. A practical and more probable
factor may be that Minner here acts as a gating mechanism.
This behavior could thus, relatively speaking, help to build visit
scores that are more pronounced and may in turn have higher
discriminating power with respect to late-life depression.

Overall, in comparison to naïve baseline approaches, the
higher ROC AUC as well as markedly higher GDS correlation
performance of ST-DA suggest that by using self-training based
domain adaptation it is possible to build a more robust visit de-
tection system that adapts well to unseen apartments. Even more
importantly, however, it demonstrates ST-DA’s ability to extract
late-life depression relevant information, in spite of significant
label noise and varying source domains with heterogeneous
feature spaces.

The extracted home visit information could eventually be used
as a potential digital measure or even biomarker for primary care
providers, indicating the level and evolution of loneliness and
social isolation. This, in turn, could make it easier for healthcare
professionals to assess the risk of an older adult to develop late
life depression.

While our results are promising one should be aware that there
are several limitations to this work. To further solidify the shown
system and especially validate the potential of the calculated
visit scores as a marker for late-life depression, larger datasets
will be required. As such, while there is no obvious reason why
the shown approach should not work for different population
samples, results should be interpreted with caution and seen as
a proof-of-concept. Additionally, a large part of our results is
based on the assumption that the GDS is a good measure for
late-life depression and that visits actually are associated with
late-life depression. Furthermore, diagnosing depression was
not the primary goal of the related study, no medical diagnosis
has been performed on the subjects in this regard. While the GDS
is a standardized and clinically well validated screening tool
for late-life depression, it is a screening tool and no substitute
for a complete medical assessment with a resulting diagnosis,
conducted by a medical doctor.

V. OUTLOOK

To further validate the shown approach, it will be necessary to
have access to detailed medical diagnosis with regards to late-life
depression, in addition to GDS based screening. Moreover, in
order to quantify the effect of non-nurse visits in the results,
beyond using GDS as a proxy measure, future work will have to
test this methodology on data that contains ground-truth labels
for these visits. This may be non-trivial and will require either ac-
tive engagement of family members, or additional sensing (e.g.
video outside the home), none of which are ideal approaches.

As a result, immediate next steps with regards to the pro-
posed visit detection system will be to deploy the system in
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larger populations of older adults to define normative visit score
values and define clinically meaningful cut-off values for social
isolation and risk of depression in older adults. Here it will be
highly important to specifically conduct medical diagnosis of
late-life depression and obtain more accurate visit annotations
- for at least a small subset of the population. Long-term it will
also be of great interest to examine the temporal dynamics of
visit scores over multiple years and potentially validate temporal
changes against more objective biomarkers of depression, such
as epigenetic, transcriptomic, proteomic or neuroimaging [38]
based ones.

VI. CONCLUSION

We propose a home-visit detection system that adapts well to
previously unseen apartments in a difficult multi-source domain
adapation scenario with heterogenous feature spaces, nurse-visit
sub-type bias as well as unquantified label noise. The underlying
sensor system is conactless and based on unobtrusive passive
infrared motion as well as door sensors, which protect the
privacy of monitored subjects. Our results show that using a
self-training based domain adaptation approach yields good
performance with respect to visit detection, both in terms of ROC
AUC values as well as with regard to task relevant real-world
performance, corresponding to high and statistically significant
partial correlations with geriatric depression scale values. This
further indicates that the extracted visit information may indeed
prove useful as a digital measuer or even biomarker for late-life
depression, and that the visit detection system generalizes well
- beyond the nurse-visits, on which it was trained. While we
treated the case of visit detection, it is plausible that the proposed
self-training based domain adaptation approach may be suitable
for other pervasive computing scenarios where mislabeling and
heterogeneous domains pose a challenge.

APPENDIX

HYPERPARAMETER SEARCH SPACE

TABLE III
AN OVERVIEW OF THE OPTIMIZED HYPERPARAMETERS AND THE

ASSOCIATED SEARCH SPACE FOR EACH MODEL USED∗

∗ For ease of reproducibility we are here adopting the nomenclature employed in
respective scikit-learn implementations. Further note that LGC is called Label
Spreading in the scikit-learn library.
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