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Abstraci—Objective: Based on cybernetics, a large
system can be divided into subsystems, and the stability
of each can determine the overall properties of the system.
However, this stability analysis perspective has not yet
been employed in electrocardiogram (ECG) signals. This is
the first study to attempt to evaluate whether the stability
of decomposed ECG subsystems can be analyzed in order
to effectively investigate the overall performance of ECG
signals, and aid in disease diagnosis. Methods: We used
seven different cardiac pathologies (myocardial infarction,
cardiomyopathy, bundle branch block, dysrhythmia, hyper-
trophy, myocarditis, and valvular heart disease) to illustrate
our method. Dynamic mode decomposition (DMD) was
first used to decompose ECG signals into dynamic modes
(DMs) which can be regarded as ECG subsystems. Then,
the features related to the DMs stabilities were extracted,
and nine common classifiers were implemented for
classification of these pathologies. Results: Most features
were significant for differentiating the above-mentioned
groups (p value<0.05 after Bonferroni correction). In
addition, our method outperformed all existing methods
for cardiac pathology classification. Conclusion: We
have provided a new spatial and temporal decomposition
method, namely DMD, to study ECG signals. Significance:
Our method can reveal new cardiac mechanisms, which
can contribute to the comprehensive understanding of its
underlying mechanisms and disease diagnosis, and thus,
can be widely used for ECG signal analysis in the future.

Index Terms—Cardiac pathologies, dynamic mode
decomposition (DMD), electrocardiogram (ECG), multi-lead
ECG, stability, subsystems.

[. INTRODUCTION
A. Stability Analysis of ECG Signals

Electrocardiogram (ECG) is an important tool to capture the
electrical activity of the heart over time. Conductive electrodes
are selectively placed on the body’s surface to capture the small
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electrical changes that occur as a result of depolarization and
repolarization of the cardiac muscle over each heartbeat (cardiac
cycle) [1]. These changes reflect a series of waves, P, Q, R, S,
and T waves. The electrical potential difference between a pair of
electrodes during each cardiac cycle is graphically represented
as a lead. The standard ECG is comprised of 12-leads including
bipolar limb leads (I, II, and III) and unipolar leads (augmented
limb leads i.e., aVR, aVL, and aVF, and precordial chest leads
i.e., V1,V2,V3,V4,V5, and V6). The 12-lead ECG reflects the
3-dimensional electrical activity of the heart captured from 12
different viewpoints (or leads). These leads reflect the electrical
activity of different anatomic areas of the heart.

Cardiac diseases, such as myocardial infarction (MI), car-
diomyopathy (CM), bundle branch block (BBB), hypertrophy
(HT), and valvular heart disease (VHD), have been widely diag-
nosed by monitoring 12-lead ECG changes [2]-[4]. Analysis of
asingle-lead ECG signal has low computational cost and is more
easily interpretable than 12-lead ECG signals. However, 12-lead
ECG has many advantages: (1) It can fully capture signs of
cardiac abnormalities located in any anatomic area of the heart,
contributing to cardiac disease diagnosis. (2) It can fully reflect
the underlying dynamics of the heart by providing comprehen-
sive information about its activities. This paper regards the heart
as a complex large-scale system, and its dynamic behaviors are
captured from 12-lead ECG signals in macroscopic quantities.
Since single-lead ECG only captures limited information on
heart mechanisms, therefore, 12-lead ECG signals were used
for further analysis.

Stability analysis is an important issue in cybernetics (or
system science) with many applications across fields, such as
power systems, product design, and industrial manufacturing
[5]-[8]. Recently, it has received increased attention in the life
science. Previous studies have also revealed that the health status
of individuals can be reflected in instability of their physiological
signals, including blood oxygen saturation, respiration, and elec-
troencephalography signals. For example, analysis of the stabil-
ity of physiological signals, such as the heart rate, respiration,
and blood oxygen saturation of a patient with sleep apnea led
to the successful extraction of abnormal breathing patterns [9].
Similarly, Hocepied et al. found that electroencephalography
signals of epileptic patients are less stable compared with those
of healthy individuals [10]. According to these findings, Glass et
al. concluded that most pathological conditions can be reflected
in the instability of physiological signals [11]. Apart from this,
it should also be noted that according to cybernetics, the overall

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/


https://orcid.org/0000-0002-7565-9518
https://orcid.org/0000-0001-6822-8712
https://orcid.org/0000-0002-6808-4082
https://orcid.org/0000-0001-7979-2917
https://orcid.org/0000-0002-0565-747X
mailto:raonn@uestc.edu.cn
mailto:pren28@uestc.edu.cn
https://doi.org/10.1109/JBHI.2021.3130275

NIYIGENA INGABIRE et al.: ANALYSIS OF ECG SIGNALS BY DYNAMIC MODE DECOMPOSITION

2125

performance of a large-scale system can be determined by the
stability of many subsystems decomposed from it [12]. As
mentioned above, in this study, the heart is regarded as a complex
large system with dynamic behaviors which can be reflected
and measured by multi-lead ECG signals. Thus, it is essential
to evaluate how the stability of decomposed ECG subsystems
affects the overall properties of multi-lead ECG signals from
subjects suffering from diseases. This perspective has not yet
been evaluated by previous studies.

Finally, it must be noted that some previous studies evaluated
the stability of ECG signals based on the variability of different
ECG waves, such as the T-wave and QT-interval [13]. However,
this study refers to the stability of ECG signals from system
science theory, which has an entirely different physiological
meaning from the previous studies (see the Methods section
for more details). We attempt to use a novel approach, namely
dynamic mode decomposition (DMD), to demonstrate the ef-
fectiveness of our perspective for analyzing ECG signals.

B. Dynamic Mode Decomposition

DMD is a powerful new decomposition method capable of
capturing coherent spatial-temporal patterns from complex data
by assuming that the spatial pattern of the observed data at each
time point is given by a linear combination of spatial patterns
at previous time points [14]. This method was initially imple-
mented for the analysis of fluid flows [15]. It is a data-driven
approach, which does not require any governing equation or
prior assumptions of underlying system dynamics. In addition, it
encompasses the ability of both singular value decomposition (to
extract inherent modes from high-dimensional data) and spectral
analysis (to assess oscillatory frequencies correspond to those
inherent modes). For these reasons, DMD has recently been used
to analyze high-dimensional and dynamic physiological signals
and public health data, such as epidemiological data, brain-
related signals, and others. For instance, DMD was successfully
employed to interpret the spread of three infectious diseases,
using flu activity data provided by Google’s Flu Trends tool, pre-
vaccination measles from the U.K., and type-1 paralytic polio
cases in Nigeria [16]. Furthermore, Brunton et al. used DMD
to analyze large-scale sleeping electrocorticography data, and
were successful in detecting spindle networks during sleep [17].
Similarly, Solaija et al. used DMD to accurately detect epileptic
seizures of electroencephalography signals, and Casorso et al.
also used this method to analyze resting-state and motor-task
function magnetic resonance imaging data to model the brain’s
spatial-temporal organization [18], [19]. However, it has not yet
been used to analyze multi-lead ECG data, whichis also dynamic
and high-dimensional. In addition, in contrast to other tradi-
tional data decomposition methods, such as principal component
analysis (PCA), empirical mode decomposition (EMD), and
wavelet transform (WT), only DMD can decompose complex
(high-dimensional and dynamic) data into subsystems, namely
dynamic modes (DMs), with degree of stability. Therefore, this
study attempts to analyze ECG signals based on stable and
unstable DMs from multi-lead ECG signals. This approach may

not only aid in revealing new cardiac dynamic mechanisms, but
also contribute to research on heart-related diseases.

C. Cardiac Abnormalities

We evaluated our approach using the ECG signals of patients
with various cardiac abnormalities, such as MI, CM, BBB, HT,
VHD, and myocarditis (MCD). MI, also known as heart attack,
is the most severe cardiovascular disease and one of the top
causes of mortality in the world. Every year, more than § million
people die globally from MI [20]. It occurs as a result of necrosis
of heart cells and permanent damage of the heart muscle due
to prolonged insufficient oxygen supply (ischemia), which is
caused by narrowed coronary arteries. This can lead to both
acute infarction and sudden death [4]. MI characteristics are
captured by monitoring ECG changes, including ST-segment
elevation and depression, P-wave, T-wave, and QRS-complex
abnormalities [4]. Dysrhythmia (DT) occurs as the result of
problems in the electrical conduction system. Cardiac muscle
diseases including CM and HT are characterized by the presence
of T-wave inversion, ST-segment depression, and deep T-wave
inversion in leads I, II, aVL, aVF, V4, V5, and V6. In VHD, the
heart valves do not close or open properly. MCD occurs when
there is inflammation of the myocardium (heart muscle), which
is as a result of the immune response to infections. BBB occurs
due to delays in the heart conduction process. The characteristics
of right BBB include the presence of wide R-wave and S-wave
in the leads V1 and V6 [2]. For left BBB, the amplitude of the
R-wave and the duration of the QRS complex are high, and the
T-wave inversion is present in the precordial leads [2].

The aforementioned pathologies have been detected us-
ing various approaches, including time-domain, WT, discrete
Fourier transform (DFT), discrete cosine transform, PCA, EMD,
and neural network methods [13], [21]-[32]. For example, Sad-
hukhan et al. extracted the phases after implementing DFT
on ECG signals for MI detection [22]. Acharya et al. used
three types of coefficients based on discrete wavelet transform,
discrete cosine transform, and EMD for the detection of MI [23].
In addition, Reasat and Shahnaz, and Liu et al., implemented
different types of neural networks for MI detection [33], [34].
Tripathy et al. implemented principal component multivariate
multiscale sample entropy for detection and classification of MI,
CT, DT, and HT [35]. In [36], BBB was detected based on a
complex wavelet sub-band dual-spectrum. Jain and Bhaumik
applied a specific signal processing technique for integrated
circuits on ECG signals for HT, DT, and BBB detection [37].

Meanwhile, different approaches have been proposed for mul-
ticlass ECG classification [35], [38]-[40]. For example, Deng et
al. and Dey et al., respectively used convolution neural network
(CNN) for eight classes of ECG (HC, MI, BBB, CT, DT, HT,
MC, and VHD) and three classes of ECG (HC, MI, and non-MI)
classification [39], [40]. This study attempts to implement DMD
to analyze ECG signals in order to improve classification of
binary-class and multi-class ECG signals. Specifically, our pro-
posed method was evaluated on different types of binary-class
ECG signals (MI versus normal ECG signals, BBB versus
normal ECG signals, CT versus normal ECG signals, DT versus
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normal ECG signals, and HT versus normal ECG signals) and
classification of eight-class ECG signals, including HC, MI,
BBB, CT, DT, HT, MCD, and VHD.

The flowchart of this study is shown in Fig. 1. First, the multi-
lead ECG data was preprocessed in order to remove artifacts, and
further segmented into ECG beats and frames. Each individual
beat and frame signal were then decomposed into DMs using
the DMD algorithm. Then, eigenvalues were used to determine
whether their corresponding DM were either stable or unstable.
After, the features related to the stability of these DMs were
extracted, and the statistical tests were performed on each feature
to assess the differences between the stability changes of DMs
of ECG beats and frames of patients with different cardiac
abnormalities and HCs. Last, classification performance was
evaluated via nine common classifiers.

Il. METHODS

This study used Physikalisch-Technische Bundesanstalt
(PTB), a well-known public diagnostic ECG database provided
by the national metrology institute of the Federal Republic of
Germany, for analysis [41]. The PTB ECG database contains
digitized ECG recordings from 148 MI patients, 15 BBB pa-
tients, 18 CT patients, 14 DT patients, 7 HT patients, 4 MC
patients, 6 VHD patients, and 52 HCs with an average age of 57.2
years. Each ECG time series was recorded by the 12 standard
leads (I, II, III, aVR, aVL, aVF, V1, V2, V3, V4, V5, Vo).
The duration of each recording was approximately 2 minutes,
and each ECG signal was sampled at 1000 Hz with a 16-bit
resolution over a range of £16.384 mV.

In the section below, we demonstrate the proposed method
to analyze multi-lead ECG signals to detect of cardiovascular
pathologies. The detection block (see Fig. 1) consists of prepro-
cessing, feature extraction based on DMD, and classification.

A. Preprocessing

The preprocessing includes filtering and beat segmentation.
For filtering, artifacts such as noise and baseline wander were
filtered out by the Daubechies wavelet basis function, and pow-
erline interference was removed by a second-order notch filter,
then a fourth-order butterworth low pass filter with a cutoff
frequency of 100 Hz was used to reduce very high-frequency
content [42]. These preprocessing techniques have been applied
by different studies for ECG analysis and are effective in filtering
different artifacts, including motion and baseline wander.

For beat segmentation, the R-wave is considered as a distinc-
tive point due to its high amplitude and clearly visible peak.
The Pan-Tompkins algorithm has been widely used for R-peak
detection [43]. We used this algorithm similarly to identify
the R-peaks. Once the R-peaks were identified, a multi-lead
segment of 651 time points, including 250 points before the
R-peak, and 400 points after, was considered as the ECG beat.
This beat length was chosen because it has been employed in
previous studies which used the PTB database [23], [31]. These
studies have demonstrated that this length generally contains
a large proportion of information on the heartbeat, and can be
successfully used to detect ECG beats for different individuals.
It should be noted that to avoid inconsistency in beat length, the
first and last beats of each subject were not considered.

The aforementioned pathologies, such as DT (ventricular
arrhythmia, supraventricular arrhythmia, premature ventricular
ectopic beats, and sinus arrhythmia), HT, and BBB, are mainly
diagnosed using frame-based processing; in other words, beat
segmentation is not required during preprocessing [44]. In this
way, during preprocessing, multi-lead ECG signals were seg-
mented into non-overlapping frames of 4096 time points (4.096
seconds). This frame size was chosen by following the previous
studies which used the PTB database [30], [35], [36], [38]. Thus,
in order to easily compare our proposed method with those
of existing studies that used either beat-based or frame-based
processing, both processing methods were considered. After pre-
processing, the multi-lead ECG signal features were extracted
using DMD.

B. Dynamic Mode Decomposition

DMD is a powerful decomposition approach that is used
to evaluate dynamic systems with high-dimensional data. The
DMD algorithm has the benefit of decomposing time series data
into a set of DMs that contain spatial and temporal patterns.
Tu et al. has refined the definition of DMD algorithm, as shown
below [45]. Let us consider twon x (k — 1) raw data matrices X
and X?, whose rows and columns respectively denote the leads
and sampling points of ECG beats. In the case of 12-lead ECG
signals, n is equal to 12. These matrices can be constructed by
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arranging measurements from & sampling time points as follows: ( \
Eigenvalue ); > Freque_ncy
T11 e (k1) L ) (See equation (11))
X — R — [Xl kal] (1) A Stable [A;| < 1
o A -
Tnd =t Tn(k-1) Eigenvector ¢ Stabilty
Unstable |A;| > 1
1 -_ (or DM) i
X5 = - :[XQ...X” Q@ - '
’ ’ Fig. 2. The procedures to compute the stability of DMs and their
Tn2 Tnk corresponding frequencies.

where columns (or snapshots) of X* are obtained by shifting
those in X by one time point, therefore the data in these matrices
largely overlap.

DMD assumes that the temporal progression from X to X* is
governed by a linear operator A, which satisfies the following
relationship:

X*=AX 3)

Linear regression of the non-linear dynamics between these
consecutive data matrices, i.e., X and X*, can be determined by
estimating the eigendecomposition of this operator A based on
one possible approach, which is to calculate the pseudoinverse
of X using its SVD.

It is important to note that the snapshots in the data matrix X
are assumed to be high dimensional, i.e., if the measurements
n of a snapshot are larger than the total number of snapshots
k — 1, then the transition matrix A (with the size n X n) may be
high dimensional. As a result, it may not be straightforward
to compute the eigendecomposition of A. Thus, instead of
calculating A directly, the DMD algorithm uses a reduced matrix
A given by projecting Aonto the leading singular vectors of X
to compute the eigendecomposition of A using the following
procedure:

Step 1: Determine the SVD of the first data matrix:
X~ UXV” 4)
Then, substitute (4) into (3) to get the SVD of X? :
X* = AUXV* (&)

where U, 3, and V represent left singular vectors, singular
values, and right singular vectors, respectively.

Step 2: Compute the pseudo-inverse of X to get the matrix A:
A=XX"1=X°VXlU* (6)

Step 3: Project A onto the proper orthogonal decomposition
modes of U to get A :

A =UAU=UX°VE! (7)
Step 4: The eigendecomposition of A is calculated as follows:
AW = WA (®)

where the columns of W are the eigenvectors of A and the
elements A; of the diagonal matrix A are the eigenvalues of the
full matrix A, which are also the DMD eigenvalues of data X.

~< 101
2 1004 e ° °
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Fig. 3. The magnitudes and oscillatory frequencies of eigenvalues of

DMs for one ECG beat. (a) Healthy control (HC); and (b) Myocardial
infarction (MI) patient.

Step 5: Compute the DMs ® of X using the eigenvectors W
and time-shifted snapshot matrix X*:

® =XV 'w )

It should be noted that these DMs ® denote the eigenvectors of
the high-dimensional operator A, and each DM ¢; corresponds
to an eigenvalue A; given by A as shown in Tu et al. [45].

Finally, the observed data can be approximately constructed

as the simple dynamic model X (¢):

X(t) =~ X(t) = ® exp(Q2t)b (10)
where 2 = log(A)/At is a diagonal matrix containing eigen-
values in continuous time, ¢ is time, At is the time difference
between two consecutive points, and b is a vector containing a
set of weights to match the initial time point measured, such that
b= @71X1.

The essence of the above algorithm is to decompose data
arranged, as in (1) into a set of coupled spatial-temporal patterns.
Note that both ® and A are complex values. Fig. 4 shows an
example of one stable and unstable DMs for a single ECG beat
(each DM contains real and imaginary parts). An eigenvalue
can be expressed as A; = r; 7% where r; denotes the damp-
ing ratio and w; (element of €2) denotes the frequency of ¢,.
The oscillatory frequency F; of each DM can be determined by
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Real part

Imaginary part

Unstable

Stable

Fig. 4. The values of real and imaginary parts of single stable and
unstable DMs for one ECG beat. The arrows indicate the position of the
leads. The color bar indicates the values of real and imaginary parts of
each element of these DMs. Each of these elements correspond to in-
dividual lead. Note: These DMs were randomly selected from individual
beat’s 12-lead ECG signals of one subject for illustration.

the imaginary part of w; as follows:

imag(w;)
2r

According to the theory of discrete-time linear systems, the
magnitude of eigenvalue |A; | indicates the stability of the system,
where the system is considered as asymptotically stable when
|2;] < 1.However, if |A;| > 1, the system is considered unstable
[46]. Therefore, the stability and frequency of each DM can be
indicated by its corresponding eigenvalue (see Figs. 2 and 3)
[47]. The stable and unstable DMs of a 12-lead ECG signal and
their corresponding eigenvalues are shown as follows:

A0
0 A°

F; = Y

<I>:[<I>",<I>s]<:>A:[ (12)
where @ is the matrix containing unstable DMs, and A" is the
diagonal matrix containing their corresponding eigenvalues, as
follows:

e =[p1,.... 04 P D] 13)
[0 . 0]
0. 0 0

A= 0 A% 0 a5
.0 0 0
L0 0 A ]

where ¢ § is a vector which represents unstable DM, and A }; is
an element which denotes its corresponding eigenvalue, where
d=1, 2,..., D,and D denotes the total number of unstable

DMs. Each element of unstable DM ¢ 4, namely ¢ Y (1),
corresponds to each lead where [ =1, 2,..., 12. ®° is the
matrix containing stable DMs, and A® is the diagonal matrix
containing their corresponding eigenvalues, as follows:

P =[p],....05,....0¢]
fa 0 -
0 0 0

5)

A = (16)

where ¢  is a vector which represents stable DM and A ? is
the element which denotes its corresponding eigenvalue, where
c=1,2,..., C,and C denotes the total number of stable DMs.
Each element of stable DM ¢ 2, namely ¢ (1) , corresponds
to each lead. Since the number of ECG leads (12 in this study)
is always less than the number of snapshots (or time points of
each beat), i.e., 12 < k, the observed non-zero singular values
given by SVD X is smaller than both the number of leads
(12) and the total number of snapshots (k — 1). Consequently,
the maximum number of DMs is limited to 12, and these few
DMs are insufficient to fully capture the dynamic activity of the
cardiac system. To solve this problem, we followed the method
suggested by Brunton et al., which is to increase rows of the data
matrix X to at least twice the number of columns by stacking
time-shifted versions of the original signal to get an augmented
datamatrix X 4,,4. It should be noted that in practical application,
DMD is implemented on the augmented matrix X4, rather
than X. The detailed steps for data augmentation are shown
in the Supplementary Material. After applying DMD on the
augmented data X ,,,4, we restacked the extracted DMs from this
augmented data matrix to get DMs whose elements correspond
to the 12 leads as shown in the Supplementary Material.

C. Feature Extraction

After preprocessing, we decomposed the signal contents of
each beat and frame into a set of stable and unstable DMs in
each time interval, then we derived three types of features: the
feature reflecting the ratio of number of unstable DMs to total
DMs, the features derived from eigenvalues, and the features
derived from DMs (or eigenvectors).

The first type of feature was derived in order to evaluate the
ratio of unstable to total DMs as follows:

D
RNy = ———<

(D+C) (17

where Ry represents the ratio of unstable DMs to total DMs.

Then, we derived the parameters based on eigenvalues, be-
cause they can generally reflect information inherent to their cor-
responding DMs. These parameters were extracted as follows.
We examined the relationship between eigenvalues of stable and
unstable DMs as shown below:

D
_ D=1 [* d
- D C ;
2a= Mgl + e (22

R, (18)
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where R, represents the ratio of eigenvalue magnitudes of
unstable DMs to those of total DMs. Furthermore, we examined
the eigenvalue magnitudes of the most stable and unstable DMs,
respectively demonstrating the fast convergent and divergent
DMs, as follows:

Amin = min (|As|)

Amax = max (|A"])

19)
(20)

where Ay, and A .y respectively indicate the eigenvalues of
the most and least stable DM.

Finally, we derived the features based on DMs (or eigenvec-
tors). For an individual beat and frame in 12-lead ECG signals,
each element of DM ¢ ;; or ¢ ? (with the size 12 x 1), namely
¢ 4 (1) or ¢ £(1), contains two important pieces of information:
the magnitude of the element (absolute value), providing a
measure of the lead’s participation within DM; and the phase of
the element (angle between the real and imaginary components).
Therefore, this study attempts to use the magnitude as well as
phase of the stable and unstable DMs as useful information for
the 12-lead ECG signals. We quantified the relationship between
the magnitudes of stable and unstable DMD modes as follows:

12 D u
_ 121 2d=119 4 ()]
T 12 D 12 «C s
Yic12g=1 |y O +22 Y ed (1)
where R represents the overall ratio of the magnitudes of the
12 leads of unstable DMD modes to total DMD modes. We also

quantified how the phases of the stable DMs are related to those
of unstable DMs as follows:

Rp

Ry

1)

121 Y angle (¢4 (1)

TSR S angle (64 () 12150, angle (¢ £ (1))
(22)

where Rp denotes the overall ratio of the oscillatory phases of
the 12 leads of unstable DMs to total DMs. Furthermore, we
computed the average magnitude and phase of stable DMs of
each lead as shown below:

c s

fead = 720:5"’5 ‘ (23)
c s

fead — Zc:l a’,'égle (¢ c) (24)

where both M}, ,; and P}, ; are 12 x 1 vectors whose elements
represent the average magnitudes and phases respectively of
stable DMs of each lead. Finally, we computed the average
magnitudes and phases of unstable DMs from each lead as shown
below:

D u
d = % (25)
u _ 25):1 cmgle (¢ Z)
lead — D (26)

where M. ,; and Pj. ; are also 12 x 1 vectors whose elements
represent average magnitudes and phases respectively of unsta-
ble DMs from each lead.

Since the raw ECG signal data are strictly real values, the
decomposition generates complex conjugate pairs of DMs and
eigenvalues. Thus, the phases of each pair of modes are opposite
to each other, and the observed results in (24) and (26) will be
equal to 0. In order to solve this problem, for each DM, the
phase of lead I was subtracted from the phase of each lead, then
the relative phases of all DMs were averaged. It should be noted
that these newly developed parameters were extracted from ECG
signals in each beat as mentioned above.

D. Statistical Tests

For two-class ECG analysis, a total of 54 features extracted
from the stable and unstable DMs of each ECG beat and frame
for the HC group and patients with each of the mentioned
pathologies (MI, CM, DT, BBB and HT) were utilized for
analysis. The Jarque-Bera test was applied on each feature
for normality evaluation at a significance level of 0.05. This
test demonstrated that most of the extracted features were not
normally distributed. Therefore, the Wilcoxon rank-sum test
was implemented to investigate the DMs’ stability differences
between the two groups (i.e., HC group and each of the afore-
mentioned pathologies group). The p value was considered
significant if it was less than 0.05 after Bonferroni correction.

For eight-class ECG analysis, 54 features were also extracted
from the stable and unstable DMs of each ECG beat and frame.
Then, an analysis of variance test was conducted on each ex-
tracted feature to assess the significant differences between the
DMs’ stability of ECG signals (ECG beats and frames) for the
normal, MI, CM, BBB, DT, HT, VHD, and MCD subjects.

E. Classification

After conducting the statistical tests, to prevent overfitting,
only significant features were used to assess the performance of
our proposed approach for two-class (i.e., HC group and each
of the aforementioned pathologies group) and eight-class clas-
sification of ECG signals. This performance was assessed using
nine commonly used classifiers: k-nearest neighbor (KNN), J48
decision tree, random forest, random tree, AdaBoost, Bayes net,
vote, support vector machine (SVM), and multilayer perceptron
(MLP) [48]-[56]. The open-source software WEKA was used to
build these classifiers [57], and 10-fold stratified cross-validation
(CV) was chosen to evaluate the performance of these models.
Finally, the performance parameters of the mentioned classi-
fiers, including accuracy, precision (or positive predictive value
(PPV)), recall (or sensitivity), and area under the curve (AUC)
were considered to evaluate the ability of our proposed method
for ECG signal analysis.

[ll. RESULTS
A. Statistical Analysis

For two-class ECG analysis, we found that out of the total
of 54 features, 39 features were significant for the detection of
MlI, 28 for CM, 32 for DT, 26 for BBB, and 15 for HT versus
the HC, using either beat-based or frame-based processing (after
Bonferroni correction). Notably, the results obtained in assessing
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(e)

B W HC

Fig. 5. The means and standard deviations of our features for Ml
patients and HCs. (a) R denotes the ratio of number of unstable DMs
to total DMs; (b) R, represents the ratio of the eigenvalue magnitudes of
unstable DMs to those of all DMs; (¢) Amin denotes the eigenvalue of the
most stable DM; (d) R prepresents the overall ratio of oscillatory phases
of the 12 leads of unstable DMs to total DMs; and (e) Ry, denotes the
overall ratio of the magnitudes of 12 leads of unstable DMs to total DMs;
and (f) Amax represents the eigenvalue of the least stable DM (after
Bonferroni correction, xp < 0.05, x+p < 0.0001).

the significance of the differences between the beats and frames
of the patients with each of the aforementioned pathologies and
those from HCs exhibited a similar trend. Thus, we only show
the results for MI detection. As illustrated in Fig. 5, MI patients
generally exhibit more instability in the DMs of ECG signals
compared to those from HCs. Furthermore, as shown in Fig. 6,
for both MI patients and HCs, the average magnitude and phase
in each lead in both stable and unstable DMs are different from
those of other leads. Additionally, as shown in Fig. 6(a), most
leads’ stable DMs in HCs (except leads II, III, and aVF) were
greater in magnitude than those from MI patients. Similarly, as
shown in Fig. 6(d), except for lead II, and aVF, the other leads’
oscillatory phases in unstable DMs from HCs were higher than
those of MI patients.

For eight-class ECG signal analysis, from the total of 54
features, 45 were significant for distinguishing the beats of those
eight classes, and 39 for the frames (after Bonferroni correction).

B. Classification

As mentioned previously, 10-fold CV was used and per-
formance parameters of the mentioned classifiers, including
accuracy, PPV, sensitivity, and AUC, were considered to assess
the ability of our proposed method for ECG signal analysis.

For two-class ECG signal analysis, as shown in Figs. 7 and 8,
respectively, all the classifiers accurately identified the normal
beats and frames from MI, CM, BBB, DT, and HT beats and
frames. Specifically, the highest accuracy values achieved in
detecting MI, CM, BBB, DT, and HT beats were 99.97%, 99.5%,
100%, 99.85%, and 99.61%, respectively (see Fig. 7). Accuracy
values of 100%, 100%, 100%, 100%, and 99.8% were obtained
for detection of MI, CM, BBB, DT, and HT frames, respectively
(see Fig. 8).

As shown in Fig. 9, the classification performance achieved
in the case of seven different abnormal and normal ECG signals

for multiclass (eight-class) ECG signals, is consistent between
beat-based and frame-based processing. Specifically, the highest
accuracy values achieved when classifying beats and frames
were 99.88% and 99.95%, respectively.

Finally, we compared our proposed approach with those of
previous studies for classification of two-class and eight-class
ECG signals. The highest performance achieved by these studies
are summarized in Tables I, II, and III. It is clear that our
proposed method outperforms all of the existing methods.

IV. DISCUSSION

In this study, we consider patients with different cardiac
pathologies (MI, CM, DT, BBB, HT, MC, and VHD) and HCs as
an example, and applied a new decomposition method, namely
DMD, to decompose multi-lead ECG signals into stable and
unstable modes (or subsystems). Then, we extracted the features
to quantify the relationships between these two types of modes.
The results verified our hypothesis that the stability of ECG
modes (or subsystems) reflect the health status of individuals,
which could be a new perspective for ECG signal analysis.

As mentioned in the introduction, this study has hypothesized
that the stability changes of DMs in ECG signals are influenced
when individuals suffer from cardiac diseases, and the results
conform to the hypothesis. We extracted 54 features which
reflect the relationships between stable and unstable DMs. These
features can be divided into three parts: (1) Feature which reflects
the proportion of number of unstable DMs to stable DMs Ry . (2)
Features extracted according to eigenvalues, including R;, Amin,
and Apax. (3) Features extracted from magnitudes and phases
of eigenvectors, including Rys, Rp, MJ. .4 Piliaas Misqqs and
P}. .4 Interestingly, we found that 39, 28, 32, 26, and 15 features
from total of 54 were significant for the detection of MI, CM,
DT, BBB, and HT, respectively, using either beat-based or frame-
based processing. This demonstrates that our proposed method
can be generally effective for two-class ECG classification.
Also, 45 and 39 features out of the 54 were significant for the
classification of beats and frames respectively of seven cardiac
pathologies. As mentioned previously, the statistical results
obtained for the detection of the aforementioned pathologies
(MI, CM, DT, BBB, and HT) were similar. Therefore, we only
showed the results for MI detection. As illustrated in Fig. 5,
greater instability in the DMs of MI patients was observed
compared to those in HCs. This may be due to the presence
of ECG changes (such as variation of P-wave, QRS-complex,
T-wave, and ST-segment) during MI. All of these observed
results conform to findings from previous studies, which state
that changes in the stability of physiological signals reflect
individuals’ pathological conditions. In addition, according to
the theory of cybernetics, stable subsystems can generally assist
the whole system to work more efficiently, orderly, and adaptive,
while unstable subsystems are almost the opposite. This study
has found a similar phenomenon in the cardiac system - that
is, the DMs of HCs are less stable compared to those of MI
patients, which indicates that their cardiac systems function in
a more efficient, orderly, and adaptive manner than those of MI
patients. However, we also found some interesting phenomena:
(1) As shown in Fig. 6, for both stable and unstable DMs,
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Fig. 6. The means and standard deviations of averaged magnitudes and phases of DMs of individual leads of MI patients and HCs. (a)
My, represents the averaged magnitudes of stable DMs; (b) M. . denotes the averaged magnitudes of unstable DMs; (c) P, denotes
the averaged phases of stable DMs; and (d) P}, , represents the averaged phases of unstable DMs (after the Bonferroni correction, +p < 0.05,

sxp < 0.0001).
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Fig. 7. Classification performance (accuracy, precision, recall, and AUC) for our features when identifying MI, CM, DT, BBB and HT from normal
beats.
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Fig. 8. Classification performance (accuracy, precision, recall, and AUC) for our features for identifying MI, CM, DT, BBB and HT frames from
normal frames.
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TABLE |
PERFORMANCE COMPARISON OF THE PROPOSED METHOD WITH EXISTING APPROACHES USED THE PTB ECG DATABASE FOR DETECTION
OF ECG PATHOLOGIES

Disease and

Acc. PPV Sens. AUC
Method # Leads # Beat/ frame %) %) %) %)
DWT [28] 1(1D) 2282 MI & 718 HC beats 96.93 N/R N/R N/R
ST-segment analysis [26] 12 20 MI & 20 HC records N/R N/R 85 N/R
Time-domain analysis [21] 12 16960 MI & 3200 HC beats ~ 98.30 N/R 99.97 N/R
Multiple-instance learning on ST-segment 12 369 MI &79 HC records N/R N/R 92.30 N/R
[27]
Polynomial function and DWT [29] 12 148 MI & 52 HC subjects 94.40 N/R N/R N/R
WT and multiscale energy and eigenspace 12 2148 MI &2148 HC frames 96 N/R 93 96.16
[30]
- Variability of T-wave amplitude [13] 1.1) 79 MI & 69 HC records N/R N/R N/R 85
- Variability of T-wave angle N/R N/R N/R 95
- Variability of QT-interval N/R N/R N/R 83
-DCT [23] 1.1) 40182 MI & 10546 HC  98.50 99.8 99.70 N/R
-DWT beats 98.16 99.77 99.69 N/R
-EMD 81.34 93.96 97.23 N/R
Shallow CNN [33] 3(IL 1L 30 MI & 52 HC subjects 84.54 N/R 85.33 N/R
aVF)
CNN and RNN [34] 12 148 MI & 52 HC subjects N/R 97.20 92.40 N/R
DFT [22] 3(ILIL 15000 MI & 5000 HC beats ~ 95.60 N/R 96.50 N/R
V2)
Time-domain analysis and PCA [24] 12 60 MI & 60 HC records 96.96 N/R 96.96 N/R
Optimal band filtering bank and WT [31] 1 40182 MI & 10546 HC 99.74 99.80 99.84 100
beats
ST segment, T and Q waves analysis [25] 12 113 MI & 52 HC subjects 99.80 N/R 99.75 N/R
Maximal overlap DWT [32] 12 21569 MI & 7131 HC 99.57 N/R 99.82 N/R
Principal component multivariate 12 -135CM & 140 HC 93.03 N/R N/R N/R
multiscale sample entropy [35] -63 HT & 140 HC 85.29 N/R N/R N/R
-99 DT & 140 HC 90.09 N/R N/R N/R
Complex wavelet sub-band bi-spectrum 12 -352 BBB & 352 HC frames ~ 96.40 N/R N/R N/R
[36]
Application of specific signal processing -7 HT & 52 HC subjects 99.31 N/R N/R N/R
for integrated circuits [37] -14 DT & 52 HC subjects 99.66 N/R N/R N/R
-15 BBB & 52 HC subjects 99.31 N/R N/R N/R
Stability analysis of dynamic modes of 12 Beats:
ECG signals by DMD -35010 MI & 10140 HC 99.97+0.02  99.96+0.02  99.96:+0.02 100
-2591 CM & 10140 HC 99.50+0.10  99.50+0.36  99.50+0.33 99.60+0.10
-1091 HT & 10140 HC 99.61+0.18  99.60+0.10  99.30+0.18 99.60+0.20
-1203 DT & 10140 HC 99.85+0.07  99.90+0.08  99.90+0.05 99.90+0.08
-2456 BBB & 10140 HC 100 100 100 100
Frames:
-8727 MI & 2496 HC 100 100 100 100
-693 CM & 2496 HC 100 100 100 100
-287 HT & 2496 HC 99.80+0.15  99.80+0.15  99.4+0.16 99.70+0.13
-468 DT & 2496 HC 100 100 100 100
-672 BBB & 2496 HC 100 100 100 100

Note: #: number; &: and; Acc.: accuracy; PPV: positive predictive value; Sens.: sensitivity; N/R: not reported; WT: wavelet transform;
DWT: discrete wavelet transform; DCT: discrete cosine transform; EMD: empirical mode decomposition; DFT: discrete Fourier transform;
PCA: principal component analysis; CNN: convolution neural network, and RNN: recurrent neural network. It should be also noted that
confidence intervals obtained by these methods were not reported.

TABLE Il
PERFORMANCE COMPARISON OF THE PROPOSED METHOD WITH EXISTING APPROACHES USED THE PTB ECG DATABASE FOR MULTICLASS
ECG SIGNAL CLASSIFICATION

Method # Leads Number of ECG classes Et/co; 2;35'
Principal component multivariate 12 5 (140 HC, 144 M1, 135 CT, 99 DT, and 63 HT frames of 4.096 seconds) 90.34 N/R
multiscale sample entropy [35]

Dual tree complex wavelet 12 4 (352 HC, 352 M1, 352 BBB, and 420 HMD (or CT and HT) frames of  86.09 86.41
transform [38] 4.096 seconds

CNN and radial basis function 12 8 (total of 1056 frames of 20 seconds from 52 HC, 148 MI, 15 BBB, 18  94.35 N/R
neural networks [39] CT, 14 DT, 7 HT, 4 MC, and 6 VHD subjects)

CNN and bidirectional long short- 12 3 (1588 HC, 7390, M1, and 1353 non-MI (or BBB, CT, DT, HT, MC, and  99.25 99.25
term memory [40] VHD) frames of 12 consecutive beats

Stability analysis of dynamic 12 8 (2496 HC, 8727 MI, 672 BBB, 693 CM, 468 DT, 287 HT, 93 MC, 99.95 99.90
modes of ECG signals by DMD and 131 VHD frames of 4.096 seconds)

Note: #: number; Acc.: accuracy; Sens.: sensitivity; N/R: not reported; It is also worth noting that the precision and AUC values achieved by these studies were not reported.
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PERFORMANCE COMPARISON OF THE PROPOSED METHOD WITH THE EXISTING APPROACHES USED PTB ECG DATABASE FOR MULTICLASS

TABLE IlI

MLP

J Random Vote
Tree Bayes
AdaBoost Net

(c) Accuracy (%)

ECG SIGNAL CLASSIFICATION

AdaBoost

(d) AUC (%)

Random
Forest

Random
Tree

Author #Lead Number of ECGclasses Method ?Z; (SO?)S‘
Tripathy et 12 5(140 HC, 144MI, 135CT,99 DT,and 63 HT frames of  Principal component multivariate ~ 90.34 N/R
al. (2014) 4.096 seconds) multiscale sample entropy
Tripathy er 12 4 (352 HC,352MI,352BBB, and420 HMD (or CT and Dual tree complex wavelet 86.09 86.41
al. (2016) HT) frames of 4.096 seconds transform
Dengetal. 12 8 (1056 frames of 20 seconds from 52 HC, 148 ML, I15BBB, CNN and radial basis function 94.35 N/R

18 CT, 14 DT, 7 HT, 4 MC, and 6 VHD) neural networks
Dey etal. 12 3 (1588 HC, 7390, MI, and 1353 non-MI(or BBB,CT,DT,  CNN andbidirectional longshort-  99.25 99.25
HT, MC, and VHD) frames of 12 consecutive beats) term memory
Present 12 8 (2496 HC,8727M1,672BBB,693 CM, 468 DT, 287 DMD 99.95 99.90
study HT, 93 MC, and 131 VHD frames 0£4.096 seconds)

Note: #: number; Acc.: accuracy; PPV: positive predictive value; Sens.: sensitivity; N/R: not reported; It is also worth noting that PPV and AUC

The classification performance (accuracy, precision, recall, and AUC) for our developed features on multiclass (eight classes) ECG

value achieved by these studies were not reported.

the magnitudes and phases of different leads vary from each
other. This demonstrates that different leads can convey different
useful information for disease diagnosis, hence it is meaningful
to analyze these leads separately. (2) Furthermore, our results
ascertain that most leads of HCs in stable DMs (except lead II,
III, and aVF) exhibit larger magnitudes compared with those of
MI patients (see Fig. 6(a)). This demonstrates that the leads in
stable DMs of HCs are more active compared to those of MI
patients, which can reflect the normal and sufficient adaptability
of their cardiac systems.

(3) Similarly, as illustrated in Fig. 6(d), most leads of HCs in
unstable DMs (except lead II and aVF) exhibit higher oscillatory
phases compared to those of MI patients. This may be because
the cardiac systems of healthy individuals are capable of detect-
ing and responding quickly to any changes subjected to them. (4)
We also found that the average phases for some leads in stable
DMs, such as II, III, aVF, and V4, for the MI patient group
differed significantly from those in the HC group. However,
the average magnitudes of those leads were not significant (see
Fig. 6(a) and (c)). Similarly, the average phases for some leads in
unstable DMs, suchasI,aVR, aVF, V3, V4, V5, and V6, differed
significantly between the two groups. However, the average
magnitudes of those leads were not significant (see Fig. 6(b)
and (d)). This demonstrates that the phase and magnitude of
individual leads contain different information, thus they all need
to be considered when analyzing stable and unstable DMs.

In order to further investigate the effectiveness of our pro-
posed approach in differentiating two and eight groups, nine

classifiers were implemented, because each of them utilizes dis-
tinct techniques for data classification. Encouragingly, as shown
in Fig. 7, each of the classifiers was able to accurately identify
MI, CM, BBB, DT, and HT beats from those of HCs, with
respective highest accuracy values of 99.97%, 99.5%, 100%,
99.85%, and 99.61%. Also, 100% accuracy was obtained for
the detection of MI, CM, BBB, and DT frames (see Fig. 8).
Similarly, the highest accuracy values of 99.88% and 99.95%
were respectively achieved when classifying beats and frames
of multiple heart pathologies (MI, CM, BBB, DT, MC, VHD,
and HT) (see Fig. 9). Furthermore, we also summarized the
results from previous studies for the classification of two-class
and multiclass ECG signals, for comparison with our observed
results (see Tables I, II, and III). Interestingly, our proposed
approach outperformed all of the existing approaches; in other
words, this demonstrates the potential of our proposed approach
for ECG signal analysis, helping cardiologists to enhance the au-
tomated diagnosis of different cardiac pathologies. Additionally,
it should be noted that our method was compared with a previous
study which used univariate ECG signal analysis (single-lead
ECG) in terms of storage and complexity [31]. We used a
computer with Intel CORE 2.4 GHz (i5-4210U) processor and
4 GB RAM. The execution times used for feature extraction
and detection of MI (KNN classifier, training and testing using
10-fold CV as in [31]) were 14.14 seconds and 30.06 seconds,
respectively. The execution time of [31] was considerably less,
and their proposed method is good, but our proposed method is
still the best. Also, the performance of our proposed method was
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evaluated for detection of other four cardiac pathologies. The
classification of these pathologies achieved promising results.
However, the method of Sharma et al. has not yet been tested
for detection of other heart pathologies, we are not certain if
their method is also suitable for detecting other heart diseases,
or for multiclass ECG signal classification [31].

It should also be noted that in order to conveniently and
objectively compare our proposed approach with the existing
approaches, we repeated the strategies of most previous studies
which used the PTB dataset. These strategies involve preprocess-
ing and use of 12-lead ECG signals in the analysis. However, to
further demonstrate the improvement of our proposed approach,
we used MI as an example and included two supplementary
evaluations: (1) we evaluated our proposed method on 9-lead
ECG signals after removing some leads (augmented leads aVR,
aVL, and aVF) to reduce the effect of the data redundancy
in leads I, II, III, aVR, aVL, and aVF, which may affect our
conclusion. The observed results were consistent with those
obtained on 12-lead ECG signals. We have reported the results of
12-lead ECG signals for comparison; but in the future, we might
also use 9-lead ECG signals to reduce computation time. (2)
To assess our denoising performance, we evaluated the perfor-
mance of our proposed method on noisy ECG signals, obtaining
respective highest accuracy, precision, recall, and AUC values of
99.94%, 99.92%, 99.94%, and 99.93%. This demonstrates the
robustness of our proposed method in the case of noisy signals,
and can be useful in clinical data, which often suffer from noise
and artifacts. However, compared with noisy ECG signals, we
achieved the highest classification performance on preprocessed
ECG signals. This indicates good denoising performance on
ECG signals.

Several further points also need to be mentioned. (1) As
mentioned before, the Pan-Tompkins algorithm is commonly
used for R-peak detection [43]. Although it is not optimal, it
can achieve the promising accuracy of 99.32% and is currently
regarded as one of the best approaches for detection of R-peaks
[40]. Some R-peaks cannot be accurately detected by the algo-
rithm, but our proposed approach can still achieve the highest
performance for the classification of cardiac pathologies. This
demonstrates the robustness of our proposed method for cardiac
disease diagnosis. (2) Regarding fast Fourier transform (FFT),
the power spectrum of each frequency point contains magnitude
and phase information. Similarly, DMD can be regarded as a
new way to calculate the spectra of multivariate signals, but it
is not the same as FFT (which is used for univariate signals). In
this study, we calculated the phase, which has a totally different
physiological meaning from that of leads in raw ECG signals.
Specifically, we computed the phase of DMs (which can be
regarded as subsystems) of ECG signals. (3) The DMD al-
gorithm revealed the amplitude variation of two neighbor
points, then accurately uncovered the shape of each ECG wave,
revealing the relationship among ST-segment, P-wave, T-wave,
and QRS complex. Therefore, DMD can be considered as
another technique for ECG morphological analysis. (4) In the
PTB database, apart from MI patients, most normal, CM, BBB,
DT, HT, MCD, and VHD subjects have one ECG recording.
Thus, we randomly selected one ECG recording for each subject.
In order to compare our method with the MI detection methods

in [23] and [31], we followed their strategies, using 40182
MI and 10546 HC beats, achieving the highest accuracy, PPV,
sensitivity, and AUC values of 99.95%, 99.93%, 99.95%, and
99.94%, respectively. These observed results are consistent with
those for 35010 MI and 10140 HC beats.

Finally, the major contributions of our proposed approach can
be summarized as follows. (1) We are the first to use DMD to
evaluate how the stability of ECG modes (or subsystems) affects
the macrodynamic patterns of multilead ECG signals. No one
used this stability concept to analyze physiological signals. The
results show that this stability is an inherent phenomenon for all
mentioned types of cardiac pathologies. Therefore, our proposed
method can reveal new cardiac mechanisms, which cannot be
achieved by other existing methods and can effectively help in
disease diagnosis. Thus, it might be used in clinical studies. (2)
In addition, in contrast to other traditional data decomposition
methods, such as PCA, EMD, and WT, only DMD can de-
compose high-dimensional and dynamic data into subsystems,
namely DMs, with stability. Therefore, this study is the first
attempt to analyze ECG signals based on stable and unstable
DMs of multi-lead ECG signals, which may not only help to
reveal new cardiac dynamic mechanisms, but also contribute
to research on heart-related diseases. (3) DMD was initially
implemented in the analysis of fluid flows and has recently been
used in analysis of high-dimensional and dynamic physiological
signals and public health data, such as epidemiological data,
brain-related signals, and others [15]-[19]. However, DMD has
not yet been used to analyze multi-lead ECG signals, which are
also dynamic and high-dimensional.

V. CONCLUSION

In this study, we proposed a novel perspective for the analysis
of ECG signals, which relies on the stability analysis of ECG
subsystems by decomposing ECG signals into stable and un-
stable modes using DMD. Furthermore, this study also demon-
strates that the stability analysis of ECG modes (or subsystems)
canreveal the underlying spatiotemporal dynamics of the cardiac
system, and reflects the heart condition status of an individual.
Finally, our proposed method exhibits great potential as well as
high accuracy for diagnosis of heart disease, and might be widely
applied in clinical studies as well as various engineering-related
applications. In future, our proposed approach should be ap-
plied to other physiological signals, such as brain-related and
electromyography signals, to evaluate the stability of their DMs
(or subsystems). This can help clinicians to comprehensively
understand their underlying mechanisms and diagnose their
related diseases.
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