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Abstract—The prediction of schizophrenia-related 
psychopathologic deficits is exceedingly important in the fields of 
psychiatry and clinical practice. However, objective association of 
the brain structure alterations to the illness clinical symptoms is 
challenging. Although, schizophrenia has been characterized as a 
brain dysconnectivity syndrome, evidence accounting for 
neuroanatomical network alterations remain scarce. Moreover, 
the absence of generalized connectome biomarkers for the 
assessment of illness progression further perplexes the prediction 
of long-term symptom severity. In this paper, a combination of 
individualized prediction models with quantitative graph 
theoretical analysis was adopted, providing a comprehensive 
appreciation of the extent to which the brain network properties 
are affected over time in schizophrenia. Specifically, Connectome-
based Prediction Models were employed on Structural 
Connectivity (SC) features, efficiently capturing individual 
network-related differences, while identifying the anatomical 
connectivity disturbances contributing to the prediction of 
psychopathological deficits. Our results demonstrated distinctions 
among widespread cortical circuits responsible for different 
domains of symptoms, indicating the complex neural mechanisms 
underlying schizophrenia.
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Furthermore, the generated models were able to significantly
predict changes of symptoms using SC features at follow-up,
while the preserved SC features suggested an association
with improved positive and overall symptoms. Moreover,
cross-sectional significant deficits were observed in network
efficiency and a progressive aberration of global integration
in patients compared to healthy controls, representing a
group-consensus pathological map, while supporting the
dysconnectivity hypothesis.

Index Terms—Schizophrenia, structural connectivity, longitu-
dinal, connectome-based prediction model.

I. INTRODUCTION

SCHIZOPHRENIA is a complex neuropsychiatric disorder
with numerous symptoms and clinical manifestations [1],

[2]. Since various causes have been linked to schizophre-
nia, no objective diagnostic criteria can be directly applied 
for severity/prognosis assessment, while the precise neural 
substrates underpinning its heterogeneous clinical aspects are 
yet to be achieved. To date, psychiatric research employs 
the Positive and Negative Syndrome Scale (PANSS) as the 
“gold standard” to estimate diagnostic and treatment efficacy 
as well as the symptom severity of schizophrenic patients [3]. 
As such, PANSS presents a stable factor structure with inter-
rater reliability and a valid taxonomy of positive, negative and 
general psychopathology symptoms.

Establishing the association between the differences in 
clinical symptoms/cognitive states and the alterations in brain 
structure/function is a convergent research interest of modern 
psychiatry studies [4]. In addition, unlike prior assumptions 
that consider schizophrenia to be associated with specific brain 
region abnormality, recent evidence support that interaction 
deficits in the neural circuitry can efficiently model the un-
derlying effects on the human brain [5], [6], [7], coinciding 
with the recent advent of human connectome studies [8]. On 
this premise, distortions in the White Matter (WM) could 
account for information transmission deficiency between the 
different brain areas [9]. However, only a few studies have 
examined the longitudinal effects on WM microstructure in 
schizophrenic patients [10], [11], with a particular focus on the 
assessment of pharmacological treatment response in the first 
episode patients [12]. In this regard, no study has investigated 
the feasibility of utilizing WM to predict clinical measures of 
illness progression, therefore providing no conclusive evi-
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dence of long-term disorder-related WM alterations in chronic 
schizophrenia.

Another important limitation is that although previous 
studies have demonstrated that structural connectivity (SC) 
alterations are correlated with clinical symptoms [5], [7] 
and that resting-state functional connectivity predicts treat-
ment responses [13] and clinical symptoms [4], no research 
works, have incorporated SC for psychopathological deficits 
prediction on the individual level. In this regard, the most 
frequently employed approaches assume between-group com-
parisons with a healthy cohort by correlating neuroimaging 
measures with clinical measures [14]. While these studies are 
valuable in terms of suggesting relevant disease indicators, 
case-control designs are constrained by the uncertainty of 
whether the difference in sample means is relevant to all 
patients. This is a major complication in generalizing the 
resulting biomarkers to an out-of-sample individual prevent-
ing efficient individualized predictions of psychopathological 
deficits in clinical practice [15]. In response, current interest 
is shifting to individual-level variability/prediction of various 
brain diseases [16], [17], [18], [19], [20] and cognitive states 
[21], [22], [23] using neuroimaging-based machine learning 
methods. For instance, Cao et al., 2020 [13] assessed treat-
ment response to antipsychotics of first-episode drug-naı̈ve 
schizophrenia individuals by implementing a linear support 
vector classifier and functional connectivity features, reporting 
high prediction accuracy at the individual level. In addition, 
Meng et al., 2017 [24] using a multimodal feature fusion 
of MRI data introduced a regression analysis framework to 
estimate individualized clinical measures of patients with 
schizophrenia and achieved high prediction performance. More 
recently, an fMRI schizophrenia study incorporated multivari-
able regression in functional connectivity networks to predict 
the PANSS subscales, revealing predictive network-symptom 
associations [25]. From this standpoint, it is evident that 
individualized machine learning designs can not only promote 
the comprehension of the pathophysiological alterations char-
acterizing schizophrenia, but also utilize idiosyncratic pattern 
variations to make predictions that could benefit the treatment 
and prognosis of affected individuals [26]. Taking all the above 
into consideration, this paper aspires to:

• explore the feasibility of inferring psychopathological
deficits, as well as their progression using objective
neuroimaging biomarkers at the individual level.

• investigate the progressive topological disruption of struc-
tural brain networks at the group level.

To that end, we developed a data-driven analysis frame-
work incorporating an individualized-prediction model and
graph-theoretical analysis approach based on structural brain
networks derived from a longitudinal cohort with chronic
schizophrenia. Unlike the majority of relative studies fo-
cusing on individual classification [27], this work proposes
a generalized framework that explicitly predicts values of
psychopathological deficits to meet the need for efficient
and objective single subject prediction of brain disorders to
eventually inform clinical decision-making. Specifically, we
applied a strict Leave-One-Out Cross Validation (LOOCV) in

a Connectome-based Prediction Models (CPMs) implementa-
tion to assess independent testing subjects’ psychopathologic
deficits prediction. Our results suggest that models based upon
structural brain networks have the potential to be effective and
generalizable predictors of psychopathological deficits, while
also demonstrating SC features to be good prognostic biomark-
ers for establishing a reliable prediction model in longitudinal
schizophrenia. Moreover, the topological analysis revealed a
decreased network integration supporting the dysconnectivity
hypothesis. To the best of our knowledge, this is the first study
to comprehensively assess schizophrenia-related longitudinal
changes of WM that putatively underlie the heterogeneous
psychopathological deficits seen across individuals to produce
group-consensus pathological maps.

II. MATERIALS AND METHODS

A. Participants

The data collected in this work included participants from a 
longitudinal cohort study of schizophrenia [28], acquired in the 
Institute of Mental Health (IMH) – the sole state psychiatric 
hospital in Singapore. As such, seventy-six (76) patients with 
schizophrenia and 61 matched healthy participants were 
recruited at baseline. Among them, 38 patients and 39 controls 
participated in the follow-up study with a mean interval of 
about 5 years (individual scan intervals are presented in the 
Supplementary Materials, Fig. S1). No statistically signifi-
cant difference of the interval was revealed between both 
groups. Patients were screened at baseline for alcohol or 
other substance abuse, as well as history of any significant 
neurological diseases. Healthy controls were recruited from the 
local community and the eligibility criteria also included no 
mental illness of any kind to first-degree relatives. The protocol 
of this study was approved by the Institutional Review Board 
of the IMH and was carried out according to the Declaration 
of Helsinki. Written informed consent was obtained from all 
participants.

B. Psychopathology Assessment

For all participants, presence or absence of psychopathol-
ogy was established by a board-certified psychiatrist using 
information including the clinical history and medical records, 
examination of mental status, interviews with significant oth-
ers, as well as the administration of the Structural Clinical 
Interview for DSM-IV disorders-Patients Version (SCID-P). 
The psychopathology and symptom severity was assessed 
using the Positive and Negative Syndrome Scale (PANSS)[3]. 
Briefly, PANSS is a widely-used 30-item clinician-rated 
instrument developed to provide comprehensive assessment of 
typological, dimensional and severity of schizophrenia. Here, 
the original three domains of PANSS was utilized to measure 
the symptomatology, namely positive, negative, and general 
psychopathology [29]. The positive syndrome consists of 
productive features superadded to the mental status (i.e., 
delusions, hallucinations, and disorganized thinking), the 
negative syndrome represents absence of normal functions (i.e., 
deficits in the cognitive, affective, and social levels), and the 
general syndrome contains items that assess the general
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severity of psychopathology [3]. An overall score (i.e., overall 
= positive + negative + general) was also estimated to evaluate 
the symptom’s overall severity. The PANSS scores of patients 
at both baseline and follow-up are presented in Supplementary 
Materials (Fig. S2).

C. MRI Acquisition

MRI scans were acquired on a 3-T Philips scanner (Achieva,
Philip Medical System, The Netherlands) with an eight-
element SENSE receiver head coil at the National Neuro-
science Institute, Singapore. Prior scanning, subjects were
instructed to keep still and remain as motionless as possible.
Foam pads from the scanner manufacturer were applied to
further minimize head motion. The following scanning settings
were maintained for both baseline and follow-up data acquisi-
tion. Diffusion MRI images were recorded using a single-shot
echo-planar sequence with the following parameters: repetition
time (TR) / echo time (TE) = 3275 / 56 ms; flip angle = 90°;
b-factor = 800 s/mm2; 1 baseline image with b0 = 0 s/mm2)
from 15 separate nonparallel directions; slice number = 42;
thickness = 3 mm with no-gap; field of view (FOV) = 230 ×
230 mm2; acquisition matrix = 112 × 109, reconstructed to
256 × 256. For each participant, the diffusion sequences were
scanned 3 times to improve the signal-to-noise ratio. A high-
resolution T1-weighted magnetization prepared rapid gradient
recalled echo sequence was used for structural MRI images
acquisitions using the following parameters: TR / TE = 7200
/ 3.3 ms; flip angle = 8°; slice number 180; thickness = 0.9
mm; FOV = 230 × 230 mm2, in-plane resolution = 0.9 × 0.9
mm2. The same scanner was used for the baseline (software
version R2.6) and follow-up scans (software version R3.2).

D. Data Preprocessing

DTI data preprocessing was performed using the PANDA 
toolbox [30] and a previously-validated pipeline for diffusion 
MRI analysis [31], [32], [33]. In detail, the distortion of 
the diffusion weighted images were firstly corrected for head 
motion artifacts and eddy currents distortions using affine 
alignment to the b0 image [34]. Then, a tensor was fitted to the 
diffusion profile within each voxel where the Fractional 
Anisotropy (FA) was estimated. Whole-brain tractography was 
subsequently performed using a deterministic streamline track-
ing algorithm (Fiber Assignment by Continuous Tracking, 
FACT) [35]. The tracking procedure started from the deep WM 
regions and terminated if it reached a voxel with a FA of < 0.15 
or a turning angle higher than 45°[33]. To address the head 
motion artifacts on the brain images [36], we performed 
additional analysis, statistically comparing the head motion 
between both groups at baseline and followup. Notable no 
significant between-group differences were found at both time 
points (p > 0.05).

E. Structural Connectivity Estimation

For each participant, a structural brain network was gen-
erated by combining the individual parcellation map with the
WM tractography (Fig. 1a). Specifically, a recently-introduced

connectivity-based parcellation scheme suitable for connec-
tivity and/or brain network analyses [37], [38], [39] was
employed to parcellate the entire gray matter into 246 regions-
of-interest (ROIs, 123 in each hemisphere) and define the
network nodes. The individual-based parcellation template was
obtained through weaving the brainnetome atlas from the
standard MNI space to subject DTI native space. From the
reconstructed fiber tracts, Structural Connectivity (SC) was
defined as the streamline density to account for the different
sizes of the ROIs [40]. For any pair of ROIs (i.e., node i
and j), the SC weight wij was estimated as the ratio between
the number of streamlines (≥ 3 fiber tracks) and the sum of
volumes of node i and j. As such, each individual SC network
reflected a symmetric 246 × 246 matrix.

F. Individualized Prediction of Psychopathological Deficits

The previously-validated Connectome-based Prediction 
Model (CPM) was implemented for the prediction of psy-
chopathological deficits [26]. To address the prognosis on 
an individual level (i.e., verify if psychopathological deficits 
of a previously unseen patient could be reliably predicted 
from the SC profile), a strict LOOCV approach was utilized. 
In this manner, data from one subject were excluded to 
generate the CPM, while testing was performed in the out-
of-sample patient data. The LOOCV framework employed 
was performed separately on all the four PANSS scores 
(i.e., positive, negative, general, and overall), with each CPM 
iteration including a masking (feature selection), a subject-
based feature summarization, a model fitting and a prediction 
step (Fig.1b, 1c). In detail, data (SC matrices and PANSS 
scores) from one patient were appointed as the out-of-sample 
(test set) and feature selection was performed on the remain-ing 
n-1 patients (training set). Prior to the feature selection and 
mask estimation, testing for normality was applied on both SC 
matrices and PANSS scores, revealing a non-normal PANSS 
scores distribution. As such, the feature selection procedure 
utilized a non-parametric Kendall Tau correlation, thereby 
associating each edge in the connectivity matrices to the 
psychopathological scores and identifying the most important 
edges via a threshold, thus generating a significance association 
mask. This mask was subsequently applied to the individual 
connectivity matrix of each patient, with the obtained 
prominent edges being summarized into a single value for each 
subject in the training set. A predictive model was then built by 
linear fitting the single-subject summary values of SC features 
and the corresponding psychopathology scores assuming a 
linear relationship between them. To further validate the 
reliability of the model, additional analyses were performed at a 
various statistical thresholds (p < 0.05, p < 0.01, p < 0.005) 
ensuring that the results obtained were not specific to the 
chosen threshold. According to [26], a threshold of p < 0.01 
that is not too conservative (excluding useful SC features) nor 
too loose (including spurious SC features) were adopted here. 
Validation analyses using p < 0.05 and p < 0.005 are 
presented in Supplementary Materials (Table S4). 
Additionally, potential confounding factors (including head 
motion, age, gender, and handedness) were regressed out
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Fig. 1. A schematic of the framework adopted. In (a) the SC network was constructed by estimating the fractional anisotropy and assigning the fibers by
obtaining the whole-brain tractography, while node definition was implemented using the Brainnetome atlas at the individual-level. Edge between any pair of
nodes was defined as the streamline density. In (b) the LOOCV CPM approach was implemented for all the four PANSS scores. Each edge was correlated
to the psychopathological scores and a significant association mask was then created and applied to each patient, while summarizing the important features
into a single value. A predictive linear model was then built and applied on the Testing set to estimate the predicted psychopathological score. In (c) The
prediction performance was assessed as well as the statistical significance (via permutation tests). In (d) The most significant SC features in terms of their
contribution to the schizophrenia modeling were also determined.

prior to the model construction. It is noteworthy mentioning 
that the significant associations could be both positive and 
negative, hence, separate prediction models for each dimension 
of symptom were estimated employing only positive, negative, 
general and overall features. The obtained predictive model 
was then applied on the SC summary value of the out-of-
sample testing set to estimate the predicted PANSS score. The 
abovementioned procedure was replicated n-times until each 
patient was selected as testing set. A schematic overview of 
the LOOCV CPM prediction framework is presented in Fig.1

After completing all iterations, prediction performance was 
assessed via the Pearson correlation coefficient (r) and the 
mean absolute error (MAE) of the actual and predicted 
PANSS scores [21], [37]. Specifically, the aforementioned 
prediction procedure was applied 1,000 times, permuting the 
psychopathologic scores corresponding to the SC across the 
training samples without replacement. Statistical significance 
was determined as the ratio of the obtained results being 
better than those expected by chance [41]. In this regard, 
the p-value for r (pr) was determined as the number of 
iterations that showed a higher value of correlation coeffi-
cients than the actual r. By contrast, the p-value (pMAE) 
for the MAE was determined as the number of iterations 
that showed a lower MAE than the actual value. Given the 
fact that separate prediction models were constructed among 
different psychopathologic scores at baseline and follow-up, 
the permutation test was conducted separately.

The primary focus of the current work is to assess the

utility of SC as a biomarker to predict psychopathological
deficits (as indicated by the PANSS scores) of patients with
schizophrenia and additionally investigate the longitudinal
effects of schizophrenia on the corresponding SC features. To
that end, two separate prediction paradigms were employed in
the current work. At baseline, the psychopathological scores
were set as input for generating the CPM model to fulfill
the first objective. Next, the changes of psychopathological
scores (∆PANSS = PANSSFollow−up – PANSSBase) were
chosen as input for the CPM model estimation at follow-up,
in order to study the longitudinal effects of schizophrenia on
the corresponding SC features and thus predict the changes of
psychopathological deficits.

To better interpret the complex neural mechanisms of
schizophrenia, we identified the most prominent SC features
with respect to their contribution to the prediction modeling.
Heuristically, separate prediction models for each dimension
of symptoms would lead to dissimilar set of contributing
features (Fig. 1d). As such, the designation of the important
features was performed separately for each prediction model
(i.e., positive, negative, general and overall). Since the set of
contributing SC features would be slightly different in each
LOOCV iteration, a threshold for group consistency (i.e., the
ratio between the appearance of the feature and the total
number of the iteration) was defined to obtain the most salient
features, determined at 90%.
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TABLE I
PREDICTION PERFORMANCE AT BASELINE.

PANSSpositive PANSSnegative PANSSoverall

Negative Features Both Features Positive Features Both Features Negative Features Both Features
r (pr) 0.327 (0.002) 0.349 (<0.001) 0.392 (<0.001) 0.353 (0.001) 0.343 (0.002) 0.280 (0.014)
MAE (pMAE ) 2.687 (0.004) 2.705 (<0.001) 1.992 (0.002) 2.174 (0.026) 5.535 (<0.001) 5.858 (0.007)

Note: Statistical significance was estimated using 1,000 permutation tests for the obtained prediction performance (r, MAE)

G. Graph Theoretical Analysis

In order to assess the effects of schizophrenia on SC at 
a group level, we investigated the alterations in SC in terms 
of network topology through a graph theoretical analysis ap-
proach on the obtained structural brain network. In this regard, 
a unified efficiency method was employed on both global and 
local levels to estimate the information transfer efficiency [42]. 
Specifically, the global efficiency (Eglob) was adopted as a 
measure of parallel information effectiveness transfer in the 
network, while the local efficiency (Eloc), as a measure of 
information exchange at the clustering level [43] (the detailed 
interpretations and mathematical definitions of global and local 
efficiency are provided in the Supplementary Materials). To 
quantitatively evaluate network measures significant effects, a 
general linear model (GLM) comprising of factor #1 group 
(patients vs. controls), factor #2 session (baseline vs. follow-
up) and their interaction (group-by-session) was applied on 
all the data, with gender, handedness and baseline age set as 
covariates. In order to reduce the inter-subject variance, we 
performed an additional within-subject design GLM with the 
same factors of group and session on the subjects participating 
in both scans (baseline and follow-up). If any significant main 
effect was found (pGLM ¡ 0.05), further post-hoc tests were 
performed. A value of pGLM < 0.05 was considered signifi-
cant. In addition, a false discovery rate (FDR) threshold of q = 
0.05 was utilized for the correction of multiple comparisons. 
All statistical analyses of network measures were performed 
using SPSS 23 software.
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Fig. 2. Prediction performance of the CMP models for the significantly 
correlated predicted and actual PANSS scores at baseline.

III. RESULTS

A. Prediction Performance

Based on the CPM framework implemented, we found
that the predicted positive (PANSSpositive), negative

(PANSSnegative), and overall (PANSSoverall) scores were
highly correlated with the actual scores at baseline, yet with
distinct SC feature patterns (Table I, Fig. 2). Prediction
model for PANSSgeneral, however, failed to obtain significant
findings. Specifically, the predicted PANSSpositive and
PANSSoverall scores were highly correlated with the actual
scores when using negative SC features (r = 0.327, pr
= 0.002 and 0.343, pr < 0.001 respectively) or both
positive and negative SC features (r = 0.349, pr = 0.002
and 0.280, pr = 0. 014 respectively). The corresponding
MAEs for PANSSpositive were 2.687 and 2.705, which were
significantly lower than those expected by chance (pMAE <
0.005), whereas PANSSoverall MAEs were 5.535 and 5.858
with similar significance level (pMAE < 0.01). On the
other hand, significant associations between the predicted
and actual PANSSnegative scores were revealed when using
positive (r = 0.392, pr < 0.001) or both positive and negative
SC features (r = 0.353, pr = 0.001). Similar to positive and
overall predicted scores, error estimations for PANSSnegative

were also significantly lower than those expected by chance
(pMAE < 0.05) with MAEs being 1.992 and 2.174.

At follow-up, the predicted ∆PANSSpositive and
∆PANSSoverall were found to be highly correlated with
the actual changes when using both positive and negative
SC features (r = 0.412, pr < 0.001 and 0.329, pr = 0.010
respectively) (Table II). The additional analyses of the
prediction models also demonstrated statistically significant
MAEs for ∆PANSSpositive (2.892, pMAE < 0.01) and
∆PANSSoverall (7.593, pMAE = 0.038). In contrast, the
prediction model for ∆PANSSnegative failed to pass the
significance threshold. Additional information regarding the
statistical tests of the prediction performance at baseline and
follow-up are presented in Supplementary Materials (Fig. S3
and Fig. S4).

TABLE II
PREDICTION PERFORMANCE AT FOLLOW-UP.

∆PANSSpositive ∆PANSSoverall

Both Features Both Features
r (pr) 0.412 (<0.001) 0.329 (0.010)
MAE (pMAE ) 2.892 (<0.001) 7.593 (0.038)

B. Structural Connectivity Features

At baseline (Fig. 3), 45 SC features were found to be
the most important for predicting the PANSSpositive, among
which 34 features exhibited significantly negative association
with PANSSpositive scores (i.e., the more severe the symptoms
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Fig. 3. Circle plot visualization of the most prominent SC features and their distributions in the baseline prediction model for (a) PANSSpositive, (b)
PANSSnegative, and (c) PANSSoverall. Positive (red) and negative (blue) features are drawn between the nodes. The nodes are color coded according to
their cortical lobes. The full names of the abbreviated regions of interest could be found in Table S3.

the lower the feature weight). The remaining positive associa-
tions features (11 out of 45), presented a frontal lobe connec-
tivity majority. Overall topographic analysis demonstrated a
broad distribution within temporal, parietal, and subcortical
areas as well as between frontal and limbic brain regions.
For the PANSSoverall prediction model, 50 SC features were
designated as the most prominent. In detail, the identified
SC features were mainly negative associated features (39 out
of 50) with a widespread involvement of brain regions that
resided within temporal, parietal and subcortical areas, as well
as between frontal and parietal/subcortical regions. Positive
SC features, on the other hand, showed a right-hemispheric
predominance, connecting temporal and occipital regions. In-
terestingly, among the 48 most contributive SC features for
PANSSnegative prediction model, the majority of them (36
out of 48) exhibited significantly positive association with the
symptom scores, with the topological distribution involving
brain regions within and between the frontal, temporal, and
subcortical areas.

Similar to baseline, the prediction for PANSSpositive alter-
ations at follow-up (Fig. 4) displayed a majority of negative SC
features, with 23 out of the total of 36 SC features exhibiting
significant negative associations. Relative to the designated
brain areas, the negative features presented a right-hemispheric
majority, mainly located in the temporal and subcortical re-
gions as well as between occipital and subcortical regions.
In contrast, the positive SC features for ∆PANSSpositive

prediction model demonstrated a left-hemispheric tendency
and mainly resided in frontal and temporal lobes. For the
∆PANSSoverall prediction model at follow-up, we found 33
evenly distributed SC features contributing to the model, with
15 of them being negative and 18 positive features. Spatial
distribution analysis of the features indicated the negative

features to be mainly located in the limbic region, as well
as between subcortical and occipital lobes. On the contrary,
left-hemisphere was mostly involved regarding positive SC
features, primarily including frontal, temporal parietal and
subcortical regions, in addition to between temporal and
insular lobes, between frontal and occipital lobes, and be-
tween frontal and subcortical areas. The spatial distribution
of the most prominent SC features for baseline and follow-
up psychopathological deficits prediction are presented in
Supplementary Materials Fig. S5 and Fig. S6.

C. Network Reorganization

The additional analyses of the network metrics presented 
significant main group (SCZ < NC) effect in both Eglob (F1,207 
= 83.106, pGLM < 0.001∗; ∗ indicates survive FDR threshold at 
q < 0.05) and Eloc (F1,207 = 12.205, pGLM = 0.001∗), whereas 
a significant effect of session was only revealed in Eloc (F1,207 
= 4.610, pGLM = 0.033), suggesting an intrinsic deficit of 
network efficiency in patients with schizophrenia (Table III). 
Interestingly, significant group-by-session interaction effect 
was revealed in Eglob (F1,207 = 6.345, pGLM = 0.013∗). Post-
hoc analysis shows that this sig-nificant interaction resulted 
from different development trends in patient and control 
groups, i.e., patients with schizophrenia exhibited a significant 
longitudinal reduction of Eglob (t112 = 2.727, p = 0.007) in 
comparison to a preserved Eglob in controls (t98 = -0.447, p = 
0.656).

In order to reduce the inter-subject variance, we further 
applied an additional within-subject design GLM. Similar to 
our main findings, significant main group (SCZ < NC) effect 
was observed in Eglob (F1,147 = 88.147, pGLM < 0.001∗) and 
Eloc (F1,147 = 17.427, pGLM < 0.001∗), whereas significant 
main session (Baseline > Follow-up) effect was revealed in
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TABLE III
COMPARISON OF LONGITUDINAL BRAIN NETWORK TOPOLOGICAL CHANGES BETWEEN BOTH GROUPS.

Metrics
GLM model on all data Within-subject GLM
Group effect Session effect Interaction Group effect Session effect Interaction
F1,207 (pGLM ) F1,207 (pGLM ) F1,207 (pGLM ) F1,147 (pGLM ) F1,147 (pGLM ) F1,147 (pGLM )

Eglob 83.106 (<0.001) ↑ 2.299 (0.131) 6.345 (0.013) 88.147 (<0.001) ↑ 2.831 (0.095) 4.176 (0.043)
Eloc 12.205 (0.001) ↑ 4.610(0.033) / 0.109 (0.742) 17.427 (<0.001) ↑ 5.340 (0.022) / 0.176 (0.675)

Note:Significant effects (pGLM < 0.05) were indicated in bold. ↑ indicates NC > SCZ; / indicates follow-up < baseline.
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Fig. 4. Circle plot visualization of the most prominent SC features
in the follow-up prediction model for (a) ∆PANSSpositive and (b)
∆PANSSoverall. Positive (red) and negative (blue) features are drawn be-
tween the nodes. The nodes are color coded according to their cortical lobes.

Eloc (F1,147 = 5.340, pGLM = 0.022∗). Again, a significant
group-by-session interaction was revealed in Eglob (F1,147 =
4.176, pGLM = 0.043) (Fig. 5).

IV. DISCUSSION

Using a longitudinal cohort of chronic schizophrenic pa-
tients, we successfully built a SC-based regression model that
efficiently captures the individual differences in psychopatho-
logic deficits as well as their progression. Moreover, the SC
analysis allowed for a direct examination of the architecture
of the constructed network, quantitatively assessing the associ-
ated topological properties and effects of schizophrenia. To the
best of our knowledge, this is the first time that individualized
prediction modeling of psychopathologic deficits has been
applied to investigate the progressive schizophrenia anatomical
connectome alterations. The obtained results provide new
evidence to support the dysconnectivity hypothesis and high-
light the potential of structural brain networks as a holistic
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Fig. 5. Box plots of (a) Global efficiency (Eglob) and (b) Local efficiency
(Eloc), with the whiskers presenting interquartile range and the line within
each box marking the median value of the distribution. Base: all subjects at
baseline; Base F: subjects at baseline who finished follow-up scan; Follow:
subjects at follow-up. ∗ p < 0.05; ∗∗ p < 0.01; ∗ ∗ ∗ p < 0.001.

neural index in unraveling the pathophysiologic mechanisms
of schizophrenia.

A. Psychopathologic Deficits Modeling

Aberrations of WM characteristics are increasingly impli-
cated in schizophrenia, and may be the neuropsychiatric basis
for symptom severity [44], [45]. With regard to the CPM
prediction performance, the correlation coefficient between the
actual and the prediction scores both in baseline and follow-
up (mean correlation value ≈ 0.35) are analogous to the
majority of relative regression studies [25], [46], [47]. This
fact, in conjunction with the very low p-values derived from
the permutation tests, suggest that the adopted models were
able to detect affiliations between the PANSS scores and the
selected SC edges effectively. In line with previous studies,
we found that positive, negative and overall symptoms were
related to SC features with distinct patterns. Positive symptoms
in schizophrenia are characterized by misperception of internal
stimuli [3], whereas negative symptoms often represent loss of
normal function [48], both of which have long been recognized
to be associated with deficits in multiple types of WM tracts
[49] and functional connectivity [50]. In this regard, the
observations of different SC features among the prediction
models, particularly the contrast of dominant SC feature
patterns between positive and negative symptoms may indicate
distinct pathophysiological mechanisms in schizophrenia [4].
We speculate that the dominant negative SC features in pre-
dicting positive symptoms (i.e., the higher positive symptoms,
the lower SC weights) suggest a relaxation of normal con-
straints imposed by anatomical interactions on brain function,
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while dominant positive SC features in negative symptoms
prediction model (i.e., the higher negative symptoms, the
higher SC weight) may be indicatory of restricted anatomical
interactions that disrupt dynamic brain function [51], [32].
Interestingly, we found an increased proportion of positive SC
features in the prediction model for the longitudinal changes of
psychopathological deficits. Given the fact that both positive
and overall symptoms showed significant improvements in the
follow-up (Fig. S2 in Supplementary Materials), the observed
trend further implicates the positive SC features suggesting
that the more reduced symptom severity the higher SC features
at follow-up. Moreover, considering that the majority of the
reduced SC features were predictive for both positive and
overall symptom severity at baseline, the preserved SC features
could indicate an association with improved psychopatholog-
ical deficits.

Regarding the regional anatomical analysis of the promi-
nent SC features, the widespread distribution across various
systems is hardly surprising due to the fact that schizophrenia
is a complex neuropsychiatric disorder with extensive clinical
manifestations in multiple domains [1]. For instance, Meng
et al., 2017 [24] recently reported a prediction model based
upon multimodal neuroimaging data and found brain areas
likely responsible for PANSS symptoms of schizophrenia that
included cingulate, subcortical, frontal and parietal areas that
largely overlap with our findings. It is noteworthy that the
majority of prior studies that report widespread aberrations
of WM have utilized a classification/comparison scheme that
appears to emphasize group differences between patients and
controls [52]. The individualized prediction scheme used in the
current work amplifies individual differences in symptomatol-
ogy showing consistent findings with previous studies[24], [4].

B. Network Topology

Conceptually, network efficiency is a measure of infor-
mation transmission [42]. The significantly reduced network
efficiency in patients (at both global and local levels) denotes
a disrupted communication between segregated parts of the
brain. This is consistent with previous observations from
cross-sectional structural network studies [5], [44], [7]. In
fact, a meta-analysis of DTI studies in schizophrenia [53]
investigated a total of 407 patients and reported 2 significantly
reduced WM clusters: the cerebello-thalamo-cortical circuit
and a temporal network interconnecting the frontal lobe,
insular, hippocampus-amygdala, and temporal and occipital
lobes, indicating macrocircuit WM deficits in schizophrenia.
Consequently, the brain networks of patients developed toward
a less integrated architecture with preserved local efficient
architecture at follow-up. More recently, a study investigat-
ing the regional distribution of WM abnormalities in 1,963
schizophrenia patients from 29 independent international re-
search works identified widespread (i.e., 20 out of 25 major
WM fasciculi) significant reductions in WM [44]. Notably, the
network local efficiency does not show significant difference
in the follow-up. This fact, taken together with the longitudinal
prediction models findings, infers that the preserved SC fea-
tures might lead to unvarying efficiency in the local level over

time. By contrast, the accelerated dysconnectivity at the global
level is also consistent with our prior observations from a small
longitudinal cohort [31]. Although the extent of relevant works
is extremely limited, hindering the acquisition of conclusive
evidence, our results were in line with studies of longitudinal
volumetric [54], [55] and WM [56] deficits in schizophrenia.
In this regard, Olabi et al., 2011 [55] showed progressive
brain volume reduction in a meta-analysis investigating 27
studies with a total of 928 patients, with other relevant works
reported similar longitudinal decrements in volume in multiple
neocortical regions [11], [54]. Furthermore, using a cross-
sectional chronic schizophrenia cohort with comparable age
range, Cropley et al., 2017 [57] investigated the influence of
age on brain alterations and reported gray and WM signifi-
cant deterioration at a faster rate with age. On this premise
the progressive degradation of brain structure with age in
schizophrenia has been widely recognized [58]. Contemporary
theories suggest that the complex clinical presentations of
schizophrenia are related to aberrant connectivity between
distinct brain regions – the dysconnectivity hypothesis [6],
which emphasize the degradation of the brain’s integrative pro-
cesses in the pathophysiology of schizophrenia. In this context,
our findings of a longitudinal trend toward decreased global
integration adds to earlier works and provides new evidence
supporting the notion of schizophrenia as a disconnection
syndrome [59].

C. Implications and Future Considerations

Some issues should be considered when interpreting our 
findings. First and foremost, to obtain a stable individualized 
prediction model, a large longitudinal cohort was used that 
might potentially introduce some confounding factors such 
as different medication dosages amongst patients. Of note is 
that previous neuroimaging studies have reported deviations in 
localized brain regions and connections due to pharmacologi-
cal treatment, with mixed findings regarding whether antipsy-
chotics have neuroprotective or neurodegenerative effects [60],
[61]. It is therefore not possible to draw conclusions pertaining 
to the influence of medication on brain anatomical aberrations 
[10]. In fact, Rubinov et al., 2009 [62] suggested that medi-
cation is unlikely to be a confounding factor and may instead 
exert a normalizing influence on the brain connectome. On 
this premise, we performed additional analysis to estimate the 
associations between the medication dosage and psychopatho-
logical deficits and found no significant relationships (Table 
S2 in Supplementary Materials). The obtained observations 
suggest a reflection of the intrinsic disease process instead of 
an effect of direct pharmacological treatment. Nevertheless, 
caution is needed when considering the potential confounding 
factor of longer periods of treatment and different doses of 
antipsychotics or epiphenomena related to the illness.

Furthermore, in this study the SC was reconstructed us-
ing a computationally inexpensive deterministic tractography 
method that is known to have limited capacity in handling 
complex fiber architectures [35]. This may in turn result 
in an under-representation of the SC weights with reduced 
connectome sensitivity [63]. We assessed the credibility of our
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tracking results through checking the well-known WM fiber 
bundles (data not shown) and found that the reconstructed fiber 
bundles correspond accurately to the human WM anatomy from 
previous studies [64], [65]. In contrast, probabilistic 
tractography might be superior in addressing the fiber crossing 
issues, but yields dense connectomes with reduced connectome 
specificity. In fact, a relevant study showed that connectome 
specificity is at least twice as important as connectome sen-
sitivity with respect to the analysis of brain connectomes [66]. 
Further work with cautious application of advanced 
probabilistic fiber tracking methods and crossing-fiber models 
to high-quality data could therefore provide more insight in the 
complex brain architectures of schizophrenia. Moreover, a 
previously-validated stream density (i.e., normalized FN by the 
size of the interconnected ROIs) approach [40] was adopted 
here for estimating the SC weight. Additional analyses of the 
individualized prediction model performance against different 
methods for SC weight estimation (utilizing FA for the SC 
weight) obtained similar results (Table S5 in Supplementary 
Materials). Heuristically, FN is an index to reflect the WM 
structure [67], while FA reflects the fibre integrity [68] and is 
highly correlated with conductivity [69]. In this regard, the 
validation analyses indicates that the individualized SC 
prediction model could capture the intrinsic aberrations of WM, 
serving as potential biomarkers for symptom assessment in 
patients with schizophrenia.

Finally, since this study is the first exploratory investigation 
of individualized prediction of psychopathological deficits in a 
longitudinal cohort of schizophrenia in stable phase, its primary 
objective was to demonstrate the feasibility of utilizing SC to 
predict individual clinical symptoms. On this premise, a 
previously-validated CPM method [26] was adopted on a self 
recorded longitudinal dataset [28]. Compared to other 
regression methods, CPM proved superior in terms of the low 
computational cost and the effectiveness of readily 
interpretable information pertaining to the importance of the 
features. However, the current models can not sufficiently 
replace relevant clinical tests, despite most of our predictions 
reaching an acceptable statistical effect size (i.e., r > 0.3)
[70]. Future works are therefore encouraged to keep improving 
the accuracy and generalizability of the current work via 
the integration of multimodal neuroimaging data [24] and 
clinical variables [71], thus promoting an operational model 
for objective assessment of symptom severity in schizophre-
nia. More importantly, previous studies showed that adequate 
statistical power of prediction accuracy and its stability were 
increased with sample size [37], [18]. For instance, in [24] 
a generalized framework of multiple modalities neuroimaging 
data was reported to efficiently predict cognitive and symptom 
scores in a modestly sized schizophrenia sample. Moreover, an 
uncorrected p-value of 0.05 was employed for establishing the 
significance and presenting the graph theoretical analysis 
results. In this regard, interpreting these findings should be 
done with caution. Taking this into consideration, we mainly 
focused on the interpretation of the resulting patterns and 
highlighted those that survived corrections for multiple com-
parisons. In this respect, future studies that incorporate large 
independent study samples, different prediction methods and

diverse neuroimaging data could further validate our findings 
and ensure the generalizability of the prediction model in 
practice.

V. CONCLUSION

In this paper, an individualized SC model for the prediction 
of psychopathological deficits in a longitudinal cohort was 
employed, allowing the identification of potential biomarkers 
for symptom assessment and prognostic evaluation of illness 
progression. As such, the framework proposed was able to 
lead to comprehensive appreciations that give insights into 
the pathophysiologic mechanisms of schizophrenia and how it 
evolves in time. More importantly, it provided group-level ev-
idence of progressive disruption of brain anatomical networks 
in patients with schizophrenia by quantitatively estimating 
SC aberrations, supporting the dysconnectivity hypothesis. 
Taken together, the individualized prediction models offer the 
opportunity for the quantitative translation of neuroimaging 
data into diagnostic and prognostic tools, providing a more 
complete appreciation of the brain neural mechanisms and how 
they manifest and evolve throughout lifetime.
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