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Margin Preserving Self-paced Contrastive
Learning Towards Domain Adaptation for

Medical Image Segmentation
Zhizhe Liu, Zhenfeng Zhu∗, Shuai Zheng, Yang Liu, Jiayu Zhou, and Yao Zhao, Senior Member, IEEE,

Abstract— To bridge the gap between the source and
target domains in unsupervised domain adaptation (UDA),
the most common strategy puts focus on matching the
marginal distributions in the feature space through ad-
versarial learning. However, such category-agnostic global
alignment lacks of exploiting the class-level joint distribu-
tions, causing the aligned distribution less discriminative.
To address this issue, we propose in this paper a novel
margin preserving self-paced contrastive Learning (MP-
SCL) model for cross-modal medical image segmentation.
Unlike the conventional construction of contrastive pairs
in contrastive learning, the domain-adaptive category pro-
totypes are utilized to constitute the positive and negative
sample pairs. With the guidance of progressively refined
semantic prototypes, a novel margin preserving contrastive
loss is proposed to boost the discriminability of embedded
representation space. To enhance the supervision for con-
trastive learning, more informative pseudo-labels are gen-
erated in target domain in a self-paced way, thus benefiting
the category-aware distribution alignment for UDA. Fur-
thermore, the domain-invariant representations are learned
through joint contrastive learning between the two do-
mains. Extensive experiments on cross-modal cardiac seg-
mentation tasks demonstrate that MPSCL significantly im-
proves semantic segmentation performance, and outper-
forms a wide variety of state-of-the-art methods by a large
margin. The code is available https://github.com/TFboys-
lzz/MPSCL.

Index Terms— unsupervised domain adaptation, image
segmentation, contrastive learning, adversarial learning.

I. INTRODUCTION

SEMANTIC segmentation refers to the task of assigning a
category label to each pixel in an image. Recently, some

works based on Deep Neural Networks (DNN) have gained
impressive advances in medical image segmentation task, e.g.,
brain lesion [1], neuronal structures [2] and so on [3], [4].
Among these works, most of them [1], [2] are on the basis
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Fig. 1. Category-agnostic VS. the proposed category-aware domain
alignment. Top: Previous category-agnostic domain alignment methods
that aim to align global marginal distributions but ignoring the seman-
tic consistency. Bottom: The proposed margin preserving contrastive
learning method for category-aware feature alignment. Obviously, we
can boost the inter-class difference and reduce the intra-class variation
by constructing enough positive and negative pairs.

of assumption that enough labeled data is available for target
task. However, such assumption is seriously limited in many
real-world clinical scenarios. Taking the recent outbreak of
epidemic as an example, we have been facing a global health
crisis, i.e., the pandemic of a novel Coronavirus Disease
(COVID-19) [5], [6], since December 2019. Due to the high
cost of annotation and the urgent work of doctors to combat
the pandemic, there is not enough annotated data to train a
well-performing DNN. One of the most common solutions is
to train a model on a label-rich domain (named as source) and
then generalize it to a label-lacking domain (named as target).
However, since the significant distribution gap between the
two domains (i.e., domain shift problem), the trained model
usually suffers from a sharp drop in performance when applied
to the target domain.

Many approaches based on unsupervised domain adaptation
(UDA) [7]–[12] have recently been proposed to make the
knowledge learned from the source domain better transferred
to the target. Most previous methods employ representation
learning based on some distance metrics (e.g., the maximum
mean discrepancies (MMD) [7]) or adversarial learning [11],
[12] to bridge the gap between the two domains. Although
the methods based on adversarial training have achieved
impressive progress in domain adaptation, most of them are
limited to align only the global marginal distributions of visual
representations without considering semantic consistency as
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(a) Target Images (b) Prediction by Classifier (c) Entropy Map (d) Ground Truth

Fig. 2. Illustration of the incorrect and overconfident predictions
generated on the target data (i.e., marked with red bounding boxes).
(a) The target slice images. (b) The predicted masks generated by the
classifier. (c)The entropy map, given the predicted category probability
vector p ∈ RL of a pixel, the entropy value E =

∑L
i=1−pi log pi.

(d) The ground-truth labels.

TABLE I
COMPARISONS OF OUR MPSCL WITH THE STATE-OF-THE-ART UDA

METHORDS.

Methods Global domain
alignment

Local category
alignment

Intra-category
compactness

Inter-category
separability

AdaOutput [9] ! # # #

AdvEnt [10] ! # # #

CLAN [13] ! ! # #

CAG [14] ! ! ! #

IntraDA [11] ! # # #

SIFAv2 [4] ! # # #

MPSCL ! ! ! !

shown at the top of Fig. 1. Here, semantic consistency means
that after domain adaptation alignment, the distributions of the
same category from different domains should be identical in
the embedding space, while the distribution between categories
can be easily distinguished.

To avoid the semantic confusion between the two domains,
some methods [15], [16] tried to generate pseudo-labels for tar-
get data by self-training, providing more powerful supervision
for classifier training. As an anchor-guided UDA model for
semantic segmentation, both category-wise domain alignment
and self-training were facilitated in an explicit way [14].
Despite the category-wise domain alignment, the local se-
mantic structure in the embedding space was not adequately
considered [14] thus ignoring the inter-category separability.
As a result, the inter-category difference, which is crucial for
dense pixel-wise prediction task, won’t be sufficiently boosted.
Fortunately, it has been shown in some recent works [17]–
[19] that contrastive learning can help to learn powerful
representations by taking a closer look at both inter-category
and intra-category distributions. We aim to address the se-
mantic inconsistency problem, while enhancing both intra-
category compactness and inter-category separability. Fig. 1
illustrates a comparison between category-agnostic models and
our proposed category-aware domain alignment. In contrast to
category-agnostic models, our model is more prone to inter-
category margin preserving by constructing enough semantic
prototype induced contrastive pairs for contrastive learning
while reducing the intra-category variation.

When applying self-training to achieve category-aware fea-
ture alignment, we need to generate some pseudo-labels for
target data to match the joint distributions between the two
domains. A straightforward way [15], [16] is to first generate

pixel-wise predictions of the target data using a classifier
trained on the source data. Then, following the self-spaced
learning scheme which has been found effective for gradually
learning a robust model [20]–[22], a suitable selection strategy
is explored to remove error-prone predictions and generate the
final pseudo-labels. However, since the target samples usually
contain hard-adapted regions, especially around the boundary
regions, it may generally generate unreliable and overconfident
pixel predictions. As shown in Fig. 2, not only incorrect
predictions are generated, but also it takes a lower entropy
value, i.e., overconfidence. Thus, it is clearly not a trivial
task to design a suitable selection strategy to avoid choosing
hard-adapted regions to serve as candidate for pseudo-labeling.
However, as an intuitive assumption, the visual representations
belonging to the same category in the source and well-adapted
target domains usually take higher similarity. It would means
the well-adapted pixel regions from the target domain can be
measured in the embedding space.

Motivated by the observations above, we aim to develop
in this paper a contrastive learning framework for cross-
modal medical image segmentation, in which the semantic
prototypes and pseudo-labels are fully exploited. In particular,
we emphasize our contributions as follows:

- We propose a novel Margin Preserving Self-paced
Contrastive Learning (MPSCL) framework to tackle
cross-modal medical image segmentation. To the best
of our knowledge, it is the first attempt that contrastive
learning is applied to UDA in medical image analysis.

- Different from the traditional construction of contrastive
pairs in contrastive learning, the domain-adaptive seman-
tic prototypes, which are based on the prior knowledge
of source domain, are exploited to bridge the two do-
mains and constitute the positive and negative pairs for
contrastive learning.

- Induced by the progressively refined semantic prototypes,
a novel margin preserving contrastive loss is proposed
to boost the discriminability of visual representations
in embedding space. Meanwhile, the domain-invariant
representations are learned via joint contrastive learning
between the two domains.

- To perform contrastive learning in target domain without
prior label available, more informative pseudo-labels are
generated in target domain via self-paced scheme, which
further benefits the category-aware feature alignment.

II. RELATED WORK

A. Unsupervised Domain Adaptation
Unsupervised domain adaptation aims to alleviate the do-

main shift problem between the source and target domains. In
terms of how to bridge the gap between the two domains, the
existing UDA methods can be divided into three categories.
The first group aims to address the above issue by transforming
the image appearance between the two domains [4], [23]. For
example, with the success of CycleGAN [24] in unpaired
image-to-image transformation, Chen et al. [4] proposed to
transform the labeled source MRI images to the appearance of
target CT images and then utilized the synthesized target-liked
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TABLE II
KEY NOTATIONS.

Notations Descriptions

Nsrc, Ntrg Number of source and target image data, respectively

H,W Height and width of an image, respectively

xsrcn , ysrcn Source image and ground-truth label of the n-th source domain sample: xsrc ∈ RH×W×1 and ysrcn ∈ RH×W×L

x
trg
n , ŷk∗n Image and the k-th pseudo-labels of the n-th target domain sample. xtrg ∈ RH×W×1 and ŷk∗n ∈ RH×W×L

ysrcn [l; i] Ground-truth label for the l-th pixel of xsrcn belonging to the i-th category, l ∈ [1, H ×W ] and i ∈ [1, L].

ŷk∗n [l; i] Pseudo-label for the l-th pixel of xtrgn belonging to the i-th category of, l ∈ [1, H ×W ] and i ∈ [1, L].

f(xsrcn ),f(xtrgn ) Feature map of xsrcn and x
trg
n , respectively.

fsrc
n [l],ftrg

n [l] Feature vector of the l-th pixel in xsrcn and feature vector of the l-th pixel in x
trg
n , respectively.

C(k) =
{
c
(k)
1 , c

(k)
2 , ..., c

(k)
L

}
Category prototypes at the k-th iteration and c

(k)
i represents the i-th category.

images to train a segmentation model. Different from the ap-
proaches based on image alignment, the other stream chooses
to bridge the distribution gap between the two domains in
the feature space [7], [13], [25], [26]. Specially, benefiting
from the advances of generative adversarial networks [27],
which has been widely used in representation learning [28],
[29], some methods [13], [26] have focused on learning
domain-invariant representations by a minimax game between
a generator and a discriminator. Inspired by the fact that the
segmentation outputs of images from two domains should
have considerable similarities, e.g., spatial layout and local
context, many recent methods [9], [10], [30] tended to perform
structure adaptation between the two domains in the output
level. Working along this line, [10] proposed an entropy-based
adversarial learning to penalize low-confident predictions on
target domain. The discrepancy between our MPSCL and the
state-of-the-art UDA methods is presented in Tab. I. It can
be seen that: i) Different from some global domain alignment
methods (e.g., AdvEnt [10] and SIFAv2 [4]), we also conduct
local category alignment, which can further improve the trans-
ferability of the learned model. ii) Compared with some local
domain alignment methods (e.g., CLAN [13] and CAG [14]),
our model enhances not only the intra-category compactness
but also the inter-category separability, thus making the learned
representations more discriminative.

B. Contrastive Learning

Contrastive learning aims at learning an embedding repre-
sentation space by maximizing similarity and dissimilarity on
positive and negative data pairs, which has been extensively
used in the metric learning [31] and self-supervised learning
(SSL) [17], [18], [32]. In the SSL setting, where the supervised
information of training data is unavailable, contrastive learning
focus on learning an invariant representation space by design-
ing various pretext tasks based on data transformations(e.g.,
rotation cropping and color jittering) [17], [18]. Recently,
Khosla et al. [19] have extended the contrastive loss for
supervised training. Due to the exploration of local semantic
structures, it is able to learn more powerful representations.
Although contrastive learning has achieved impressive results
in representation learning, it performs yet poorly in cross-
modal medical semantic segmentation, in which the significant
distribution gap between the two domains keeps to be a hard
nut to crack. Concretely, since the supervision of target domain

is unavailable, it fails to directly bridge the two domains
in the semantic level and construct enough contrastive pairs.
Thus, different from the way for construction of paired data
in SSL, the domain-adaptive prototypes are utilized in our
MPSCL to serve as category anchors, guiding the construction
of contrastive pairs in feature space for contrastive learning.

C. Self-training

Self-training, which typically includes a teacher-student
framework, uses a good teacher model trained on the labeled
data to assign pseudo-labels to the unlabeled data, and then uti-
lizes human labels and pseudo-labels to jointly train a student
model. In deep learning, self-training has received increasing
interest due to the dramatic reduction in cost of data labeling
(e.g., image classification [33], machine translation [34] and
speech recognition [35]). Recently, some UDA works [11],
[14], [15] have attempted to generate pseudo-labels for the
target data to achieve category-aware domain alignment. For
example, [14] leveraged an anchor-based pixel-level distance
loss to match the joint distributions between the two domains
in the feature space by self-training. But, since it fails to
make full use of local semantic structure information, the
knowledge learned from source domain will not generalize
well to the target domain. Typically, referring the self-paced
learning scheme [20]–[22] which is usually used to learn
a more robust model by introduce a regularizer term, these
UDA methods also apply the “easy-to-hard” training scheme,
starting the training process with the most confident pseudo-
labels.

III. METHODOLOGY

A. Problem Definition

The key notations used throughout this paper are summa-
rized in Table II. Given a labeled source dataset {Xsrc, Y src},
a semantic segmentation model aims to learn a mapping F
from the image domain Xsrc to the label domain Ysrc:

F : Xsrc → Ysrc (1)

Specially, the mapping function F can be obtained by mini-
mizing a hybrid loss LSeg that is generally defined as:

LSeg =

Nsrc∑
n=1

(
LCE
n (ysrcn , psrcn ) + LDice

n (ysrcn , psrcn )
)

(2)
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Fig. 3. Overview of the proposed margin preserving self-paced con-
trastive learning UDA framework.C(k−1) andC(k) denote the domain-
adaptive category prototypes at the (k − 1)-th iteration and the k-
th iteration. psrcn and ysrcn represent the predicted and ground-truth
masks of xsrc

n . ŷ(k)∗n represents the pseudo-labels of xtrg
n at the k-th

iteration. Ixn denotes the weighted self-information of xsrc
n or xtrg

n .
LSeg represents image segmentation task loss for supervised learning
on the source domain.

where psrcn ∈ RH×W×L denotes the pixel-wise prediction by
F , and L is the number of categories. In addition, the first
term LCE

n is the weighted cross-entropy loss for pixel-level
classification, and the second term LDice

n is the Dice loss
which is usually applied in medical image segmentation tasks
with multiple organ structures. As for the design of hybrid loss
LSeg, the central point is how to tackle the class imbalance in
medical image segmentation [12]. Generally, a model trained
on the source domain Xsrc is hard to directly generalize to the
target domain due to the significant distribution discrepancies
between the two domains.

Recently, several UDA methods have been proposed to
bridge the gap, which can be formulated as :

Fuda : Xsrc ∪Xtrg → Ysrc ∪ Ytrg (3)

where Fuda is trained on the labeled source domain
{Xsrc, Y src} and unlabeled target domain {Xtrg}. Typically,
the mapping function Fuda aims to learn a domain-invariant
representation space by distilling transferable knowledge from
the source domain. Here, Ysrc and Ytrg are assumed to be
identical as in general setting.

B. Overall Framework

As shown in Fig. 3, the overall framework of MPSCL model
mainly contains four components, i.e., Generative Adversarial
Network, Domain-adaptive Category Prototypes, Self-paced
Pseudo-labels, and Margin Preserving Contrastive Learning.
• Generative Adversarial Network The generative adver-

sarial network is utilized as a backbone alignment net-
work to promote the category-aware alignment between
the two domains. Particularly, the generator contains three
branches, one of which generates the predicted masks of
source domain for supervised learning, and the other two

produce the weighted self-information maps of source
and target domains for adversarial learning.

• Domain-adaptive Category Prototypes The category
prototypes are exploited to constitute the contrastive pairs
for the join contrastive learning between the two domains.
To make these prototypes well domain-adaptive, they are
refined in a progressive way in model training.

• Self-paced Pseudo-labels In order to conduct contrastive
learning in target domain without prior label available, the
informative self-paced pseudo-labels are generated for the
target data to provide extra supervision.

• Margin Preserving Contrastive Learning To boost the
discriminability of representation via generator, a novel
margin preserving contrastive learning loss is proposed.
While ensuring the tight clustering within categories, the
difference between categories can be maximized.

C. Domain-adaptive Category Prototypes

Due to the significant distribution discrepancies between
the two domains, the traditional construction methods of
contrastive pairs (e.g., rotation cropping and color jittering)
cannot be suitable for cross-domain contrastive learning. To
this end, the domain-adaptive category prototypes are ex-
ploited to construct contrastive pairs. Specially, to obtain
the representative prototypes, we first initialize the category
prototypes C(0) =

{
c
(0)
1 , c

(0)
2 , ..., c

(0)
L

}
using the category

centers of the initial source pixel feature, and we have:

c
(0)
i =

1

|Ni|

Nsrc∑
n=1

H×W∑
l=1

ysrcn [l; i]f (0)srcn [l] (4)

where |Ni| denotes the number of pixels belonging
to the i-th category in source domain, i.e., |Ni| =∑Nsrc

n=1

∑H×W
l=1 ysrcn [l; i], and ysrcn [l; i] = 1 if the l-th pixel

of xsrcn belongs to the i-th category.
To make the prototypes receive more pseudo-supervision

from the target domain in model training and so as to have
better cross-domain adaptability, we update them with a pro-
gressive refinement way in each iteration. For the category pro-
totypes C(k) at the k-th iteration, the i-th category prototype
c
(k)
i is refined by the mean vector of pixel feature belonging

to the i-th category in the mini-batch as:

c
(k)
i ← αc

(k−1)
i + (1− α) · 1

|Bi|

B∑
n=1

H×W∑
l=1

ysrcn [l; i]f (k)srcn [l]

(5)

where B represents the batchsize, and |Bi| denotes the number
of pixels belonging to the i-th category. The α ∈ [0, 1] is
a momentum coefficient for moving the semantic category
prototypes, and α is empirically set as 0.2. Meanwhile, for the
source and target domains, the category prototypes are regard
as category anchors and construct contrastive pairs with each
pixel feature. Then, the joint cross-domain contrastive learning
is performed to learn domain-invariant representations.
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Fig. 4. Illustration of the self-paced pseudo-labels. C(k) represents
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denotes the confidence scores between pixel feature and the i-th cate-
gory anchor. p̂(k)n represents the predicted mask of xtrg

n and R(k)
n [·]

denotes the confidence difference at k-iteration. The δth is a predefined
threshold to establish a mask for interest region selection.

D. Self-paced Pseudo-labels (SPL)
To conduct supervised contrastive learning in target domain

without prior label available, we borrow the idea from self-
training and generate pseudo-labels for the target samples. As
shown in Fig. 2, it usually outputs incorrect and overconfident
predictions on the target domain via the classier of generative
network G , especially in the early training of the model.
Obviously, to assign pseudo-labels directly based on these
unreliable predictions will be inevitably with high risk. To
avoid selecting pixels with error-prone predictions, we propose
a self-paced pseudo-labels assigning approach in the embed-
ding space, which is mainly based on the assumption that the
well-adapted pixel feature are close to the prototype of same
category and far from others.

As shown in Fig. 4, a self-paced selection strat-
egy is presented by following an ‘easy-to-hard’ scheme
to capture those well-adapted pixels. Given the l-th
pixel feature f

(k)trg
n [l] of a target image xtrgn and

prototype-based category anchors C(k), the confidence scores{
r
(k)
n [l; i] = cos(θ

(k)
n [l; i])|i = 1, · · · , L

}
are first obtained by

using cosine similarity:

cos(θ(k)n [l; i]) =
[c

(k)
i ]T f

(k)trg
n [l]∥∥∥c(k)i

∥∥∥
2

∥∥∥f (k)trgn [l]
∥∥∥
2

(6)

where ‖·‖2 denotes the L2 normalization. Let’s sort{
r
(k)
n [l; i]|i = 1, · · · , L

}
in descending order and denote I1

and I2 the index corresponding to the maximum and submax-
imum confidence scores, respectively. Hence, the final pseudo-
labels are generated as follows:

ŷ(k)∗n [l; ŷl] =


1, if ŷl = arg

L
max
i=1

r(k)n [l; i]

∧ r(k)n [l; I1]− r(k)n [l; I2] > δth

0, otherwise

(7)

where ŷl denotes the predicted category index of l-th pixel.
δth is a pre-defined threshold to remove hard-adapted regions.

In practice, what is more desirable for assigning pseudo-
labels is to seek those informative samples. To measure a
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n l i Normalized Space

m   cos [ ; ]k
n jl y m 

Label

Positive Pair

Negative Pair

Softm
ax

Margin

Deviation Angle 
Penalty

Backpropagation

( )ˆ
j

k
y Inter-category Margin

( )cos [ ; ]k
n l i

 src
nf l

 nf l

 nf l

 n̂f l

( )src
nf x

C
nL

Margin Preserving Contrastive Learning 

 
j

k
y

 
j

k
y

 
1
kc
 
2
kc

...

 
3
kc

 k
Lc

( )kC

 trg
nf l

( )trg
nf x

 
3
kc

 
3
kc

 
2
kc

 
3
kc

Pixel Feature 

Pixel Feature 

 nf l

 1, ,i L   1, ,i L 

 
2
kc

Fig. 5. The illustration of the margin preserving contrastive loss.
The feature of each pixel (fsrc

n [l] or ftrg
n [l]) form positive pairs with

prototypes of the same categories and negative pairs with prototypes
of different categories. Meanwhile, to enhance separability between
categories while reducing the variation within categories, we introduce
a deviation angle, i.e., m in Equ. 8, as penalty to the positive pair
(i.e., the pair between pixel feature and positive category prototypes).
Finally, after multiple self refinement of category prototypes, the learned
representation will possess distinct inter-category margin and therefore
will be more discriminative.

sample whether informative or not, the confidence difference
R

(k)
n [l] = r

(k)
n [l; I1] − r

(k)
n [l; I2] is adopted in Eq.(7) to

characterize the significance associated to it. Correspondingly,
by setting a threshold on the confidence difference, a se-
lection mask of interest regions can be established. Since
the generation pseudo-label is essentially category-prototypes
induced, with the progressive refinement of category-prototype
as in Eq.(5), more reliable informative pseudo-labels can be
generated by the means of self-pacing, thus facilitating the
supervision for contrastive learning in target domain.

E. Margin Preserving Contrastive Learning (MPCL)

To boost the discriminability of representation, the cross-
domain contrastive learning is proposed to promote the repre-
sentations belonging to the same category to be closer together
and far from other categories. An intuitive way to achieve this
goal is through mean square loss such as [14], however, it is
clear that the discriminability in [14] can not be sufficiently
preserved since only the intra-category compactness is con-
sidered. To ensure the tight clustering within categories while
maximizing the difference between categories, a novel margin
preserving contrastive loss is proposed.

As a geometric explanation shown in Fig. 5, it can be found
that there is usually a small separability between categories
as well as a large variability within categories. To tackle
this issue, we introduce a deviation angle as penalty to the
positive anchor for margin preserving. Specifically, the margin
preserving contrastive loss of source and target domains is
defined as:

LC
n =

H×W∑
l=1

− log
exp(cos(θ

(k)
n [l; yl] +m)/τ)

S[l]
(8)

where cos(θ
(k)
n [l; yl]) indicates the cosine similarity between

the pixel feature and positive anchor (i.e., positive pair), yl
denotes the category index of the l-th pixel and S[l] =

exp(cos(θ
(k)
n [l; yl]+m)/τ)+

∑L
i=1,i6=yl

exp(cos(θ
(k)
n [l; i])/τ)

is a normalization and determined by the cosine similarity of
each pixel. The constant m denotes the deviation angle penalty
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with margin preserving to positive prototype. The temperature
τ is set to avoid overfitting [36], and τ = 1 is a familiar
setting. As we can see from Fig. 5, after some iterations
via backpropagation, the inter-category difference becomes
evident as the margin preserving deviation angle penalty is
incorporated. In fact, although the proposed margin preserving
contrastive loss is similar to [37], we are induced by the
domain-adaptive category prototypes to tackle cross-domain
adaptation problem.

F. Adversarial Learning

To promote the consistency in spatial layout and local
context in output space, the generative adversarial network
is utilized to generate semantic masks with similar structure
between the two domains. Following [10], we also perform
structure adaptation by minimizing the entropy via adversarial
learning. In the case of each source image xsrcn or target image
xtrgn as shown in Fig 3, the output of generator is applied to
generate a weighted self-information map Ixn

∈ RH×W×L

as the discriminator input. Here, the Ixn
is composed of

pixel-level vector Ixn
[l; i] = −pn[l; i] log pn[l; i], where i =

1, · · · , L, and pn[l; i] is the predicted probability of the l-th
pixel belonging to the i-th category. Similar to [27], we let
the discriminator D to distinguish the input coming from the
source and target domains. Meanwhile, we train the generator
G to fool the discriminator D. Specially, let LB denote
the binary cross-entropy domain classification loss, and the
objective function to train the discriminator can be defined as:

LD =
1

Nsrc

Nsrc∑
n=1

LB(Ixsrc
n
, 1)+

1

N trg

Ntrg∑
n=1

LB(Ixtrg
n
, 0) (9)

and the adversarial loss of the generator G is:

Ladv =
1

N trg

Ntrg∑
n=1

LB(Ixtrg
n
, 1) (10)

Thus, combining Eq.(2), Eq.(8) and Eq.(10), the total opti-
mization loss of generator G is derived by:

LG = LSeg + γ

Nsrc∑
n=1

LCsrc
n + β

Ntrg∑
n=1

LCtrg
n + λLadv (11)

where LCsrc
n and LCtrg

n denote the margin preserving con-
trastive learning of source and target domains, and the {γ, β}
represent the corresponding weight factor of two domains. The
λ denotes the weight factor of the adversarial term Ladv .

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we will present experimental results to
validate the performance of our MPSCL on cross-domain
semantic segmentation task.

A. Dataset

Our work in this paper mainly focus on cross-modal
medical image segmentation. Thus, the widely used Multi-
Modality Whole Heart Segmentation (MMWHS) challenge

2017 dataset [38] is adopted for cardiac substructure segmen-
tation. Specially, the training data is composed of unpaired
20 MRI and 20 CT volumes from different patient cohorts,
and the ground-truth masks of these data are provided. For
evaluating our model quantitatively, we select the following
four structures: ascending aorta (AA), left atrium blood cavity
(LAC), left ventricle blood cavity (LVC), and myocardium of
the left ventricle (MYO). We conduct extensive experiments
for cross-modal adaptation in two directions, i.e., from MRI
to CT images and CT to MRI images. For a fair comparison,
we adopt the preprocessed data published by SIFAv2 [4].

B. Evaluation Metrics

During test phase, we are mainly interested in two aspects
of performance, i.e., the overlap and the difference between
predictions and ground-truth masks. Accordingly, we adopt
two common metrics, the Dice similarity coefficient (Dice)
and the average symmetric surface distance (ASD), to quanti-
tatively analyze the performance of our model. As for Dice, it
measures the voxel-wise segmentation accuracy between the
predicted segmentation and ground-truth labels, while ASD
computes the average distances between the surface of the
predicted masks and the ground-truth in 3D. A higher Dice
and a lower ASD value indicate better segmentation results.

C. Implementation details

In our experiments, DeepLabV2 [39] with pretrained pa-
rameters from ImageNet [40] is selected as the generator
G. For the discriminator D, the PatchGAN configuration is
adopted in cardiac CT to MRI task while the discriminator
configuration of AdaOutput [9] is used in cardiac MRI to
CT task. To provide the representative category prototypes
and informative pseudo-labels, we first train MPSCL (more
than 4000 iterations) with β = 0, γ = 0, and λ = 0.003.
Afterwards, the domain-adaptive prototypes are initialized by
the category centers of initial source feature, and the self-
paced pseudo-labels are generated for the target domain. To
avoid choosing hard-adapted pixel regions and dropping useful
information, the threshold δth is set as 0.25. Then, We contin-
ually train MPSCL with γ = 1.0, β = 0.1 and λ = 0.003 and
progressively refine the category prototypes and pseudo-labels.
The deviation angle penalty m is selected from {0.2, 0.4}, and
the temperature τ is set to 1.0. Meanwhile, similarly to [9], we
perform domain adaptation on multi-level outputs from conv4
and conv5 to further improve performance. During the training
procedure, our model, except the discriminator, is trained using
Stochastic Gradient Descent optimizer [41] with learning rate
2.5×10−4, momentum 0.9 and weight decay 10−4. The Adam
optimizer [42] with learning rate 10−4 is used for training the
discriminator.

D. Compared Methods

To evaluate the superiority of the proposed MPSCL, we
compare with a wide range of UDA methods in cross-modal
medical segmentation tasks. These methods can be divided
into two categories: (i) Category-agnostic global alignment
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TABLE III
PERFORMANCE COMPARISON WITH DIFFERENT UNSUPERVISED

DOMAIN ADAPTATION METHODS FOR CARDIAC SEGMENTATION.

Cardiac MRI → Cardiac CT

Methods Dice ↑ ASD↓
AA LAC LVC MYO Average AA LAC LVC MYO Average

Supervised training 89.33 91.36 92.87 88.04 90.40 2.27 2.92 1.51 3.25 2.49
W/o adaptation 30.78 36.81 18.34 7.21 23.28 20.24 8.89 33.57 27.78 22.62
AdaOutput [9] 73.48 80.36 76.14 48.66 69.66 15.46 4.81 5.18 6.57 8.00
SIFAv1 [43] 81.10 76.40 75.70 58.70 73.00 10.60 7.40 6.80 7.80 8.10
AdvEnt [10] 79.54 83.04 79.54 57.67 74.95 13.92 9.30 6.92 4.48 8.65
CLAN [13] 87.84 86.79 82.02 60.93 79.40 8.23 3.95 4.31 4.38 5.22
CAG [14] 80.70 85.80 80.63 58.00 76.28 12.18 4.43 5.39 4.28 6.57

IntraDA [11] 48.99 58.76 69.27 48.64 56.42 13.27 7.57 7.77 6.15 8.69
SIFAv2 [4] 81.30 79.50 73.80 61.60 74.10 7.90 6.20 5.50 8.50 7.00

MPSCL 90.26 87.08 86.45 72.51 84.08 3.47 3.16 2.85 3.41 3.47

Cardiac CT → Cardiac MRI

Methods Dice ↑ ASD↓
AA LAC LVC MYO Average AA LAC LVC MYO Average

Supervised training 81.65 86.33 92.29 80.02 85.07 3.43 2.09 1.66 1.63 2.20
W/o adaptation 18.52 7.25 53.54 2.08 20.35 7.07 25.81 8.65 29.97 17.87
AdaOutput [9] 52.32 71.79 79.54 49.26 63.23 6.01 3.56 5.07 4.38 4.76
SIFAv1 [43] 67.0 60.70 75.10 45.80 62.10 6.20 9.80 4.40 4.40 6.20
AdvEnt [10] 54.40 72.01 77.49 51.75 63.91 6.79 3.21 3.92 4.03 4.48
CLAN [13] 39.01 57.62 74.60 50.57 55.45 7.71 5.13 4.43 3.51 5.19
CAG [14] 53.98 71.03 77.38 51.35 63.44 6.86 3.27 4.12 3.87 4.53

IntraDA [11] 61.38 60.26 70.48 46.32 59.61 12.33 9.26 6.13 5.72 8.36
SIFAv2 [4] 65.30 62.30 78.90 47.30 63.40 7.30 7.40 3.80 4.40 5.70

MPSCL 64.66 77.34 81.61 55.90 69.87 5.59 2.64 3.44 3.50 3.80

AdaOutput AdvEnt SIFAv2 MPSCL Ground TruthCLANSupervised 
training

W/o 
adaptation

IntraDA

Myo AA LAC LVC

CAG

Fig. 6. Visual comparison of segmentation results produced by different
methods for cardiac CT slice images (1st-2nd row) and MRI slice images
(3rd-4th row). From left to right are the raw test slice images (1st
column), ”Supervised training” upper bound (2nd column), ”W/o adap-
tation” lower bound (3rd column), results of other unsupervised domain
adaptation methods (4th-9th column), results of our MPSCL network
(10th column), and ground truth (last column). The color corresponding
to the semantic category is at the bottom.

methods. In this paradigm, we select two image-level align-
ment UDA methods (SIFAv1 [43] and SIFAv2 [4]) and two
methods (AdaOutput [9] and AdvEnt [10]) which bridge the
gap at the output-level; (ii) Category-aware local alignment
methods. In view of this aspect, we focus on three category-
aware alignment methods, including category-level adversarial
network(CLAN [13]) based on self-adaptive adversarial loss,
and two self-training based alignment methods (CAG [14]
and IntraDA [11]). For a fair comparison, the generator
architectures used for the implementation of other methods
are the same as MPSCL except SIFAv1 and SIFAv2.

Since the same dataset and data preprocessing are applied
for SIFAv1 and SIFAv2, as well as our model, the results
from their papers are directly reported. Additionally, the
architectures of discriminator follows the configuration of
PatchGAN [44].

E. Effectiveness of our MPSCL Model on Unsupervised
Domain Adaptation

In order to evaluate the importance of domain adaptation in
cross-domain semantic segmentation, we first get the lower
bound performance ‘without adaptation’ ( named as W/o
adaptation) by training a model only on source domain and

directly generalizing it to the target domain. In addition, we
also provide the upper bound performance by conducting
supervised learning on target domain to evaluate how much the
gap is decreased between the ‘without adaptation’ model and
fully-supervised model. For a fair comparison, the generator
G in our MPSCL framework is utilized for training the lower
and upper bound models.

Table III presents the results for cross-modal cardiac seg-
mentation task, including lower and upper models and several
state-of-the-art UDA methods. It can be seen that: i) the W/o
adaptation model trained on MRI images only obtains the
average Dice of 23.28% when being applied to CT domain.
Similarly, the model trained on CT images also achieves
merely the average Dice of 20.35% on MRI domain. These
results are far below the performances 90.40% and 85.07%
of supervised training models, which demonstrates the seri-
ous domain shift problem between MRI and CT domains;
ii) remarkably, our MPSCL model has achieved significant
performance improvements in terms of both Dice and ASD
measurements. For CT images, we improve the average Dice
to 84.08% over the four cardiac structures with the aver-
age ASD being reduced to 3.47, and for MRI images, we
obtain the average Dice of 69.87% and the average ASD
3.80; iii) meanwhile, our method significantly outperforms
other category-agnostic alignment methods by a large gain.
This shows that it is of great importance to maintain the
semantic consistency between the two domains. In addition,
compared with category-aware alignment methods, our method
also achieves significant improvements. For example, for CT
images, our MPSCL achieves a clear improvement of 4.68%
in the average Dice and a obvious reduction of 1.75 in the
average ASD. This shows that it is of great importance to
enhance inter-class separability and intra-class compactness
between the two domains.

Fig. 6 presents some segmentation results of several exam-
ples, and it is obvious that the W/o adaptation model is hard
to completely capture the correct cardiac structures due to the
domain shift problem between the two domains. Meanwhile,
with comparison to the other UDA methods, the outputs of
our MPSCL are more consistent with the ground truth for the
slice images in both two transferring directions. In addition,
considering the practical clinical application, we also provide
the 3D segmentation results of a patient volume data in Fig. 7.

Although our MPSCL is trained in a 2D view without
considering correlation of inter-frames, very complete and
accurate heart structure segmentation for CT and MRI volumes
can also be obtained. Both the qualitative and visualization
results demonstrate that our MPSCL can effectively tackle the
domain shift problem.

In addition, we also provide a Fig. 8 with the train-
ing/validation/test loss of weighted cross-entropy to examine
it for overfitting effects. The above loss are calculated on the
source training/target training/target test datasets, respectively.
It can be seen that, in the early stage of model training, the
jitter of the loss function is more pronounced in the target
validation and test datasets, but for the training set, it tends
to converge quickly. This is because the discriminator can
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CLAN IntraDA SIFAv2

Myo LAC LVCAA

AdaOutput AdvEnt MPSCL Ground TruthSupervised 
training

W/o 
adaptation

CAG

Fig. 7. Visual comparison of segmentation results produced by different methods for cardiac CT data volume (1st rows) and MRI data volume (2nd
rows). From left to right are the raw test volumes (1st column), ”Supervised training” upper bound (2nd column), ”W/o adaptation” lower bound (3rd
column), results of other unsupervised domain adaptation methods (4th-9th column), results of our MPSCL network (10th column), and ground
truth (last column). The color corresponding to the semantic category is at the bottom.

Fig. 8. The loss curves of model training in MRI to CT alignment

easily distinguish the source domain image and the target
domain image at the beginning of training, resulting in the
generator not learning a good domain-invariant representation.
In addition, it can be seen that the loss variation trends in the
validation and test datasets are the same during the training
process, which means that our model is not overfitted during
the training process. In particular, we also apply an early-
stopping strategy to obtain the best model.

F. Angle Distribution of Target Domain
In the following, we demonstrate the effectiveness of the

deviation angle penally in margin preserving contrastive loss
given in Eq.(8) from the view of statistic analysis. Fig. 9
presents the distributions of the angle θ

(k)
n [·; yl] of target

domain. It can be observed that, from the beginning to end
of MPSCL training, the similarity between the pixel feature
and the positive category anchor improve continuously, which
means the gap between the two domains is gradually reduced.
In other words, the semantic consistency between the two
domains is well preserved in our MPSCL. What deserves
noting is, at the end of the model training, most of the angles
are concentrated in a smaller intervals. Obviously, the intra-
category compactness is enhanced. Meanwhile, due to the
part of generated noisy pseudo-labels, some pixel feature have
lower similarities with the positive category anchor.

G. Self-paced Pseudo-labels Visualization
To provide more in-depth and visual examination of the

self-paced pseudo-labels, we conduct a qualitative analysis as
illustrated in Fig. 101. Clearly, the generated pseudo-labels
can provide informative supervision for conducting contrastive

1 In the supplementary material, we also provide the dynamic evolution of the
self-paced pseudo-label assignment with model training going on.

TABLE IV
EFFECTIVENESS OF CATEGORY-AWARE FEATURE ALIGNMENT.

Cardiac MRI → Cardiac CT

Method Dice ↑ ASD↓
AA LAC LVC MYO Average AA LAC LVC MYO Average

Baseline 89.01 88.10 84.15 65.19 81.75 4.79 2.98 3.13 3.80 3.68
MPSCL 90.26 87.08 86.45 72.51 84.08 3.47 3.16 2.85 3.41 3.47

Cardiac CT → Cardiac MRI

Method Dice ↑ ASD↓
AA LAC LVC MYO Average AA LAC LVC MYO Average

Baseline 65.05 70.60 77.88 52.31 66.46 5.53 3.67 4.07 4.01 4.32
MPSCL 64.66 77.34 81.61 55.90 69.87 5.59 2.64 3.44 3.50 3.80

Cardiac MRI Cardiac CT

Cardiac CT Cardiac MRI

Fig. 9. The distributions of the angle θ(k)n [·; yl] of target domain from
the begining to end during MPSCL training. The top two are based on
the application of MRI→ CT , and the bottom two are from the setting
of CT→ MRI.

learning in target domain without human annotations. Our
MPSCL model can progressively refine the pseudo-labels
to correct the error and produce better supervision during
model training in an ‘easy-to-hard’ scheme. At the start of
model training, since the confidence difference R(1)

n between
the maximum and submaximum confidence scores for each
pixel region is not noticeable, only a few well-adapted pixel
regions are selected although the noisy predictions are also
removed. But as training proceeds, the generated predictions
come gradually closer to the ground-truth labels. On the other
hand, for the pixel regions poorly adapted before, they will
receive more significant confidence difference. With such self-
pacing procedure, the generated pseudo-labels can provide
more information to help generate better results on target
categories. However, it also should be noticed that the self-
paced pseudo-labels also contain incorrect information, which
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will lead to the negative transfer.

Predictions Confidence 
Difference

Selection
Masks

Pseudo-
labels

1k 
iterations

10k 
iterations

25k 
iterations

MRI Image Ground Truth

1 
iterations

CT Image Ground Truth

Predictions ConfidenceD
ifference

Selection
Masks

Pseudo-
labels

Fig. 10. Visualization of pseudo-labels that are gradually refined
during model training. The left side of the dotted line is a MRI slice
and the right side is a CT slice. For each side, the first column is the
generated predictions based on the domain-adaptive prototypes. The
second column is the confidence difference between the maximum and
the submaximum confidence scores. The third column is the pixel-level
masks for interest region selection, where white indicates that the pixels
are selected and black indicates unselected pixels. The fourth column is
the generated pseudo-labels.

H. Ablation Analysis
We conduct ablation experiments to evaluate the effective-

ness of preserving the semantic consistency between the two
domains in our method. The ablation study results are show
in Table. IV containing MRI to CT and CT to MRI two
applications, and our Baseline method in Table. IV only
achieves global marginal feature alignment by setting β = 0.0.
It is obvious that our MPSCL improves the segmentation
performance to a large degree, and for CT images, the average
Dice is increased from 81.75% to 84.08%, and the average
ASD is reduced from 3.68 to 3.47. Similarly, for MRI images,
the average Dice is increased to 69.87% and the average
ASD is reduced to 3.80. This is due to the fact that our
MPSCL significantly promotes the category-level alignment
between the two domains and avoids the semantic confusion
in feature space. In addition, it is also worth noticing that there
also exits slight degradation for some categories (i.e., LAC
category in CT domain and AA category in MRI domain).
This maybe because that the threshold δth is not suitable for
these categories, which results in the generated pseudo-labels
containing more error information.

I. Parameter Analysis
We also validate the influence of angular margin penalty

in our MPSCL and the quantitative results are included in
Table. V, in which CSCL denotes the conventional self-
paced contrastive learning without adopting the deviation
angle penalty (i.e., m = 0.0). Meanwhile, we also present
the angle distributions of different settings in Fig. 11. It can
be observed that the average Dice is improved from 83.85% to
84.08%, and the average ASD is decreased from 3.68 to 3.47
in the MRI to CT direction. Additionally, for MRI images, our
method improves the average Dice by more than 1.41% and
reduces the average ASD by more than 0.27.

As illustrated in Fig. 11, the intra-category compactness
is further enhanced by explicitly putting the deviation angle

TABLE V
THE INFLUENCE OF DEVIATION ANGLE PENALTY m.

Cardiac MRI → Cardiac CT

Method Dice ↑ ASD↓
AA LAC LVC MYO Average AA LAC LVC MYO Average

CSCL 89.91 87.96 86.80 70.73 83.85 5.38 2.87 2.84 3.44 3.63
MPSCL 90.26 87.08 86.45 72.51 84.08 3.47 3.16 2.85 3.41 3.47

Cardiac CT → Cardiac MRI

Method Dice ↑ ASD↓
AA LAC LVC MYO Average AA LAC LVC MYO Average

CSCL 67.06 74.07 78.62 54.07 68.45 5.44 2.90 3.83 4.11 4.07
MPSCL 64.66 77.34 81.61 55.90 69.87 5.59 2.64 3.44 3.50 3.80

Cardiac MRI Cardiac CT

Cardiac CT Cardiac MRI

Fig. 11. The distributions of the angle θ(k)n [·; yl] of target domain w.r.t.
MPSCL and CSCL methods.

penalty between each pixel feature and the positive category
anchor. Both the qualitative and visualization results demon-
strate that our MPSCL can further boost the discriminability of
representation compared to CSCL. It also should be pointed
out, our model does not perform as well as CSCL in some
categories (including LAC and LVC categories in CT domain
and AA category in MRI domain). The possible reason may
be the pseudo-labels are not correctly assigned in theses
cases, thus the deviation angle penalty may further enlarge
the difference between the representations and the positive
category anchor.

V. CONCLUSIONS

For the challenge of unsupervised domain adaptation in
medical image segmentation, an innovative MPSCL model is
proposed, which promotes category-aware feature alignment
by cross-domain contrastive learning. To the best of our knowl-
edge, this is the first time to introduce contrastive learning for
this practical problem. Specially, the domain-adaptive category
prototypes are exploited to constitute contrastive pairs for
the joint contrastive learning between the two domains. We
generate informative self-paced pseudo-labels for target do-
main to perform contrastive learning in target domain without
prior label available. The discriminability of representation is
boosted by a margin preserving contrastive learning loss. It is
worth noticing that one category prototype per category does
not cover the overall distribution. Thus, our ongoing research
work includes learning prototypes adaptively with the data
distribution.
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