
2168-2194 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2022.3144677, IEEE Journal of
Biomedical and Health Informatics

GENERIC COLORIZED JOURNAL, VOL. XX, NO. XX, XXXX 2017 1

A Motion and Illumination Resistant Non-contact Method using
Undercomplete Independent Component Analysis and

Levenberg-Marquardt Algorithm
Ankit Gupta, Antonio G. Ravelo-Garcı́a, and Fernando Morgado Dias Member, IEEE

Abstract— Heart Rate (HR) estimation is of utmost importance
due to its applicability in diverse fields. Conventional methods
for HR estimation require skin contact and are not suitable in
certain scenarios such as sensitive skin or prolonged unobtrusive
HR monitoring. Therefore remote photoplethysmography (rPPG)
methods have become an active area of research. These meth-
ods utilize the facial videos acquired using a camera followed
by extracting the Blood Volume Pulse (BVP) signal for heart rate
calculation. The existing rPPG methods either utilized a single
color channel or weighted color differences, which has certain lim-
itations dealing with motion and illumination artifacts. This study
considered BVP extraction as an undercomplete problem and
proposed a method resistant to motion and illumination variation
artifacts. This method is based on an undercomplete independent
component analysis, aiming to estimate the unmixing matrix using
a non-linear Cumulative Density Function (CDF) that has been
optimized using the customized Levenberg-Marquardt algorithm.
Therefore, the method is named U-LMA. The proposed method
was tested under three scenarios: constrained, motion, and illumi-
nation variations scenarios. High Pearson correlation coefficient
values and smaller lower-upper statistical limits of Bland-Altman
plots justified the outstanding performance of the proposed U-
LMA. Furthermore, its comparative analysis with the state-of-the-
art methods demonstrated its efficacy and reliability, which was
proven by the lowest error and highest correlation values (0.01
significance level). Additionally, higher accuracy satisfying the
clinically accepted error differences also justified its clinical rel-
evance.

Index Terms— Blind Source Separation, Blood volume
pulse extraction, Dimensionality Reduction, Heart rate es-
timation, Levenberg-Marquardt Optimization algorithm, In-
dependent Component Analysis.

I. INTRODUCTION

The cardiovascular disease growth rate has been increasing faster
worldwide in recent years [1]. Therefore, Heart Rate (HR) is a
vital physiological parameter. It reflects the physiological, physical,
and emotional state of an individual. HR monitoring has numerous
applications in diverse fields such as in criminals’ false statements
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detection, and neonatal vital signs monitoring. Photoplethysmography
(PPG) and electrocardiogram (ECG) are gold standards for measuring
HR. However, both methods follow a contact-based approach causing
discomfort to individuals and while also proving to be unsuitable
for prolonged and unobtrusive HR monitoring. Therefore, remote
photoplethysmography (rPPG) has become an active area of research,
which does not require any physical contact with the skin [2]–
[11]. rPPG based methods are of utmost importance as they prevent
contact in scenarios such as patients with sensitive skin, neonatal
vital signs monitoring, or during sleep [10], [12]. The principle
behind rPPG is the measurement of periodic variations due to the
absorbance of hemoglobin in the blood and pulsation resulting from
cardiac activity [13]–[15]. HR estimation using the rPPG method
is a three-step process: Region Of Interest (ROI) selection; Blood
Volume Pulse (BVP) extraction; and the average HR calculation.
Most of the methods used the facial region as ROI, which has
been further used for BVP extraction [16]. Capturing the facial
region is predominantly done using an RGB camera because it
allows less constrained conditions, unlike other methods such as
NIR, radar, or ultrasound systems [12]. The rPPG based methods use
reflected light acquired through a photodetector after light absorption
by the skin tissues, arteries, veins, bones, and blood [17], [18].
This reflected light contains the blood volume variations along with
various undesirable noise interferences [12] due to rigid and non-
rigid motions [10] and illumination variations [15], which degrade
the performance of HR estimation methods due to noisy BVP signal
[6]. Furthermore, the noise due to these artifacts easily dominates
the relatively weaker strength of the resultant BVP signal [19]. The
few frequently used BVP extraction methods used in the literature
are Wavelet transforms [20], Independent Component Analysis (ICA)
[21], and Ensemble Empirical Mode Decomposition (EEMD) [22].
Wavelet transform requires the selection of appropriate filtering
coefficients at different decomposition levels [23], whereas EEMD
requires selecting amplitude and noise frequency [24]. However, ICA
begins with a random initialization of unmixing matrix with just a
single prerequisite of unmixing matrix dimension, depending on the
number of independent components, which is comparatively trivial
than the other two methods. Additionally, among these methods, ICA
is a common method for BVP signal extraction [25]. It considers BVP
extraction as a Blind Source Separation (BSS) problem, which deals
with extracting the desired signal with no or limited information,
from mixture signals. Moreover, Joint diagonalization approximation
of matrices (JADE) which is a variant of ICA proposed by Poh et al.
[2] has shown motion tolerance up to a certain extent. In addition,
the Multichannel ICA proposed by Zhang et al. [26] conducted
their experiments under low illumination as well. To the best of
our knowledge, none of the ICA method based studies analyzed the
impact of motion and illumination variations effect simultaneously,
under constrained or natural conditions.

A general assumption regarding ICA based methods is that the
number of independent signals is equal to the number of mixed
signals. In other words, the signal constructed by each color channel
(mixed-signal) results in an Independent Component (IC). This as-
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sumption requires analyzing each IC as a potential candidate for the
BVP signal while also requiring apriori knowledge. Moreover, there is
no defined criterion for selecting the BVP signal from the independent
components from different color channels [27]. Conventionally, BVP
signal extraction includes selecting the component with the highest
periodicity, which may result in selecting the incorrect IC as a BVP
signal in the case of periodic motions by the subjects [11]. Most
studies selected the second IC for BVP signal extraction by discarding
the 1st and 3rd IC corresponding to the red and blue color channels
[6], [10], [28]. This results in a loss of information present in the red
and blue channels [29], which may be vital for HR estimation. Color
subspace transformation methods like CHROM [11] and POS [14]
were proposed to overcome this information loss, which employed
orthonormal vector transformations to construct a raw signal for
BVP extraction. The main drawback of these methods is the weights
assigned to color channels which may degrade the BVP information
[29].

Considering the limitations mentioned above, the current study
proposed the BVP signal extraction as an undercomplete problem.
In other words, given three mixture signals corresponding to R,
G, and B color channels, the task is to extract one IC which
corresponds to the motion and illumination resistant BVP signal. A
novel method combining undercomplete ICA [30] with a customized
Levenberg-Marquardt algorithm (LMA) [31], [32] was proposed for
optimizing the unmixing matrix for BVP signal extraction without
losing information from any color channel. Additionally, the proposed
method eradicates the need for IC selection since the output is a
single IC. The mean HR calculation was performed using power
spectral density analysis by using Fast Fourier Transform (FFT), post
bandpass filtering. This study contributes to the extant literature with:

• A novel non-linear optimization function constituting a cumula-
tive density function approximated by the hyperbolic tangent to
deal with the non-linearity due to rigid and non-rigid motions
and illumination variation artifacts for BVP signal extraction.

• A customized LMA for optimizing the entropy of the proposed
non-linear least square function, ensuring the statistical indepen-
dence of the resultant BVP signal.

• A novel method constituting Undercomplete ICA with cus-
tomized LMA (U-LMA), for an artifacts free BVP signal
extraction, followed by its performance analysis under three
scenarios (database used): Constrained (VIPL-HR [33]), motion
constituting rigid and non-rigid motions (UBFC-rPPG [34]), and
illumination variations(COHFACE [35]).

• Testing the performance of U-LMA with negentropy based
undercomplete ICA (U-neg) and other state-of-the-art methods
to analyze the impact of a non-linear function along with
optimization using LMA under the scenarios mentioned above.

II. RELATED WORK

The first attempt of HR estimation under normal light conditions
was performed by Verkruysse et al. [4]. The study used the PPG
signal extracted using the green color channel of the ROI selected
from face videos acquired by a digital camera. The PPG signal
was then processed using filtering techniques and, subsequently, HR
calculation. Poh et al. [28] extracted the PPG signal using JADE
(ICA) from the R, G, and B signal traces acquired from the facial ROI
captured using a webcam. Consequently, three ICs were extracted
from each color channel, followed by selecting an appropriate IC as
a PPG signal for HR estimation. This study was further extended
by adding a temporal filtering component, which consisted of de-
trending and signal smoothing using a moving average filter for
better PPG signal extraction [2]. The above methods mainly used

the green component of the ROI since it is considered to have
maximum PPG information. The method given by Poh et al. [28]
used kurtosis optimization, which does not have descent statistical
properties to support statistical independence among components.
Gill et al. [36] addressed the problem of unsorted ICs of ICA, which
proves to be challenging when selecting the appropriate independent
component as a BVP signal. They proposed constrained-ICA, which
uses negentropy as an optimization function, avoiding local minima
convergence. It is important to note that negentropy possesses better
statistical properties and symmetric decorrelation than kurtosis to
ensure statistical independence. Considering the periodicity of the
PPG signal, Macwan et al. [37] proposed a multi-objective opti-
mization using Autocorrelation and ICA (MAICA), which constitutes
negentropy and signal autocorrelation at different time lags, for BVP
signal extraction. A Kalman filter was also utilized to address motion
and illumination artifacts.

A different approach was presented by De Haan et al. [10],
utilizing the chrominance features of R, G, and B spectra. The method
extracted the two chrominance vectors, orthogonal to each other, from
the RGB color spectra. RGB to chrominance vector transformations
was performed by empirically known coefficients. Finally, the ratio
for the two vectors was used for PPG signal extraction. Furthermore,
De Haan et al. [11] further improved this method by employing
the absorption spectra changes of the RGB spectra for BVP signal
extraction, where the Hulsbusch noise-free spectrum model was used
to develop a normalized BVP vector. Combining chrominance-based
signals and ICA’s advantages, Song et al. [21] introduced a semi-blind
source separation method named Kernal Density ICA, which takes
chrominance signals as input and extracts the PPG signal. The kernel
density ICA was used to address the problem of similar magnitude
among illumination variation and PPG signal. In addition, the authors
have also tested the effect of different shooting distances and image
resolution for PPG signal extraction.

Realizing the need to add more channels for accurate BVP extrac-
tion, McDuff et al. [38] used a five-band lens camera to extract the
orange and cyan spectra along with the three traditional color spectra.
This enables monitoring the absorption of light differences between
Hb and HbO2 by creating a bigger overlap between cyan, orange,
and green spectra, for accurate HR estimation, using the approach
presented by Poh et al. [2]. A similar approach was presented by
Gupta et al. [9] in which a magenta color filter and a thermal camera
was utilized with an RGB camera, to overcome the illumination
variations effect on HR estimations. Furthermore, they concluded
that the red and green channel with thermal imaging can better
estimate HR. FastICA was used for BVP signal separation, which
uses negentropy to maximize statistical independence. Yan et al. [5]
proposed an approach of using a weighted average of RGB spectra
of the selected ROI for improving the Signal-to-Noise Ratio (SNR)
followed by denoising the signal using Wavelet transform for PPG
signal extraction. Kumar et al. [7] used a monochrome camera for
extracting the green spectra followed by its weighted average using
varied ROI combinations.

Purucuhe et al. [3] analyzed the effect of using different facial
region parts on HR estimation and divided the facial region into
three ROIs: forehead, area surrounding eyes and nose, and mouth
area. The HR was computed using each ROI, applying ICA for PPG
signal extraction, followed by Fourier transform. The summary of
this literature review is presented in Table I.

The limitations of the existing state-of-art methods are multi-
fold. First, selecting the appropriate IC containing BVP information
is challenging due to the unordering of independent components.
Second, existing statistical dependence metrics do not consider the
non-linearity associated with the PPG extraction problem. Third,
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TABLE I
DATABASE SUMMARY USED FOR THIS STUDY.

Study Parameters ROI Used BVP
Method

Color
channel

Limitations

W Verkruysse
[4]

HR, RR face Filtering Green This study was the first attempt and did not address any artifacts
and bad signal to noise ratio.

M Poh [28] HR Face ICA RGB The method would not work well under rigid movements and
different illumination conditions.

M Poh [2] HR, RR face ICA RGB The study did not address illumination variation artifacts and rigid
motions.

G Tsouri [36] PR Face ICA RGB The constrained ICA is 30 times slower than ICA.
R Macwan [37] HR Face ICA RGB The proposed method uses periodicity as one of the criteria for

BVP selection, which limits its applicability for estimation during
periodic movements.

G Haan [10] HR Face CHROM RGB The CHROM method uses skin standardization and fixed projection
planes, which halts its generalizability.

G Haan [11] HR face CHROM RGB The method did not work well with the stationary subjects due
to unavoidable noise since the noise deviates the BVP vector and
degrades HR estimations.

R Song [21] HR Cheeks KDICA RGB This study examined the influence of resolution and shooting
distances; therefore, the limitations were not presented.

D McDuff [38] HR, BR, and
HRV

face ICA RGB, cyan,
and orange

Using unconventional cameras is not feasible in real-time. Further-
more, rigid movements were not addressed in this work.

O Gupta [9] HR, HRV Cheek, Forehead FastICA RGB,
Magenta
thermal

The study did not consider motion artifacts.

Y Yan [5] HR forehead Wavelet
Transform

RGB The method could not work well under illumination variations.

M Kumar [33] PR, PRV Face MRD RGB, Mono The method tracks ROI using the KLT algorithm, hence for larger
motion; features cannot be tracked, leading to PPG information loss.

T Puruche [18] HR, RR, and
HRV

Forehead, area around
eyes, and mouth

ICA RGB The study used the constrained conditions for estimations and did
not address any artifact.

*Note: HRV- Heart Rate Variability, RR-Respiratory rate, BR- Breathing rate, PR- Pulse rate.

adding further channels for HR estimation enhances the complexity
of the problem by increasing its dimensionality with an added effect
due to different types of motions and illumination variations. Fourth,
color difference equations proposed in color subspace transformation
methods have associated coefficients with the color channels, which
may affect PPG information. Finally, the semi-blind source separa-
tion may need additional information about PPG signal statistical
properties for accurate signal extraction.

The problem of unordering of the independent components is
resolved by assuming the BVP extraction problem as undercomplete,
which deals with taking raw RGB traces as input and a single BVP
signal as output. To ensure the consideration of non-linearity with
statistical independence, a non-linear optimization function (CDF
approximated by tanh) is proposed. The presented method can deal
with the associated non-linearity due to artifacts with three channels
of the RGB color space. The proposed method does not assign
the weights to color channels, ensuring that each color channel
contributes to the BVP signal independently. Finally, U-LMA does
not require apriori information to extract the BVP signal from raw
signals. Hence the proposed method manages to overcome all the
limitations pointed out by the existing literature.

III. PROPOSED METHODOLOGY

The proposed method takes a face video recorded under ambient
light conditions as input and estimates the mean HR. It calculates
the HR via a three-step procedure: ROI selection, BVP signal
extraction, and HR Estimation. This section discusses the detailed
information of the proposed U-LMA for HR estimation, explaining
all the constituting steps in the following subsections. A detailed flow
diagram for the proposed approach is shown in Fig. 1.

A. ROI Selection and Signal Construction

ROI selection deals with identifying the face using the Viola-Jones
face detector [39], followed by skin segmentation. The skin was
segmented using Cb and Cr components of the YCbCr color model
using the parameters proposed by Mahmoud [40]. Subsequently,
a spatial averaging operation for each channel was performed on
each image frame of the video. A detrending process was also
applied to remove slow non-stationary drifts in the signal using the
approach by Tarvainen et al. [41]. Finally, an overlapping moving
window operation was applied to each channel for constructing raw
signals. Fig. 2 depicts the workflow for ROI selection and raw signal
construction.

B. BVP signal extraction

The raw signals are further refined to extract the BVP signal
for HR estimation. Following the standard ICA annotations, the
raw signals are considered as mixture signals containing BVP and
other information along with noise interferences due to motion and
illumination artifacts. The goal is to extract the BVP signal as one of
the ICs from them [42]. Ideally, the 2nd IC from the green channel
is selected as a BVP signal, while other ICs are discarded, which
may contain BVP information. Therefore, this study defines a BVP
extraction as an undercomplete problem that takes three mixture
signals and extracts a single IC, consisting of BVP information from
all three channels [43]. This problem is solved using the proposed
U-LMA, which uses a CDF of the raw signals approximated by tanh,
followed by its optimization using the customized LMA proposed in
this study. The proposed approach is motivated by the work of Porrill
et al. [30] for signal separation and dimensionality reduction. The
difference lies in the context, optimization algorithm, and termination
condition. The present work uses a customized version of LMA for
optimizing the unmixing matrix W and the number of iterations as the
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Fig. 1. The workflow of the proposed method for HR Estimation.

Face Detection
Skin

Segmentation
Spatial

Averaging

DetrendingMoving Window
Operation

R,G and B
Signal traces

Fig. 2. ROI and raw signal construction.

only termination condition. The reason behind choosing the number
of iterations as a termination condition is to consider the absence of
BVP signal information. Since there is no reference BVP signal, it
becomes impossible to check the correlation of the resultant signal
with the original BVP signal, so the correlation criterion is not taken
into consideration. LMA is chosen because initial values of W due
to random initialization may or may not lie near the desired solution.
Both conditions need separate ways of approaching the solution. This
optimization algorithm will allow the solution to efficiently converge
to the desired values of W in both conditions [44]. The details of
the customized version of LMA will be discussed in the following
subsection.

Mathematically, x(t) ∈ R3×t and y(t) ∈ R3×t are mixed signals
and IC matrix, respectively. x(t) consists of three mixed signals x1(t),
x2(t), and x3(t), corresponding to the color channels, whereas y(t)
comprises 3 ICs y1(t), y2(t) and y3(t) corresponding to three mixed
signals. A standard ICA model assumes that mixed signals are linear
combinations of ICs:

x(t) = Ay(t) (1)

where A is the mixing matrix which, when multiplied by indepen-
dent components (signals), leads to mixed signals x(t). Unfortunately,
mixing matrix and independent components are unknown; therefore,
the independent components can only be extracted based on their
statistical properties, as mentioned before. Furthermore, the goal is

to estimate unmixing matrix W , which will be used for IC extraction
as follows:

y(t) = Wx(t) (2)

From (1), the matrix W can only be an approximation of A−1 for
accurate IC extraction. Unlike the standard ICA, where W is a square
matrix, for U-LMA, W will be a rectangular matrix since the number
of independent components is less than the number of mixed signals.
As the CDF (σ) of the statistically independent signals has maximum
entropy [30], W can be determined by maximizing the entropy of the
CDF, ensuring the statistical independence of ICs [45]. The entropy
H(y) of CDF for the BVP signal y is mathematically defined as:

H(y) = H(x) + E[log σ′] (3)

where H(y) and H(x) defines the CDF’s entropy of the IC and
multidimensional Gaussian mixed signals, respectively. σ′ represents
the CDF’s derivative of the only statistically independent component
(BVP signal). It is important to note that in (3), x(t) and y(t) are
written as x and y for brevity. It is challenging to calculate H(x);
therefore, it can be approximated as:

H(x) = 0.5 ∗ log(c) + 0.5 ∗ (1 + log(2 ∗ π)) (4)

For H(y) maximization, H(x) can be reduced to 0.5 ∗ log(c)
where c is written as E[xxT ] = WSWT and S is a diagonal
matrix containing the covariance values of x. Considering the reduced
form of H(x) and approximating σ = tanh, a new function can be
deduced as:

h(W ) = 0.5 ∗ log|WSWT |+ E[log(sec2(y))] (5)

(5) is used as a criterion for extracting the IC from the mixed
signals. Differentiating (5) with respect to Wij yields the ∇ vector
for updating the unmixing matrix W, given by:

∇(w
h) = (SWT /WSWT )T − 2E[yT x] (6)
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where (SWT /WSW )T is the pseudo inverse of W with respect to
S, positive definite matrix.

The proposed algorithm approximates the unmixing matrix W
using the customised LMA algorithm by maximizing (5) and updating
the matrix W using (6).

C. Customised Levenberg Marquardt Algorithm (LMA)

LMA is a widely used optimization algorithm that is used to
find the global minima for non-linear least-square functions with
faster convergence property [46] and dual algorithmic adaptability
depending on the current solution. In other words, the LMA can be
considered as a combination of gradient descent and the gauss-newton
method depending on the proximity of the current solution to the
global minima. The present study customized the conventional LMA
by introducing the entropy of cumulative density function (CDF)
approximated by a hyperbolic tangent (tanh) defined in (5) as an
optimization function, followed by its maximization for statistical
independence. The advantage of approximation using tanh lies in the
fact that it introduces processing with higher-order statistics to deal
with the non-linearity associated with the optimization problem [47].

The workflow of updating W using the proposed method for BVP
signal extraction is presented in Fig. 3. The process starts with the
random initialization of W followed by calculating the entropy of
CDF and subsequently validating the convergence condition. If the
convergence condition is reached, then Wcurr , the W at the current
iteration is returned as an output; otherwise, the Jacobian, Hessian,
and a diagonal matrix are calculated for updating W . The diagonal
matrix consists of the highest value of the Jacobian achieved until the
last iteration performed. The cost function, i.e., entropy is calculated
before and after updating W and is then compared. The damping
parameter λ is increased if entropy decreases, followed by calculating
the cost function again after updating W using Wprev from the
previous iteration until the entropy is increased. If there is a rise in the
entropy value after updating W, λ is decreased until the convergence
condition is reached. The raw signal is multiplied with W to extract
the BVP signal for HR estimation as:

BV P (t) = W ∗ x(t) (7)

D. Heart Rate Estimation

The BVP signal extracted through U-LMA is processed using
a bandpass filter with cut-off frequencies 0.7-4.0 Hz, respectively,
corresponding to 42-240 beats per minute (bpm). Finally, the Fast
Fourier Transform (FFT) is applied for analyzing the power spectral
density for maximum peak estimation, which is then used for the HR
calculation by taking its log10 and multiplying it by 60.

IV. RESULT ANALYSIS

The proposed method was tested under constrained and natural
conditions using three benchmark databases: VIPL-HR, UBFC-rPPG,
and COHFACE. The VIPL-HR database was used for performance
validation under constrained conditions,while the UBFC-rPPG tested
the method’s performance for rigid and non-rigid motions, and
illumination variations effect on the proposed method was tested
using the COHFACE database. It is necessary to analyze the method’s
performance under constrained and unconstrained conditions since
testing a method under constrained conditions provides insight into
its steps and their precision, whereas unconstrained conditions test
its robustness. A detailed description of the databases used for this
study is presented in the following subsections, with a summary in
Table II.

Unmixing Matrix
initialization

CDF entropy
cost function

Convergence
condition

W = Wcurr

stop

Jacobian and Hessian
Computations

W updation

CDF entropy
cost function

Increase λ
W = Wprev

Decrease λ
W = Wcurr

W

Yes

No

increase

decrease

Fig. 3. Customized LMA for entropy maximization.

Fig. 4. Face detection and skin segmentation.

A. Databases

1) VIPL-HR: The database consists of 2378 videos with visible
light spectra and 752 videos with Near Infrared (NIR) spectra from
107 subjects (79 males and 28 females), with age between 22 and 41
years.Nine variable scenarios were considered for sample collection.
For each scenario, the samples were collected using digital cameras
of different frame rates and NIR cameras. Each database sample
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TABLE II
DATABASE SUMMARY USED FOR THIS STUDY.

Database Features VIPL-HR UBFC-rPPG COHFACE
No. of subjects 107 50 40
Video Resolution 1920× 1080 640× 480 640× 480
Frame rate 30 30 20
Video Duration 30 seconds 90 seconds 60 seconds
Ground truth sensor CMS60C CMS50E SA9308,

SA9311M
Shooting Distance 1 meter 1 meter –
HR range 47-100 bpm 63-112 bpm 54-97 bpm
Considered Artifacts Constrained* Rigid and Non-

rigid motion
Illumination

*Constrained: Conditions with minimum permissible motion and
illumination.

comprises a 30 second (s) subject video, a BVP signal, HR, and SpO2
values [33]. This study has used the subset of videos that corresponds
to a frame rate of 30 frames per second (fps) with 1920×1080 pixels
resolution, covering the HR range between 47 and 100 beats per
minute (bpm). The ground truth HR was acquired using a CMS60C
pulse oximeter synchronized with the subject’s video. This resulted
in 107 samples (one from each individual), which were analyzed for
testing U-LMA. One sample (p41) was excluded due to insufficient
video length (18 s) being smaller than the processing window (25s).

2) UBFC-rPPG: UBFC-rPPG is a publicly available database
consisting of 50 video samples, synchronized with a CMS50E pulse
oximeter (with a sampling rate of 60 Hz). The videos are available
in an uncompressed form with a resolution of 640×480 pixels at 30
fps, covering the HR range between 63 and 112 bpm. Each video is 2
minutes (min) long in which the participants were asked to sit facing
the camera and play a mathematical game that causes an abrupt rise
and fall in HR value promoting rigid and non-rigid movements [21].
The database did not provide age-specific information. All videos
were used to test the performance of the proposed method [34].

3) COHFACE Database: The COHFACE dataset is a collection
of 160 videos with physiological recordings for the HR and the
respiration rate from 40 healthy subjects with a mean age of 35.6
years. The dataset constitutes 60 seconds (s) videos from 12 females
and 28 males covering the HR range between 54 to 97 bpm. The
videos were recorded with a resolution of 640 × 480 pixels at 20
fps with the synchronized BVP measurements using the BVP model
SA9308M, with a belt model SA9311M (with a sampling rate of
256 Hz) [35]. The dataset offers constrained and challenging natural
conditions, especially in terms of illumination variations over the
facial region. Therefore, this study tests the performance of the
proposed method using natural conditions video samples.

B. Performance Metrics
For each video sample, the estimated HR was compared to

the corresponding HR value acquired by the ground truth sensor
(ECG or PPG). The degree of differences between the actual and
the estimated readings were analyzed and summarized using the
Bland-Altman plot [48] with upper and lower statistical limits of
±1.96 ∗ standarddeviation(SD), mean error, standard deviation,
Mean Absolute Percentage Error (MAPE), and Root Mean Square
Error (RMSE), Pearson correlation at 0.01 significance level [49],
regression analysis at 95% confidence intervals and accuracy defined
by clinically accepted error differences between the ground truth and
the estimated HR values, i.e., ±5bpm.

C. ROI selection and Signal construction
Before this step, the RGB image frames of the video were

preprocessed to adjust the pixel intensities, using gamma correction.

The ROI selection deals with face detection followed by segmenting
the skin in the YCbCr color space in which Y represents the
luminance with pixel intensity ranges between 16 and 235, while for
the chrominance blue (Cb) and chrominance red (Cr) components,
the pixel values lie between 16 and 240. The thresholds used for
Cb and Cr components are in the range of 77 to 127 and 133 to
173, respectively, with no thresholding for the luminance component
[40]. Finally, the ROI is selected as 70% height and 60% width
of the segmented skin region. Fig. 4 depicts the results of the face
detection and skin segmentation process. For detrending the temporal
RGB traces, the regularization parameter was set to an empirically
defined value, i.e., 10. The raw signal was constructed using a moving
window operation with a 96% overlap (1-sec increment) for each
color channel.

D. BVP Signal Extraction and HR estimation
The BVP signal extraction was performed using U-LMA. The

unmixing matrix W was first initialized randomly, and the values
of damping parameter λ were set empirically as 5 and 2.5, respec-
tively, as a part of standard LMA initialization. Subsequently, the
customized LMA was employed to maximize the entropy of the
proposed non-linear CDF optimization function using 1000 iterative
steps due to the fact that none of the video samples took this many
iterations for convergence to global maxima. Finally, the optimized
unmixing matrix W was used to extract the BVP signal. Finally, an
FFT was applied to the resultant signal, followed by the calculation
of the log10 value of peak maxima and then multiplying it with 60
for a mean HR estimation.

E. Performance Analysis
As mentioned before, the performance of the proposed U-LMA

method is analyzed considering three scenarios: constrained, rigid
and non-rigid motions, and illumination variations. Table I specifies
that the VIPL-HR database has been used for performance testing
under the constrained or stable scenario, UBFC-rPPG for testing
its robustness in rigid and non-rigid motions and, COHFACE in
illumination variations scenarios. For each scenario, Bland-Altman
and regression plots will be presented and analyzed, taking into
consideration the respective measured parameters for the plots.

1) Constrained Scenario: For the constrained (VIPL-HR
database) scenario, the subjects were asked to sit in the still position
at a distance of one meter away from the camera with the ceiling
lamp on. The Bland-Altman and regression plot for the constrained
scenario are shown in Fig 5 and Fig. 6,respectively. The mean bias
for the proposed method is -0.35 bpm which is near to a zero error
difference between the ground truth and the estimated values. In other
words, on average, the HR estimated by the algorithm measures 0.35
bpm less than the conventional BVP sensor used. Furthermore, the
majority of the differences lie within the upper (7.3651) and lower
(-8.0632) level statistical limits, which justifies the good performance
of the method. Additionally, the Pearson correlation value denoted by
r for this scenario is 0.92, thus confirms a higher correlation between
the ground truth and the estimated values. Therefore, the Bland-
Altman’s analysis and high correlation value justify the superior
performance of the proposed method under the constrained scenario.

2) Rigid and Non-rigid motions Scenario: A performance anal-
ysis under this scenario was performed using all video samples of
the UBFC-rPPG database. The videos were collected while subjects
were playing a time-sensitive mathematical game which causes an
abrupt increase or decrease in HR values along with involuntary head
movements due to the subject’s action. The samples have a certain
amount of illumination variations, too, since the video samples were
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Fig. 5. Bland-Altman Plot for the constrained scenario.

Fig. 6. Regression plot for the constrained scenario.

collected considering natural conditions. Fig. 7 and Fig. 8 depicts the
Bland-Altman, and the regression plots, respectively. As expected,
the mean bias for this scenario is 1.84 bpm due to the presence of
motion artifacts which means, the U-LMA predicts 1.84 bpm more
than the traditional BVP. Consequently, the upper statistical limit of
the Bland-Altman plot is slightly greater than 10 bpm; however,
the method achieved a far lower statistical limit -6.6005. All of
the data points lie between the upper and lower statistical limits.
Interestingly, the ground truth and estimated HR values demonstrated
a very high correlation (0.94), despite having a higher overall mean
difference. Hence, the Bland-Altman analysis and the regression
plot confirm the proposed method’s effectiveness under challenging
motion conditions, while also handling the abrupt rise and fall of
HR values, when considering the mean of the HR values during the
interval.

3) Illumination Variations Scenario: The COHFACE database
is utilized to assess the ability of the U-LMA under different
illumination scenarios. It is worth noting that the samples for the
database possess motion artifacts too, but with the predominance

Fig. 7. Bland-Altman Plot for Rigid and Non-rigid motion scenario.

Fig. 8. Regression plot for Rigid and Non-rigid motion scenario.

of uneven illumination distribution over the face due to ambient
light. The performance analysis using Bland-Altman plot is presented
in Fig. 9, while the regression plot is presented in Fig. 10. The
mean bias achieved with the illumination scenario is -0.85 with
lower and upper statistical limits of -9.7546 and 8.0546, respectively.
Similar to the other scenarios, almost all the differences lie within
the statistical limits. Furthermore, the Pearson correlation achieved
under this scenario is 0.92.Both plots and their measured parameters
proved the efficiency of the U-LMA for the HR estimation using
illumination variant facial videos.

F. Comparative analysis

The available related conventional rPPG methods in the literature
are based on a single color channel selection, ICA, color subspace
transformations, and Wavelet based methods. U-LMA’s performance
was compared to all of these, except for Wavelet based methods,
since these methods use the time-frequency domain and empirically
set coefficients, unlike other PPG methods included in the study.
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The single color channel selection method deals with utilizing
a filtered signal extracted from a single color channel. Therefore,
GREEN proposed by Verkrysse et al. [4] was included, which extracts
the BVP signal from the green color channel of the RGB color
space. Most ICA based rPPG methods use ICA-Poh (JADE) [2],
[28], [37], [38] and FastICA [9], [12], [50], [51]; hence they were
included in this analysis.JADE uses kurtosis, whereas FastICA uses
a negentropy based optimization function for an unmixing matrix
estimation.Two color subspace transformations CHROM [10] and
POS [14], were also included in the analysis due to their dependence
on optimization procedures like ICA based methods. CHROM is a
motion intolerant algorithm, while POS performs better for uneven
illumination variations. The BCG method [52] was also included
since it works on tracking the periodic movements of the head. As the
effect of both types of motion on the proposed method is also tested
in this study, it is worth including BCG as one of the state-of-art
methods for performance comparison. Finally, the method presented
by Song et al. [21], which is a combination of the color subspace
transformation method and KDICA proposed by Ajou Chen [53],
was also used to test the performance of the proposed method. The
KDICA uses a Laplacian kernel for kernel density estimations which
requires the pulse and artifacts spectrum to be in antiphase.

Furthermore, to assess the performance of the proposed non-linear
cumulative density function which is approximated by tanh and a
customized LMA, another variant of the proposed undercomplete
analysis (U-neg) is also introduced, which utilizes the differential en-
tropy or negentropy as an objective function. This objective function
is optimized using the standard ICA procedure given by Hyvärinen
et al. [42].

GREEN, ICA-Poh, CHROM, POS, and BCG were implemented
using the standard implementation included in the iPhys toolbox by
Mc Duff et al. [54]. Furthermore, the MATLAB implemented versions
of FastICA by Hyvärinen et al. [42] and KDICA by Ajoy Chen
[53] were used to simulate the respective HR estimation methods
as mentioned above, keeping other steps (ROI selection, bandpass
filtering, and FFT) identical to the proposed U-LMA. All methods
were tested under three scenarios, as explained in previous subsec-
tions. In other words, the video samples from all three databases
were tested for all the methods used for comparative analysis by
calculating RMSE, MAPE, mean error, standard deviation, accuracy,
and Pearson correlation values under 0.01 significance level (α).

1) Constrained scenario: Similar to section IV-E.1, the videos
from the VIPL-HR database were used for comparative analysis. The
performance metrics for the comparative analysis are presented in
Table III. Among all methods, BCG was the worst performing method
for this scenario, despite minimal motion and illumination variation
artifacts. BCG is susceptible to perform poorly in the presence of
involuntary head movements, which may lead to false identification of
face tracking points for estimation [52]. The CHROM, GREEN, ICA-
Poh, and CHROM methods exhibited almost the same performance.
The poor performance of GREEN becomes apparent due to inap-
propriate method formulations and the performance validations [28].
Furthermore, the original study suggested that along with green, the
red and blue channel also contains complimentary PPG information
[4], which is also confirmed in this study. The poor performance
of ICA-Poh is due to lower frame rate as compared to the ground
truth sensor value since this leads to an inappropriate mapping of
BVP peaks, which inturn leads to inaccurate interbeat intervals for
HR calculation [2]. CHROM’s performance depends greatly on its
alpha tuning procedure which works better for different magnitudes
of specular distortions and pulse signal. The noise due to involuntary
movements is inevitable, which might have degraded the performance
[21]. Like CHROM, the POS method’s accuracy depends significantly

Fig. 9. Bland-Altman plot for Illumination variations scenario.

Fig. 10. Regression plot for Illumination variations scenario.

on its alpha tuning procedure which is suboptimal in the case of
similar specular and pulse components magnitude. In this case, the
specular variation components projected on the two axis may not be
in absolute antiphase due to the presence of noise, which inturn leads
to false estimations of alpha, and consequently into a poor BVP signal
extraction. U-neg has performed relatively better than the above-
mentioned state-of-the-art methods due to an effective information
gathering from red, green and blue color channels.However, it failed
to suppress the effect of inevitable noise.

On the other hand, Kernel ICA and FastICA have performed
considerably better than other methods and U-neg. However, the
performance of KernelICA suffered due to the same reason as
CHROM. However, FastICA showed better performance than other
methods except U-LMA which once more proved the effectiveness
of negentropy based optimization function, by ensuring statistical
independence among independent components. The proposed U-
LMA achieved the best results, justifying its performance due to its
ability to use higher order statistics for processing non-linear signals
and effective optimization procedures using LMA. Moreover, the
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TABLE III
PERFORMANCE METRICS FOR THE METHODS UNDER CONSTRAINED

SCENARIO.

Methods RMSE
(bpm)

MAPE
(%)

SD*
(bpm)

Mean
(bpm)

Accuracy
(%)

r*

Green 21.4 24.7 12.3 17.6 1.89 0.23
ICA - Poh 19.15 22.37 11.70 15.21 2.83 0.24
CHROM 16.16 19.19 15.67 4.20 9.43 0.22
POS 18.80 22.30 11.94 14.56 0.94 0.31
BCG 24.87 27.79 12.82 21.35 7.55 -0.04
KernelICA 13.15 14.93 11.20 6.97 18.69 0.51
FastICA 13.10 15.37 10.38 8.06 19.62 0.60
U-neg 17.03 17.21 13.84 10.01 23.58 0.47
U-LMA 3.85 4.07 3.86 -0.35 84.91 0.92
SD*: Standard Deviation;r*:Pearson correlation is calculated at the 0.01
significance level;Accuracy is defined as the percentage of achieving
the error difference with ±5 bpm.

highest accuracy with clinically accepted error difference was also
achieved by U-LMA.

2) Motion Scenario: The video samples from the UBFC-rPPG
database were used to assess the effect of rigid and non-rigid motions
on HR estimation. Table IV presents the performance metrics for
all the compared methods. Overall, all the methods performed well
under the motion scenario due to uncompressed videos. Similar to
the constrained scenario, BCG performed the worst for the motion
scenario as well. BCG method’s performance was suboptimal due
to the presence of rigid and non-periodic head movements [52].
An improved performance of the GREEN method indicates that the
method is effective for uncompressed videos and is also data-driven.
ICA-Poh performed relatively well due to the accurate selection of the
BVP signal since there was no loss of information from the videos.
Interestingly, the statistical independence among the components
suffered due to the similarity of motion and pulse spectra under
motion scenario, which led to the almost similar performance of ICA-
Poh and FastICA. Furthermore, KernelICA and U-neg also demon-
strated a similar performance for different reasons; KernelICA uses
motion intolerant chrominance signals followed by KDICA, whereas
U-neg uses a negentropy based function for the unmixing matrix
estimation using undercomplete ICA, combining PPG information
from all color channels. Although the RMSE, MAPE, mean error,
and error standard deviation of U-neg was reduced, the accuracy was
degraded in the motion scenario, as was to be expected. CHROM and
POS performed relatively better than all the methods except U-LMA.
This is due to their ability to perform well under motion scenarios due
to extraction motion resistant signals followed by the alpha tuning
procedure. Nevertheless, the proposed U-LMA outperformed all the
methods, reporting the minimum value of errors, highest accuracy,
and Pearson correlation, justifying its exceptional performance and
clinical relevance.

3) Illumination Variation Scenario: The effect of illumination
variations on the methods used for this study was evaluated using
the COHFACE database. The GREEN method has shown a nega-
tive correlation for this scenario, indicating their susceptibility for
uneven illumination distribution as it is susceptible to the illumi-
nation variation artifacts due to varying light intensity distribution
[4]. ICA-Poh did not perform well due to low frame rate of the
videos, as explained in the study conducted by Poh et al. [2]. The
POS performance was suboptimal due to heterogeneous illumination
conditions as a result of its assumption of independent intensity
variations [14]. While, CHROM and BCG performed better than
these three methods in terms of accuracy. However, these methods
could not perform adequately due to the susceptibility of BCG for
illumination variations [52] and due to considerably larger differences

TABLE IV
PERFORMANCE METRICS OF THE METHODS UNDER RIGID AND

NON-RIGID MOTION SCENARIO

Methods RMSE
(bpm)

MAPE
(%)

SD*
(bpm)

Mean
(bpm)

Accuracy
(%)

r*

Green 28.08 20.26 25.20 12.90 44 0.34
ICA – Poh 20.49 13.34 19.56 6.72 58 0.54
CHROM 14.08 9.00 13.16 -5.35 66 0.70
POS 14.27 9.37 13.51 -4.98 62 0.71
BCG 36.08 33.75 16.90 31.97 8 0.03
KernelICA 20.40 14.67 18.90 8.12 46 0.59
FastICA 20.36 14.92 19.63 6.10 46 0.56
U-neg 14.97 12.86 11.27 9.98 22 0.59
U-LMA 4.57 4.00 4.22 1.84 78 0.94
SD*: Standard Deviation;r*:Pearson correlation is calculated at the 0.01
significance level;Accuracy is defined as the percentage of achieving
the error difference with ±5 bpm.

TABLE V
PERFORMANCE METRICS OF THE METHODS UNDER ILLUMINATION

VARIATIONS SCENARIO.

Methods RMSE
(bpm)

MAPE
(%)

SD*
(bpm)

Mean
(bpm)

Accuracy
(%)

r*

Green 22.76 26.93 20.39 10.61 22.50 -0.07
ICA – Poh 24.88 28.52 17.84 17.56 35.00 0.06
CHROM 19.49 22.48 10.54 16.47 35.00 0.25
POS 26.28 30.71 12.63 23.14 22.50 0.05
BCG 25.53 27.00 15.72 20.27 2.50 0.19
KernelICA 14.50 12.61 11.60 8.90 50 0.36
FastICA 15.76 14.89 10.68 11.71 45 0.41
U-neg 11.13 13.03 10.76 3.33 25 0.60
U-LMA 4.48 5.16 4.45 -0.85 80 0.92
SD*: Standard Deviation;r*:Pearson correlation is calculated at the 0.01
significance level;Accuracy is defined as the percentage of achieving
the error difference with ±5 bpm.

between actual and estimated specular distortions in the video for
CHROM [10]. Furthermore, the other ICA based methods KernelICA
and FastICA performed relatively better than the methods mentioned
above. However, the degraded performance of the KernelICA is due
to the same reason as the CHROM method, along with the inability of
the kernel density based ICA, when performing under a higher degree
of illumination distortion. Specifically, the KDICA used laplacian
Kernel, which failed to work due to illumination and pulse spectra
overlapping. FastICA performed better than KernelICA due to the
implication of a statistically better optimization function to separate
specular and PPG information. On the other hand, U-neg achieved
better results than other state-of-the-art methods demonstrating the
significance of undercomplete ICA and negentropy. Furthermore, U-
LMA achieved the lowest error values and highest accuracy and
correlation values proving its superiority for HR estimation under
illumination variations scenario. Table V presents the performance
of these methods under illumination variations scenario.

4) RMSE analysis: The RMSE for the HR estimation has been
predominantly analyzed in most studies conducted so far. It is
calculated as the square root of the averaged squared error differences
among different samples which provides the overall distribution of
errors. Fig. 11 and Fig. 12 depicts the box and whisker plot of
RMSE for analyzing the RMSE distribution among methods based on
databases and vice-versa. These RMSE plots provide a deep insight
into the performance of state-of-the-art and proposed methods for all
the databases used in the study.

Fig. 11 shows that the UBFC –rPPG database was challenging
for all methods used in the study due to its realistic conditions
considered during video acquisition, whereas the performance with
VIPL-HR is the best due to constrained conditions. The COHFACE
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Fig. 11. Database wise RMSE comparison for the methods.

database is also challenging in terms of illumination variations
throughout the samples. All methods, except BCG performed better
under the motion scenario. Specifically, ICA-Poh, CHROM, POS,
and U-neg illustrated their ability to deal with different types of
motions. As mentioned before, the worst performing method is BCG,
as depicted in the RMSE plots in Fig. 12. BCG was unable to
adjust with the inevitable color distortions due to involuntary motions
and illumination variations as mentioned in the original study [52].
The RMSE of the GREEN method was also very high since the
study did not use any formulation for BVP signal extraction. The
performance of all three ICA based state-of-the-art methods was
similar, despite different objective functions used for unmixing matrix
estimations. All of these methods suffered from the permutation
problem, which makes it challenging to choose the appropriate BVP
component and discarding other components simultaneously. Similar
to ICA based methods, the color subspace transformation methods
CHROM and POS also exhibited similar performance except for the
illumination variations scenario in which the POS method failed to
perform well. Since the videos were not recorded using an external
source of light, causing serious illumination variations on different
facial regions which produced an effect similar to multiple light
sources (e.g., entirely black on one side and bright on the other side).
U-neg performed relatively better than any state-of-the-art method,
except for motion scenario, in which CHROM and POS achieved
better performances than U-neg. Since both methods were able to
extract the BVP signal due to uncompressed videos, that ensured
extracting the detailed subtle color variations, which led to accurate
BVP signal. However, higher RMSE of POS method for COHFACE
database is due to heterogeneous illumination variations, which
degraded its performance [14].Furthermore, U-LMA performed far
better than U-neg and other state-of-the-art methods either in terms
of databases or state-of-the-art methods comparison. The proposed
methods performed relatively better in all scenarios due to the
proposed undercomplete ICA, which ensures better PPG information
extraction from all three channels of RGB color space. Furthermore,
despite U-neg used negentropy (differential entropy) for optimizing
W with a standard ICA implementation proposed by Hyvärinen et
al. [42], the experiments conducted during the study revealed that
the entropy of CDF approximated by tanh yielded better statistical
independence than negentropy Additionally, the lowest RMSE ranges
by U-LMA when compared to U-neg in all scenarios were due to

Fig. 12. Method wise RMSE comparison for the databases.

better optimization of an unmixing matrix W using customized LMA
proposed in this work.

V. DISCUSSIONS

U-LMA outperformed all other methods in the various scenarios
considered for the study due to its following components: Non-linear
objective function (entropy of the CDF approximated by tanh), and
an efficient optimization algorithm (customized LMA). The non-
linear function provided an advantage to counter the non-linearity
associated with different types of motions and illumination variations.
A customized LMA was able to find the global maxima for the
entropy of the non-linear function in all samples with empirically
evaluated damping parameter values. The study introduced U-neg
which included undercomplete ICA with negentropy as an opti-
mization function which allowed testing the effectiveness of the U-
LMA components Kurtosis was not used because negentropy exhibits
better statistical properties than kurtosis [42]. Moreover, JADE used
kurtosis, whose performance was surpassed by U-neg, as shown in
the previous section. The performance comparison between both
methods confirmed that processing utilizing higher-order statistics
enhanced the performance of the proposed method. On the other
hand, undercomplete ICA prevented the loss of BVP information
by considering all the color channels, justifying the vitality of BVP
information in red and blue channels for accurate HR estimation.

Following Bland-Altman and regression analyses, the mean bias
of the illumination scenario is slightly further away from a zero
error difference when compared to the constrained scenario, depicting
the effect of illumination artifacts on HR estimation. As expected,
the mean bias for the motion scenario is comparatively larger than
the illumination and constrained scenario, respectively, due to the
presence of rigid and non-rigid motions of the subjects in the video
samples. Furthermore, the Pearson correlation value for the UBFC-
rPPG database is higher by 0.2 bpm than other databases, which could
result from the utilization of uncompressed videos for HR estimation.

The samples used under motion and constrained scenarios have
the same sampling rate (30 fps), whereas the samples tested under
illumination scenarios have a relatively lower frame rate (20 fps). It
is worth mentioning pointing that a low frame rate results in missing
blood volume variations, which can be captured using a higher
sampling rate. The proposed U-LMA worked equally well for the
videos captured with different frame rates. Hence, the blood volume
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variations information loss due to compressed or low sampling rate
videos did not significantly affect the proposed method for HR
estimation.

Although the proposed method managed to confine most of the
differences between the ground truth and the estimated HR values
within the statistical limits, this did not justify its clinical relevance
since none of the statistical limits were found to match with the clin-
ically accepted error differences. Therefore, a new metric accuracy
(error difference < 5 bpm) was defined to test the clinical relevance.
The proposed U-LMA achieved sufficiently better accuracy justifying
its clinical relevance as compared to other methods.

Nevertheless, U-LMA also possesses certain limitations that need
to be addressed in the near future. First, although the effect of video
compression and frame rates were tested, the effect of different
camera-subject distances on the HR estimation was not addressed.
The effect of different shooting distances could be tested on HR
estimations by creating such databases followed by analyzing them.
Second, although U-LMA was tested for the rigid and non-rigid
motions, scenarios with periodic motions such as walking running,
treadmill exercises, etc., or unconscious motions during sleep con-
ditions were not addressed, which could be a future direction of
the study. Third, the proposed method works well with various
illumination variation conditions, but the effect of zero luminance
or dark conditions was not addressed in this work, due to non-
availability of reliable databases. The majority of the limitations for
the proposed work are due to the limited or unavailability of sufficient
benchmark databases. Finally, the proposed method only estimates
HR, whereas other physiological parameters estimations like blood
oxygen saturation, blood pressure, respiratory rate using BVP signals
will be worth considering in future studies.

VI. CONCLUSION

This work addressed the BVP extraction as an undercomplete
problem, while proposing the U-LMA. Taking into account the non-
linearity due to motion and illumination artifacts, a novel entropy
based non-linear function was proposed. The proposed non-linear
function proved its effectiveness by addressing both type of ar-
tifacts. Furthermore, the non-linear function was optimized using
the proposed customized LMA for entropy maximization, maximum
statistical dependence due to better optimization of unmixing matrix
W. The optimization using customized LMA, also aimed at reduced
the effect of motion illumination artifacts. Additionally, the proposed
method eradicates the need for IC selection and preserves the
maximum possible BVP information from all channels of the RGB
color space. A performance analysis for U-LMA was undertaken by
comparing it under three scenarios: constrained, motion (rigid and
non-rigid) and, illumination variations scenarios. The Bland-Altman
analysis and regression plots proved the efficacy of the proposed
method under all scenarios. Additionally, to check the influence of
customized LMA and the entropy based CDF function, U-neg with a
negentropy optimization function using standard ICA implementation
was also tested. The results demonstrated the effectiveness of the
proposed non-linear function and LMA by achieving comparatively
better results than U-neg. In addition, U-LMA and U-neg, with other
state-of-the-art methods, were also compared under the aforemen-
tioned scenarios using RMSE, MAPE, mean error, standard deviation,
and accuracy (error difference < ±5bpm), and Pearson correlation
values. The results depicted the dominance of U-LMA in all scenarios
by reporting comparatively the lowest error values, high accuracy
and Pearson correlation values under 0.01 significance level. Higher
accuracy values also suggest the applicability of the proposed method
under clinical conditions.
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