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A Deep Learning Approach for Detecting Otitis
Media From Wideband Tympanometry

Measurements
Josefine Vilsbøll Sundgaard , Peter Bray, Søren Laugesen , James Harte, Yosuke Kamide,

Chiemi Tanaka , Anders Nymark Christensen , and Rasmus R. Paulsen

Abstract—Objective: In this study, we propose an auto-
matic diagnostic algorithm for detecting otitis media based
on wideband tympanometry measurements. Methods: We
develop a convolutional neural network for classification of
otitis media based on the analysis of the wideband tym-
panogram. Saliency maps are computed to gain insight into
the decision process of the convolutional neural network.
Finally, we attempt to distinguish between otitis media with
effusion and acute otitis media, a clinical subclassifica-
tion important for the choice of treatment. Results: The
approach shows high performance on the overall otitis
media detection with an accuracy of 92.6%. However, the
approach is not able to distinguish between specific types
of otitis media. Conclusion: Out approach can detect otitis
media with high accuracy and the wideband tympanogram
holds more diagnostic information than the commonly used
techniques wideband absorbance measurements and sim-
ple tympanograms. Significance: This study shows how ad-
vanced deep learning methods enable automatic diagnosis
of otitis media based on wideband tympanometry measure-
ments, which could become a valuable diagnostic tool.

Index Terms—Computer-aided diagnosis, convolutional
neural network, deep learning, wideband tympanometry.

I. INTRODUCTION

O TITIS media (OM) is an inflammation in the middle ear.
The condition is divided clinically into two diagnostic

groups: acute otitis media (AOM) and otitis media with effusion
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(OME). Acute otitis media is characterized by an acute infection
with a rapid onset, while OME is characterized by the presence of
fluid in the middle ear. Both types are extremely common among
children, and OM is one of the most common reasons for medical
consultations for children at primary-care physicians [1].

Even though AOM and OME are similar, their clinical classi-
fication is important because antibiotics are only recommended
for the treatment of AOM, which is caused by infections. An-
tibiotics are not used to treat OME as it is self-limiting and
is not an infection. Diagnosing which type of OM a patient
has is challenging. The condition is usually assessed with an
otoscope that allows the doctor to obtain a visual impression of
the patient’s eardrum. This technique requires specific training
and diagnosis has been shown to be highly subjective [2]. In
response to these challenges, the present authors have previ-
ously demonstrated the advantages of applying deep learning
methods for automatic identification of otitis media in otoscopy
images [3].

In this paper, we turn our attention to another technique that
can be used to diagnose middle ear conditions - tympanometry.
This technique characterizes the ear canal acoustically by using
a range of positive and negative pressure offsets. From this,
one can derive conclusions about both eardrum mobility and
middle ear condition. Tympanometry objectively evaluates the
energy transmission through the middle ear without assessing
the sensitivity of hearing.

Standard absorbance tympanometry is performed by using an
acoustic probe with an airtight seal in the ear canal, as shown in
Fig. 1. This probe presents a tone into the ear canal, typically at
a frequency of 226 Hz or 1 kHz and around 85 dB SPL (sound
pressure level), and uses a microphone to measure the sound.
The choice of frequency depends on the patient, 226 Hz is used
for adults, whereas 1 kHz is used in pediatric tympanometry. The
resultant sound pressure level in the ear canal is determined by
the relative proportions of absorbed and reflected sound energy.
During the measurement, the instrument changes the pressure in
the ear canal, typically from +200 to -400 daPa. The proportion
of absorbed energy changes as the changes in pressure alter the
eardrum tension and displace the attached middle ear structures.
These changes are typically plotted as a tympanogram [4], which
is a graph of admittance versus pressure, since this provides the
greatest diagnostic utility.
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Fig. 1. Measurement of a WBT. The pressure in the middle ear is
changed while a sound at specific frequencies is presented. The in-
strument then records the reflected sound from the eardrum and thus
computes the absorbance.

Wideband tympanometry (WBT) is an extension to stan-
dard tympanometry in that it measures the ear canal’s acoustic
properties over a range of frequencies [5], [6]. The use of a
wideband stimulus (i.e., short duration rectangular pulse or a
chirp covering the range of 226 Hz to 8000 Hz) has been shown to
be more efficient and precise for middle ear assessment [7]–[11]
than a normal 226 Hz or 1 kHz tympanogram, since it simul-
taneously determines the characteristics of the middle ear over
the full range of the audiometrically most important frequencies.
Because of the presence of multiple frequencies in the transient
stimuli, WBT is less susceptible to myogenic noise, which
originates from the patient’s movements [4].

Assessment of middle ear function over this broad bandwidth
provides detailed information on the middle ear status and can
assist considerably with diagnosis. Higher absorbance values
suggest a more efficient middle ear transmission of sound, as
shown in Fig. 2(c). Fig. 2(a) and (b) show how lower values
mean that the eardrum cannot move properly, which could be
caused by increased stiffness in the ossicular chain, or a fluid-
filled middle ear. Fig. 2(c) shows a WBT of a patient with no
effusion (NOE), and thus a healthy middle ear. The average NOE
WBT shows change in absorbance on the pressure axis. Fig. 2(a)
and (b) presents with a flat absorbance across various pressure
values, indicating reduced eardrum mobility due to otitis media.

Clinical assessment of OM using WBT could benefit from an
automatic diagnostic system designed to assist medical experts
when diagnosing patients. As described above, WBT is an
objective measurement, and it has been established that it can
be successfully used to diagnose OM. Further, its traditional
use requires specific training of hearing care professionals to
allow them to interpret WBT results to diagnose OM. Thus an
automatic diagnostic system could prove a useful clinical tool.

The contributions of this paper include the development of
a 2D convolutional neural network designed and trained to
perform fully automatic classification of OM from WBT mea-
surements. The analysis is conducted on the full WBT without
the need for any manual feature extraction. We compare the
diagnostic value of the full WBT measurements with that of

the more traditional measurements: ambient absorbance and the
0.375-2 kHz averaged tympanogram.

We are the first to include AOM in our classification pipeline,
and our proposed approach outperforms previous state-of-the-art
methods for binary classification of OM and NOE. We compute
saliency maps for the WBT classification to investigate the most
important features of the WBT for the diagnosis of OM and
compare the key regions with the findings in previous studies.
The tools we present in this paper can be used by clinicians to
diagnose OM with 92.6% accuracy. Furthermore, by inspecting
the saliency maps, clinicians can gain valuable insights into the
decision process of the neural network.

A. Related Works

Tympanometry provides quantitative information about the
presence of fluid in the middle ear, about the mobility of the
tympanic-ossicular system, and about the volume of the external
auditory canal. The standard tympanometry method has limita-
tions, including lack of specific norms for different population
types (children, infants, adults), as the eardrum and external
ear canal are anatomically different in children and adults [4],
and specific norms for different diagnostic conditions such as
OM. The accuracy of tympanometry in detecting OME has been
examined by Palmu et al. [12] and Harris et al. [13]. Both studies
concluded that tympanometry has both high sensitivity to and
specificity for OME. [13] has shown that WBT provides more
detailed information on the mechanical and acoustic status of
the middle ear than the standard 226 Hz tympanogram. Terzi
et al. [10] employed a receiver operating characteristic (ROC)
test to distinguish between NOE and OME cases based on
WBT measurements from pediatric patients, and compared the
diagnostic value of averaging the absorbance values centered at
different frequencies and using different frequency ranges. The
highest diagnostic value was found for the 0.375-2 kHz average,
followed by the 1 kHz mean and the 1.5 kHz mean. Ellison
et al. [8] analyzed measurements only at ambient pressure using
a likelihood-ratio classifier and found that the absorbance is sen-
sitive to middle ear stiffness and middle ear effusion. They found
that the highest classification performance was achieved when
employing the full frequency range (0.25 Hz to 8 kHz), while
the bandwidth of frequencies from 800 Hz to 2 kHz was the one
most affected by eardrum stiffness. Aithal et al. [14] showed that
wideband absorbance at ambient pressure and tympanometry
peak pressure can successfully be used to detect OME, although
not significantly better than a 226 Hz tympanogram.

Recent studies have thus shown an interest in automatic clas-
sification of these measurements. So far, this has been limited to
the binary classification of OM and NOE. Merchant et al. [15]
created a multivariate prediction model based on the three first
principal components using logistic regression, showing good
results. Their study concludes that wideband absorbance is a
strong and sensitive indicator of the effusion volume.

More advanced machine learning and, in particular, deep
learning models are the state of the art for most classification
tasks in all data domains, as seen in the current literature
[16]–[18]. This development is also seen in the field of tympa-
nometry classification. Binol et al. [19] automatically detected
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Fig. 2. Average WBT across all subjects in the dataset: acute otitis media (a), otitis media with effusion (b), and no effusion (c) cases. Color scale
shows the variance across the measurements within each class.

NOE or OME based on a combination of otoscopy imaging and
tympanograms. Their analysis used a random forest classifier on
selected features (peak admittance, peak pressure, width of the
tympanogram, and ear canal volume) from a standard 226 Hz
tympanogram, which was combined using majority voting
with the output of a convolutional neural network predicting
diagnosis based on the otoscopy image of the patient. Grais
et al. [20] employed several machine learning methods to
analyze the WBT measurements, and found the convolutional
neural network to be the best performing approach. They also
used a random forest model to produce class activation maps
that were used to interpret the diagnostic decision.

II. DATA

The data used for this study include WBT measurements
collected at Kamide ENT clinic, Shizouka, Japan, from patients
aged between 2 months and 12 years. The data collection
had ethical approval from the Non-Profit Organization MINS
Institutional Review Board (reference number 190221). The
measurements were performed using the Titan system (Inter-
acoustics, Denmark). Similarly to standard absorbance tympa-
nometry, a WBT measurement is performed by inserting, and
hermetically sealing, an acoustic probe with an appropriately
sized silicone ear tip into the patient’s ear canal. The probe
repeatedly presents a transient stimulus with a frequency range
encompassing 226 Hz to 8 kHz while modifying the pressure
in the external acoustic canal from 200 to -300 daPa [4]. Di-
agnosis was decided by an experienced ear-nose-throat (ENT)
specialist based on signs, symptoms, patient history, otoscopy
examination, and the WBT measurement.

A WBT measurement was excluded from the dataset if the
minimum pressure was above -280 daPa, or the maximum
pressure was below 180 daPa, or if the measurement consisted of
less than 20 pressure samples. If these conditions were not met, it
was assumed that there had been an air leak between the probe
and the ear canal during measurement, and the pressurization
therefore failed. Across WBT measurements, pressure intervals
are not uniformly sampled, as a pressure sweep (gradual increase
and then decrease) is applied while acoustic stimuli are presented
in series. The total number of measurements on the pressure
axis therefore varies between measurements. For the purpose of

analysis, the frequency axis sampled regularly on a logarithmic
scale for each measurement. Measurements above 4 kHz are
very prone to noise, and little diagnostic value is found in this
high frequency range [21]. A common grid is therefore defined
from 180 daPa to -280 daPa in 84 steps on a linear scale, and from
226 Hz to 4 kHz in 84 steps sampled on a logarithmic scale. All
WBT measurements are resampled to fit this grid using bilinear
interpolation.

The dataset thus consists of 1014 WBT measurements from
both left and right ears, separated into the three diagnostic
groups: no effusion (NOE, 488 measurements), otitis media
with effusion (OME, 372 measurements), and acute otitis media
(AOM, 154 measurements). The average WBT measurements
for each diagnostic group and variance within each group are
shown in Fig. 2. The dataset was split into training (80%) and test
(20%) sets, and the training set was further split into a training
(80%) and validation (20%) set. It was ensured that data from
each patient were only used for either training, validation, or
testing.

From the WBT measurement, it is possible to extract a simple
tympanogram and an absorbance measurement, which are also
commonly used to assess middle ear conditions. The absorbance
measurement is extracted at ambient pressure and displays the
absorbance across frequency without pressure alterations. A
simple tympanogram shows the absorbance change as a function
of the pressure variation in the middle ear at a certain frequency.
Based on the findings from [10], the average absorbance over
the range 0.375-2 kHz was selected to create the averaged tym-
panogram. These two measures were extracted from all WBT
measurements in the dataset after preprocessing. Fig. 3 shows
the average ambient absorbance and averaged tympanogram for
each of the three diagnostic groups together with the standard de-
viation within each group, showing considerable overlap across
all frequencies, but clear morphological differences.

III. METHODS

The first approach is developed to classify no effusion (NOE)
and otitis media (a combined group of AOM and OME, de-
noted OM). The conditions AOM and OME show considerable
overlap and similarities, and we therefore start by separating
the overall groups NOE and OM. Later, we will attempt to
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Fig. 3. Average ambient absorbance measurements (a) and 0.375-2 kHz averaged tympanogram (b) of each diagnostic group: OME (green),
NOE (orange), and AOM (blue). The faded background curves show the standard deviation of each group.

Fig. 4. 2D network architecture. The first number at the bottom of each block is the number of features, the second number shows the dimension
(the dimension is the same for height and width of the feature maps). Details about each layer are provided in Table I.

automatically distinguish between AOM and OME. This section
is divided into the following parts: WBT classification using a 2D
convolutional neural network; ambient absorbance and averaged
tympanogram classification using a 1D convolutional neural
network; data augmentation; comparison with related methods;
saliency maps for WBT classification; and finally, classification
of AOM, OME and NOE.

A. WBT Classification

A 2D convolutional neural network is employed for the clas-
sification of NOE and OM. The network structure is shown in
Fig. 4, and more details about each layer are presented in Table I.
The input to the network is the one-channel 84× 84 WBT.
Through repeated 2D convolution and max pooling, features are
extracted from the WBT, and finally the output of the network

TABLE I
2D NEURAL NETWORK STRUCTURE
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indicates the probability of OM presence. The architecture of
the network was designed specifically for the characteristics
of the WBT measurements, with inspiration from the AlexNet
architecture [22]. State-of-the-art convolutional neural networks
such as ResNet [23], VGG [24], or Inception V3 [25] are
all large-scale networks for image classification. PyTorch pro-
vides pre-trained versions of these networks, trained on the
ImageNet database [26] with input dimensions of 224× 244,
or 299× 299, depending on the network architecture. This is
helpful when limited data are available for training for an image
classification task. However, the WBT data are of a completely
different nature than the images of the ImageNet database,
as the WBT measurements are measured signals, not images.
Furthermore, the WBT data are rather simple compared to an
image, and do not require a large-scale network for classification.
The input dimensions are much lower (84× 84), the input only
consists of one channel, and the measurements consist of fewer
details compared to images, as seen in Fig. 2. It is therefore
not feasible, nor necessary, to employ a pre-trained network for
this task. Since the network employed for this classification task
has to be trained end-to-end, we need to limit the amount of
parameters, and thus the size of the model. We have therefore
designed a 2D convolutional neural network for this specific
classification task for WBT measurements, customized to the
input WBT size and requirements of this data type.

The neural network is trained end-to-end with a binary cross
entropy loss function using the Adam optimizer [27] with a
learning rate of 0.0001, which is decreased with a multiplicative
factor of 0.1 every 8th epoch. Batch size is set to 16, all training
inputs are shuffled for each epoch, and early stopping is em-
ployed with a patience of 20 epochs. The final classification is
obtained from the probability output with a threshold value of
0.5.

B. Absorbance and Tympanogram Classification

Two 1D convolutional neural networks with a similar structure
to the 2D networks for WBT classification are employed for the
classification of ambient absorbance measurements and 0.365-
2 kHz averaged tympanograms. Two 1D networks are trained
separately for the two tasks. The networks have the same archi-
tecture as shown in Table I, only using 1D operations instead
of 2D operations. The input is a (1, 84) tensor (absorbance or
tympanogram), and thus all output sizes in the table are the same,
except using only one dimension instead of two. The last linear
layers have output dimensions (1024), (1024), (1000), and (1)
due to the reduced input dimensions. The training parameters
are also the same as for the WBT neural network.

C. Data Augmentation

Extensive data augmentation is employed to improve training
and to avoid overfitting [28]. When performing image classi-
fication using convolutional neural networks, data augmenta-
tion usually consists of geometric transformations. However,
the WBT measurements will always be specified on the same
grid, i.e., the features of the WBT will be in the same location
of the measurement across different measurements. Geometric

transformations such as rotation and translation are therefore not
appropriate for this application. Instead, various types of noise
and other distortions are generated: Random Gaussian noise is
added to the input with intensities up to 0.1 of the maximum
value in the measurement; exponential noise with exponentially
increasing intensity across the frequency axis, and with no
change across the pressure axis; intensity shift, where a constant
between -0.2 and 0.2 is added to all intensities in the input;
intensity manipulation, where the input is multiplied with a
constant between 0.8 and 1.2; random erasing, where a randomly
selected region of the input is erased by setting all values in the
region to the mean value of the input measurement [29]; and
Gaussian hilly terrain, where a mixture of Gaussian functions
with various intensities are added to the input to generate noise
affecting a larger area in the input than the random noise. Note
that Gaussian hilly terrain changes the landscape of the input to
a larger extent than the other distortion methods.

Each of the distortion methods are added to the measurements
during training with a probability of 0.5. After performing
the augmentation, the intensity of the input is ensured to be
between 0 and 1, which are the natural boundaries of WBT.
The various types of data augmentation can be performed in
both 2D and 1D, and are therefore employed during training
for all classification networks. It is, however, unknown whether
all types of data augmentation increase performance in both 1D
and 2D. Experiments were therefore run with all three networks,
examining each type of data augmentation.

D. Comparisons

Besides our proposed methods, we have also run experiments
with the methods proposed by Merchant et al. [15] and Grais
et al. [20] for comparison. These methods were trained and
tested using our dataset to ensure a proper comparison. Mer-
chant et al. [15] propose an approach based on a multivariate
logistic classification model based on the three first principal
components of the WBT measurements. We trained the binary
classification model to predict OM or NOE, and tested it on our
test dataset. Grais et al. [20] compared several machine learning
methods for the classification of OM and NOE based on WBT
measurements. They show that the CNN is superior to a fully
connected neural network, random forest model, support vector
machine, and a k-NN. Since they have provided this detailed
comparison with other machine learning algorithms, we will
refrain from performing the same experiments, and compare
our approach with their best performing CNN. The CNN is
implemented as described in the paper, and trained and tested
on our dataset.

E. Saliency Maps

A saliency map is a representation of the unique importance
of each pixel or neuron in the network input. The purpose of
these maps is to visualize the feature maps of a neural network,
and thus use the visual representation to interpret the decision
process of a neural network. This attempt to interpret and analyze
the output of a neural network can build trust in the model
amongst its users, enable understanding of the model, and ease
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the integration of systems such as this into, for example, clinical
practice.

A variety of methods for output explanation from deep neural
networks exist, as seen in the survey by Singh et al. [30]. For
this pipeline, the widely used method of GradCAM [31] is
implemented and applied to the WBT classification network.
GradCAM is a generalization of class activation maps (CAM),
in which gradient information from the last convolutional layer
of the convolutional neural network is used to understand the
importance of each neuron in the feature maps. Convolutional
neural networks retain spatial information throughout the net-
work until it is lost in the final fully connected layers. The
last convolutional layer will therefore have the best trade-off
between high-level features and detailed spatial information.

The saliency maps are generated in several steps. The first
step is to compute the gradient of the class score for each feature
map in the last convolutional layer. A weighted combination of
all feature maps is computed using the class scores as weights,
and finally, a ReLU activation is performed to ensure that only
positive influences on the output class are included. This results
in a coarse saliency map of the same size as the feature maps in
the last convolutional layer (in this case 9× 9). The coarse map
is upsampled using bilinear interpolation to obtain a full input
size heat map of 84× 84.

F. Classification of AOM and OME

Finally, an approach to distinguish between AOM, OME, and
NOE based on the full WBT measurement is investigated. It has
not previously been shown or demonstrated that it is possible
use WBT to distinguish the two types of otitis media. Other
studies such as [8], [10], [20] only include OME cases, and
not AOM. Helenius et al. [32] investigated discrimination of
diagnosis based on standard 226 Hz tympanometry, and found
that this measurement can be used to distinguish between NOE
and OM cases, but not to diagnose specific types of OM. The
present study therefore examines if the additional information
provided by WBT (compared to a 226 Hz tympanogram) allows
for a specific diagnosis of types of OM.

This approach follows the same architecture as the binary
classification network for WBT classification described in Sec-
tion III-A. The only changes are the input data, which are now
from three different classes, because the OM class is divided
into OME and AOM, and the class-weighted cross-entropy loss
function is utilized during training to cope with the imbalance
in the dataset due to fewer AOM cases.

IV. RESULTS

The performance of OM detection on the test set with the
three different models is presented in Table II. The performance
metrics include accuracy, area under the curve (AUC) (which
shows how well the model separates the two classes), sensitivity,
specificity, and F1-score. Since sensitivity and specificity are
inversely proportional to each other, there is always a trade-off
between the two measures. The F1-score (the harmonic mean of
the precision and recall of a test) is therefore computed to ease
comparison. The models were trained using the best-suited data

TABLE II
OTITIS MEDIA CLASSIFICATION PERFORMANCE FOR WBT, AMBIENT
ABSORBANCE (ABSORB.), AND AVERAGED TYMPANOGRAM (TYMP.)

NETWORKS ON THE TEST SET

Performance for approaches proposed by merchant et al. [15] and grais et al. [20] on the
test set are also included. Bold font marks the highest performance within each metric.

TABLE III
EFFECT ON CLASSIFICATION ACCURACY OF VARIOUS TYPES OF DATA
AUGMENTATION ON THE THREE NEURAL NETWORKS: WBT WITH 2D

AUGMENTATION, AMBIENT ABSORBANCE AND AVERAGED TYMPANOGRAM
(TYMP.) WITH 1D AUGMENTATION

TABLE IV
PERFORMANCE OF MULTI-CLASS CLASSIFICATION (NOE, AOM, AND OME)

The table shows recall and precision for each class and the overall accuracy

augmentation methods for each method, as shown in Table III,
and for the full WBT CNN, the performance results in Table II
are shown both with and without augmentation. The same com-
parison can be found in Table III for the 1D networks. The rest of
the presented results are generated with the full WBT approach,
as this approach shows the highest performance. Examples of
misclassified measurements are shown in Fig. 5, separated into
false positives (representative selection from eight measure-
ments) and false negatives (representative selection from nine
measurements).

Table III shows the effect of the different types of data
augmentation employed during training of the three different
neural networks. For each classification approach, the augmen-
tation methods that improve the performance are marked with
*. The last row shows the final performance for each of the
three with a combination of the augmentation types best suited
for the particular network (those marked with *). This shows
how the combination of various types of augmentation outper-
forms each individual type of augmentation. The final combi-
nation of augmentation is used for the results presented in both
Table II and IV.

Saliency maps are generated for each WBT measurement in
the test set using the 2D network for binary classification. An
average saliency map is then generated for each class (NOE and
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Fig. 5. Examples of false positive i.e. NOE classified as OM (a, b, c) and false negative i.e. OM classified as NOE (d, e, f) measurements.

Fig. 6. Saliency maps for otitis media classification network. (a) Shows the average NOE WBT with a color map showing the relative difference
between average NOE and OM WBTs. (b) and (c) shows the saliency map projected onto the average WBT for each of the two classes. Red areas
indicate high importance areas, while blue indicates low importance.

OM) to evaluate the most important features for each diagnostic
group. This would not be possible in normal image classification
networks, since the object in a natural image can be positioned
in various locations in the image. The WBT measurements
are however resampled to the same grid, and the features will
thus be in the same position across measurements. This means
we can compare the saliency maps directly. Fig. 6 shows the
average saliency maps for NOE measurements (b) and OM
measurements (c). The saliency maps are projected onto the
average WBT of each class to ease interpretation of the most
important features.

The final approach described in Section III-F attempts to sepa-
rate the OM classification into either OME or AOM. The perfor-
mance is shown in Table IV and shows the precision and recall
for each class and the overall classification accuracy. The results
clearly show how challenging it is to distinguish between AOM
and OME based on only the WBT measurement from a patient.

V. DISCUSSION

The classification results in Table II show very high perfor-
mance in all performance metrics for the WBT approach to
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classifying NOE from OM cases. The averaged tympanogram
and ambient absorbance approaches are inferior to WBT, except
for sensitivity, where the WBT and averaged tympanogram
approaches are tied. It is clear from the F1-score that the WBT
approach has the highest overall performance. The AUC sum-
marizes the overall diagnostic accuracy, and an AUC above 0.9
is considered outstanding [33].

The method proposed by Merchant et al. [15] has the lowest
performance, and is also the simplest method, as it is based
on principal component analysis and logistic regression. The
performance of the 2D CNN for WBT classification proposed by
Grais et al. [20] is comparable to our performance, but still lower.
The proposed CNN architecture is simpler than ours, as they
employ fewer layers (both convolutional and fully connected
layers) and larger convolution kernels in each layer. We show
that even without our extensive use of augmentation, our network
architecture has a higher performance.

The false positive and negative examples in Fig. 5 show a
selection of challenging WBT measurements. These examples
show that not all WBT measurements look like the average WBT
measurements presented in Fig. 2, and that WBT measurements
can have unusual shapes. For example, Fig. 5(c) and (f) look
quite similar, but are annotated differently by the ENT. This
could indicate that in (f), the primary signs of OM were found in
the additional patient data available, such as the otoscopy exam-
ination or the patient-reported symptoms, and that WBT does
not provide enough information for that particular diagnosis.

Deep learning is generally considered a ‘black box’ approach
for classification problems, yet there are several methods that
allow users to interpret the decision making behind the results.
This is particularly important when developing a diagnostic
tool for clinical professionals, to allow them to understand the
decision process and trust the decisions made by the neural
network. The saliency maps in Fig. 6 introduce valuable insight
into the decision strategy of the trained neural network. The
average NOE saliency map in Fig. 6(b) clearly shows that
the region between 1 and 2 kHz is the key area for a normal
WBT measurement, which coincides with the findings in [8],
[10], [20]. This corresponds with the physiological resonance
frequency of the eardrum around 1 kHz [34], which is affected
by membrane stiffness and middle ear fluid present in otitis
media cases. Thus, this peak in importance between 1 and 2 kHz
can be used to distinguish between a healthy and unhealthy
eardrum. The average OM saliency map in Fig. 6(c) shows that
the frequency region from 500 Hz to 2 kHz is a key area for this
class in a large area on the pressure axis as well, compared to the
NOE saliency map. It is clear that abnormal WBT measurements
have a much flatter appearance across the pressure axis, together
with generally lower absorbance levels, compared to the normal
WBT measurement. From the OM saliency map it is clear that
the neural network determines the diagnosis of OM from the
changes on the pressure axis and the slope from the low to high
frequencies.

Heat maps like these allow the expert ENT to evaluate every
decision made by the model, and to check that the highlighted
regions correspond to the clinical findings. The heat maps can
also be used as a training tool for new ENTs or primary-case

physicians to learn how to analyze WBT measurements. There
are therefore many possible applications of these heat maps.

The results from these heat maps could also explain the lower
performance of the tympanometry and wideband absorbance ap-
proaches. Since the wideband absorbance measurement does not
include knowledge about the variation across pressure, valuable
information is missing that is important for the classification.
The type of tympanometry considered in this study includes this
variation across pressure because it is calculated as an average
from 0.375 to 2 kHz, and is also the highest-performing approach
of the two 1D approaches. These results show that pressurization
during measurement is very valuable and adds diagnostic value
to the test.

Our final experiment shows that there are limitations to the
diagnostic value of a WBT measurement. While the perfor-
mance of binary NOE/OM classification is very high, the neural
network is challenged when attempting to distinguish between
AOM and OME, as seen in Table IV. It is not surprising that this
is a difficult task, as indicated by the plots shown in Fig. 3. The
plots clearly show that there is substantial overlap between all
three groups, but especially the AOM and OME groups have
a major overlap. In the lower frequencies of the absorbance
measure, the two groups are almost identical, and only a slight
difference is seen from 1 to 2 kHz. A similar picture is seen in
the averaged tympanograms, where they are both flat but with
a slightly different mean absorbance level. A similar result was
also found by Helenius et al. [32], who only evaluated 226 Hz
tympanograms. The results of the present study show that WBT
does not demonstrate high performance in diagnosing specific
types of OM despite the fact that WBT introduces new informa-
tion to the diagnosis process. It is, however, satisfying that the
neural network has not just over-fitted to the dataset by finding
hidden features and creating complex decision strategies in order
to perform the classification, when it is clinically questionable
that it is possible.

As previously mentioned, WBT measurements will vary be-
tween patients of different ages, as the ear structures develop
with age. Our dataset covers children from 2 months to 12
years and will thus include different age profiles. It is expected
that the neural network learns to model these variations and
differences between age groups, and thus incorporates them
into the model. It was investigated whether there is a correlation
between misclassifications and a certain age group, but none was
found. The misclassifications are randomly distributed across
ages. It is therefore concluded that age-related changes are not
an issue for our approach.

VI. CONCLUSION

The results of this study show that WBT measurements can
be used to determine whether OM is present. The classification
results show very high performance, and since this approach is
fully automatic with no human input, this bodes well for apply-
ing the approach in an automatic diagnostic tool for OM detec-
tion. Our study shows that WBT measurements provide more di-
agnostic information than both the ambient absorbance measure
and the 0.375-2 kHz averaged tympanogram. As expected on the
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basis of clinical practice and pathological studies related to OM,
we found that WBT has to be combined with other sources of
information about the patient to diagnose specific types of OM.
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