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Abstract— Despite the substantial progress made by deep net-
works in the field of medical image segmentation, they generally
require sufficient pixel-level annotated data for training. The scale
of training data remains to be the main bottleneck to obtain
a better deep segmentation model. Semi-supervised learning is
an effective approach that alleviates the dependence on labeled
data. However, most existing semi-supervised image segmentation
methods usually do not generate high-quality pseudo labels to
expand training dataset. In this paper, we propose a deep semi-
supervised approach for liver CT image segmentation by expand-
ing pseudo-labeling algorithm under the very low annotated-data
paradigm. Specifically, the output features of labeled images from
the pretrained network combine with corresponding pixel-level an-
notations to produce class representations according to the mean
operation. Then pseudo labels of unlabeled images are generated
by calculating the distances between unlabeled feature vectors and
each class representation. To further improve the quality of pseudo
labels, we adopt a series of operations to optimize pseudo labels.
A more accurate segmentation network is obtained by expanding
the training dataset and adjusting the contributions between su-
pervised and unsupervised loss. Besides, the novel random patch
based on prior locations is introduced for unlabeled images in
the training procedure. Extensive experiments show our method
has achieved more competitive results compared with other semi-
supervised methods when fewer labeled slices of LiTS dataset are
available.

Index Terms— semi-supervised learning; medical image
segmentation; data-augmentation; liver segmentation

I. INTRODUCTION

Automated medical image segmentation is the crucial component
of Computer Aided Diagnosis (CAD). Accurate segmentation results
can not only be used for subsequent quantitative evaluation of the
region of interest, but also benefit accurate diagnosis, formulate
surgical plans and intra-operative guidance [1]. In recent years,
various segmentation approaches based on deep learning have made
remarkable progress, such as FCN [2], SegNet [3], etc.. However,
the scale of training data is still the main bottleneck of deep
models. Generally, the model trained on the insufficient dataset is
prone to over-fitting and fails to obtain better generalization ability.
Compared with natural images, it is more difficult for acquiring
rich medical pixel-annotated images. For one thing, the process
of pixel-annotations is tedious and time-consuming due to the low
contrast and resolution of medical images. For another, annotating
organs or diseased areas often requires veteran radiologists who have
corresponding domain knowledge. Compared with annotated medical
images, unlabeled images are easier to obtain. A natural ideal is to
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utilize unlabeled images to improve the performance of supervised
learning.

Semi-supervised learning is a more effective approach that reduces
the dependence of labeled data with a large amount of unlabeled data
[4]. For semi-supervised image segmentation, there are several pop-
ular methods according to the manner of training: Self-training [5],
[6], Co-training [7], [8] and Mean Teacher-based methods [9], [10].
Self-training method usually contains one model while Co-training
and Mean Teacher-based methods contain two or more models. Bai et
al. [5] proposed a semi-supervised segmentation approach where the
parameters of the network and the segmentation for unlabeled data
are alternatively updated. Besides, they adopted Conditional Random
Field (CRF) to refine the segmentation for unlabeled data. Fan et
al. [6] designed a semi-supervised segmentation framework based on
a randomly selected propagation strategy for enlarging the training
dataset with unlabeled data, which only requires a few labeled images
and leverages primarily unlabeled data. Compared with Self-training,
Co-training usually utilizes two or more models to produce pseudo
labels for each other, which is a typical approach of multi-view
training. Zhou et al. [7] learned a deep model in a co-training style
which mines consensus information from multiple planes like the
sagittal, coronal and axial planes. This multi-plane fusion method is
used to generate more reliable pseudo labels, and the error generated
by pseudo labels is reduced. Xia et al. [11] further designed an un-
certainty aware multi-view co-training framework where co-training
is conducted by exploiting multi-viewpoint consistency of 3D data,
and estimated the reliability of each view’s prediction with Bayesian
deep learning. Mean Teacher-based framework is a more prevalent
framework for semi-supervised medical image segmentation. The
main difference between Mean Teacher and other models is that
exponential moving average (EMA) is used in the training steps to
average the weight of the model, and it tends to generate a more
accurate model instead of directly using output prediction. These
above approaches embrace their own shortcomings. Self-training’s
core is to ensure the quality of pseudo labels for unlabeled data. In
other words, the model would make incorrect reasoning and even
encounter the collapse of networks if pseudo labels contain more
noises at the beginning of training. Co-training and Mean Teacher-
based methods usually have more parameters to be optimized and
are at high computing expense. Besides, Mean Teacher and its
variants with exponential moving averaging (EMA) on parameter
updating, which encounters a parameter-correlation between teacher
and student models [12]. Thus, the reliability of used pixels/voxels
may not be stable enough.

For liver segmentation, Jin et al. [13] utilized an improved fully
convolution network to segment liver, but the results of this approach
are not accurate and nor stable enough. Liu et al. [14] designed a
DFS U-Net to segment small liver areas and has achieved a better per-
formance. The H-DenseUnet [15] cascaded 2D dense U-Net and 3D
residual dense U-Net and achieved satisfactory accuracy segmentation
performance. However, this model has a more complex structure with
a large number of parameters to be optimized, which undoubtedly
exacerbates the cost of calculation. Recently, Li et al. [16] designed
a nested attention-aware segmentation network (Attention ++), where
attention mechanism between nested convolutional blocks is used,



Fig. 1: The training procedure of our method.

so that the features extracted at different levels could be merged
with a task-related selection, which has obtained a 97.48% dice
score on LiTS dataset. Although these methods have higher accuracy
performance for liver segmentation, they are usually susceptible to
over-fitting risk and lack of better generalization ability when training
images are insufficient.

To this end, we propose a novel semi-supervised liver segmentation
approach by expanding pseudo-labeling algorithm, which leverages
very few labeled images to guide the generation of pseudo labels
for unlabeled images and achieves better performance. Meanwhile,
our method of using original U-Net network [17] is more simplified
and has fewer parameters to be optimized. In summary, our main
contributions are as follows:

(i) We propose a novel semi-supervised segmentation framework
based on pseudo-labeling algorithm for liver CT image segmentation;

(ii) We obtain the high-quality pseudo labels by adopting location
constraints and morphological operations;

(iii) Our experimental results on LiTS have competitive perfor-
mance than other typical semi-supervised segmentation methods
under very few labeled data paradigm.

II. METHOD

This section mainly covers notations, data pre-processing, and
semi-supervised image segmentation. For data pre-processing, the
Random-Patch (RP) method is adopted for labeled images in pre-
training stage and a novel Random-Patch method based on Prior
Locations (RPPL) is designed to constrain unlabeled images during
the training stage. In semi-supervised image segmentation, features
and their pixel-level annotations for labeled images are combined
to produce class representations. Pseudo labels are generated by
computing the distance between feature vectors of unlabeled images
and each class representation. Moreover, a series of operations are
implemented to improve the quality of pseudo labels. The final total
loss is calculated by weighting supervised loss and unsupervised loss.
Fig 1 shows the procedure of training. The pipeline of our semi-
supervised segmentation framework is shown in Fig 2.

A. Notations and data pre-processing

Assuming that a dataset has two subsets D = DL∪DU , including
the labeled dataset DL = (Ii,Mi)

NL
i=1 and the unlabeled dataset

DU = (Ij)
NU
j=1, where I and M represent images and corresponding

masks, NL and NU denote the number of labeled and unlabeled
images, respectively.

The slices of human abdomen could be fuzzy when not pre-
processed, then recognizing organs and tissues would be difficult.
Thus, HU windowing [18] is used to pre-process abdomen images
according to the following formula:

HU = pixel value× rescale slope+ rescale intercept (1)

Where, rescale slope and rescle intercept are set to 1 and -
1024, respectively. To neglect organs and tissues that are not of
interest, the original CT slices are windowed to a Hounsfield Unit in
the range of -75 to 175 HU. Besides, the contrast for CT images is
enhanced through histogram equalization. The comparison between
before and after processing is shown in Fig 3.

Due to the scarceness of available training images, it is vital to
conduct data-augmentation and constraint. Thus, the Random-Patch
method (RP) [19] is adopted for labeled images in pre-training stage
and a novel Random-Patch based on Prior Locations (RPPL) for
unlabeled images is adopted during the training stage. The processes
of the two methods are shown in Fig 4.

In pre-training stage, RP is that the patch at random is chosen
from the original image. By doing data-augmentation, a better initial
network is obtained before the semi-supervised training stage. In the
training stage, observing that the location of liver in CT images
has a certain range, we impose prior constraints before random
patch selection. Specifically, RPPL first crops unlabeled images and
keeps the range of width and height of each patch (W − W ′) :
W, (H − H ′) : H (i.e. The red solid line in right figure of Fig 4)
according to the range of liver location. Then the random patches
are generated in the limited areas. Compared with RP in pre-training
stage, the purpose of RPPL is to keep unlabeled images containing
fewer background areas.

B. Semi-supervised image segmentation

For each input labeled image Ii ∈ RW×H ,

Fi = fΘ(Ii) (2)

Where, f is the segmentation network parameterised by Θ and it is
pre-trained on labeled images by RP, Fi ∈ RW×H×C is the feature
map. Then it is fed into 1×1 convolution layer and get probability
map pi after a sigmoid function. Furthermore, the supervised loss
is calculated by Binary Cross-Entropy (BCE) loss function between
predicted probability pi and ground-truth Mi. The formulas of the
above operations are as follows:

pi = Sigmoid(Conv1×1(Fi)) (3)

Lsup = − 1

BL
(

BL∑
i=1

Milogpi + (1−Mi)log(1− pi)) (4)

Where, BL is batch size.
1) The generation of pseudo labels: Although unlabeled im-

ages cover abundant latent information, they have no annotations
available for supervision training. Combining labeled images and
corresponding masks produces class representations for guiding un-
labeled images. Specifically, The foreground class representation is
obtained by multiplying the mask by the network output feature map
and then computing mean value. Besides, swapping 0 and 1 in the
mask, the background class representation is calculated like the above



Fig. 2: The framework of proposed method.

Fig. 3: The raw CT slice (left) and the CT slice after HU constrain
and histogram equalization (right).

process. The foreground class representation Pfg and background
class representation Pbg are calculated as follows:

Pfg =
1

BL

BL∑
i=1

∑
x,y F

(x,y)
i I(M (x,y)

i = fg)∑
x,y I(M

(x,y)
i = fg)

(5)

Pbg =
1

BL

BL∑
i=1

∑
x,y F

(x,y)
i I(M (x,y)

i = bg)∑
x,y I(M

(x,y)
i = bg)

(6)

Where, Pfg, Pbg ∈ R1×C . I(.) is an indicator function, out-
putting value 1 if the argument is true or 0 otherwise. (x, y) represents
the spatial location of feature map Fj .

Similar to labeled images, each unlabeled patch is fed into the
network and get Fj , which further produces predicted probability map
pj by convolution layer and sigmoid function. Fj ∈ RW ′×H′×C

can be regarded as W ′ × H ′ vectors of dimension 1 × C. For
each vector in Fj , the distance between foreground or background



Fig. 4: The processes of the random patch (RP) for labeled images
in the pre-training stage (left) and the process of the random patch
based on prior locations (RPPL) for unlabeled images in the training
stage (right). The red spot line represents the random patch.

class representations and each vector in Fj is calculated by cosine
similarity metrics, which is shown in formula (7):

Dist[k] = F
(x,y)
j · Pk/(‖F

(x,y)
j ‖ · ‖Pk‖), k ∈ {fg, bg} (7)

Pseudo label Pmj is achieved by the softmax function and
argmax function:

Pmj = argmaxk(softmax(Dist[k])), k ∈ {fg, bg} (8)

By measuring the distance between the feature vector and fore-
ground/background class representation, the corresponding pixel is
classified by selecting small distance value.

2) The improvement of pseudo labels: Since pseudo labels
usually contain more noises, which is harmful to the reasoning
of the network, there is a high possibility to remove these noises
and improve the quality of pseudo labels. Morphological operations
rely on the correlation of pixel values rather than their absolute
values, thus they are very suitable for binary image optimization.
Morphological operations contain erosion and dilation. The corrosion
removes small bumps or burrs from objects smaller than structural
elements. By selecting structural elements of different sizes, objects
of different sizes could be removed from the image. The expansion
operation enlarges the image and fill the holes in the objects. The
formulas of erosion and dilation operations are shown as follows:

(f⊕b)(s, t) = min{f(s+x, t+y)−b(x, y)|(x, y), (t+y) ∈ Df ; (x, y)}
(9)

(f	b)(s, t) = max{f(s−x, t−y)−b(x, y)|(s−x), (t−y) ∈ Df ; (x, y)}
(10)

Where, f(x, y) is the input image and b(x, y) is the structure ele-
ment, respectively. The process of first corrosion and then expansion
is open operation, which is used to smooth the boundary of larger
objects without changing their areas. The process from first expansion
to corrosion is a closed operation, which fills the internal holes of the
object connecting the adjacent objects, smooth the boundary without
changing its area. Since noise and details may be located above or
below the target signal, a single erosion or expansion operation only
eliminates the noise and details above or below the target signal,
and the smoothed image is always above or below the original
image, so it will cause the position shift of the target information.
Constructing a morphological opening and closing hybrid operation
could achieve the purpose of eliminating the detail noise in the image
while maintaining the integrity and position of the target information.

Fig. 5: The results of the improvement of pseudo labels. The first
column to last column denote unlabeled images, original pseudo
labels and the optimized pseudo labels, respectively.

Considering there are other disturbances around the liver, the
number of pixels is computed for each connected area and then the
largest connected area is selected as the final pseudo labels. The
visual results of pseudo labels improvement are shown in Fig 5.

3) Semi-supervised learning: The unsupervised loss is shown
as follows:

Lunsup = − 1

BU
(

BU∑
j=1

Pmj logpj + (1− Pmj)log(1− pj)) (11)

The process of semi-supervised learnings (SSL) includes both
supervised learning and unsupervised learning. Final total loss is the
weighted sum between supervised loss and unsupervised loss:

Ltotal = λLsup + (1− λ)Lunsup (12)

Note that, parameter λ ∈ [0, 1] that controls the contribution of
the supervised and unsupervised term. Fig 6 shows the pseudo code
of the entire procedure for semi-supervised segmentation.

III. EXPERIMENTS

A. Dataset
Our proposed method is evaluated on the training set of LiTS Liver

Tumor Segmentation Challenge. The dataset contains 131 contrast-
enhanced CT images provided by hospitals around the world. Note
that, 3DIRCADb dataset is a subset of LiTS dataset with case



Fig. 6: The pseudo-code of semi-supervised segmentation method.

numbers from 27 to 48. Our model is trained with 111 cases from
LiTS after removing 3DIRCADb and is evaluated on 3DIRCADb
dataset. To further verify our method in a low-labeled data paradigm,
100 labeled slices and 900 unlabeled slices are randomly selected
from different subjects in the training dataset.

B. Implementation Details

All models are trained with Stochastic Gradient Descent (SGD)
optimization algorithm. In the pre-training stage, the original CT
slices are windowed to a Hounsfield Unit in the range of -75 to
175 HU. Besides, the initial learning rate (lr) of pretrained model
is set 1e-2 with a momentum 0.9 and the learning rate is decreasing
by lr × ((1 − epoch)/max epoch)0.9. While the learning rate in
semi-supervised training stage is initialized by the learning rate of
best pre-trained model. The patch size is set to 256× 256 for labeled
images by using RP. During training, the patch size of unlabeled
images is set to 256× 256 and labeled images still keep the size of
512× 512. All experiments are performed on a machine with CPU
Intel Core i7-7700K @ 4.2 GHz, GPU NVIDIA GeForce GTX 1080
Ti, and 11 GB of RAM.

C. Evaluation Criterion

Following the evaluation criterion used in the 2017 LiTS challenge,
we use four evaluation metrics to measure the segmentation perfor-
mance for all experiments, including Dice coefficient, Jaccard index,
Precision and Recall.

D. Ablation Study

Traditional pseudo-labeling method [20] generates pseudo labels
by output predictions with the pre-trained model. Our proposed
metrics-based pseudo-labeling method is different from it, which
leverages the features of labeled images and ground-truth to produce
pseudo labels while [20] does not. To verify the quality of pseudo
labels produced by two methods, 500 unlabeled patches are selected

Fig. 7: The comparisons of pseudo labels generated by two types of
pseudo-labeling approaches.

TABLE I: The mean dice of two types of pseudo labels.

Method Dice Jaccord Precision Recall
Pseudo-labeling [20] 78.41% 68.56% 72.14% 79.15%
Metrics-based pseudo-labeling 79.68% 70.81% 75.36% 79.41%

at random after pre-training. The mean dice of the two methods is
shown in Table I. Besides, several typical cases are chosen to visual
comparison in Fig 7. From Table I and Fig 7, metrics-based pseudo-
labeling method can utilize labeled images to guide the generation
of higher quality pseudo labels for unlabeled images.

To validate the effectiveness of the proposed semi-supervised
segmentation method, relevant ablation experiments are conducted
and the results are shown in Table II. The original U-Net with 16
output channels is adopted as the baseline model. From Table II, RP
is very helpful to increase the diversity of the number of images,
which shows great potential under the scarceness of data. While
RPPL limits the range of liver area so that pseudo labels contain
more of interest areas, which could provide much useful information
for network training. Why RP is not implemented for the labeled
images during the training phase? The class representations will be
not robust when computing the mean value of feature vectors for
patches in a batch size, which affects subsequent measurements, we
thus keep labeled images their original size instead of patched size.
In addition, the number of labeled images needs to be kept quite large
in a batch BL.

The parameter λ is the core of our semi-supervised segmentation
framework. If λ is closed to 1, which means the total loss is
dominated by unsupervised loss and the network is forced to learn
inaccurate predictions, even resulting in the collapse of the model.
If λ is close to 0, unlabeled data has almost no contribution to the
entire training procedure. Thus, it is crucial to choose a reasonable
value λ so that the model could be guided by supervised learning
and at the same time, gain benefits from unsupervised learning. In
fewer semi-supervised works, the proportion of the unsupervised
loss or semi-supervised loss is equal to supervised loss [21], [22],
they usually need two or more parameters-related models and the
outputs of different model have fewer differences. In most cases, the
unsupervised or semi-supervised weights tend to change dynamically
[23], [24] or controlled by a fixed hyper-parameter [25]–[27] due to



TABLE II: The results of the ablation study on the proposed approach. Where RP, SSL and RPPL represent random-patch, semi-supervised
learning and random-patch based on prior locations, respectively. Dynamic Function (DF) is µ(T ) = k ∗ e−5(1−T )2 .

Method Labeled
data

Unlabeled
data

Lambda Dice score Jaccard Precision Recall

Baseline 100 0 - 76.64% 66.76% 71.00% 78.21%
Baseline+RP 100 0 - 78.04% 68.43% 72.84% 79.45%
Baseline+RP+SSL 100 900 0.95 80.00% 71.14% 76.06% 77.94%

Baseline+RP+RPPL+SSL

100 900 0.8 80.21% 70.15 % 74.65% 79.14%
100 900 0.85 81.72% 72.51 % 78.65% 83.73%
100 900 0.9 84.02% 75.80 % 84.49% 82.52%
100 900 0.95 83.65% 76.57 % 85.17% 83.24%
100 900 DF 84.85% 77.80 % 84.93% 84.65%

TABLE III: The results of three same experiments when sampling
1000 images (100 labled images and 900 unlabeled images) and using
DF as λ.

Group Dice Jaccord Precision Recall
1 84.85% 77.80% 84.93% 84.65%
2 83.49% 78.01% 84.56% 83.79%
3 84.77% 77.54% 83.92% 84.26%
Average 84.37% 77.78% 84.47% 84.23%

the large fluctuations of unsupervised outputs. In our experiments, it
is detrimental that the network cannot be dominated by supervised
part if λ ≤ 0.5. Experimentally, we choose other fixed values when
interval is 0.05 and Dynamic Function (DF) as λ. By constantly
adjusting the parameters, the model has the highest dice coefficient
when lambda is DF. With the continuous learning of the model, the
accuracy of the model is gradually improved and the accuracy of
the unsupervised part is also improved. The dynamic increase of
the unsupervised proportion will also promote the model form better
learning. In order to valid the robustness of the experiment, we also
carry out three same experiments using same data, which is shown
in TABLE III.

E. Comparison to other semi-supervised segmentation
methods

We conduct two experimental settings that includes 10% labeled
data and 20% labeled data when total number is 1000. Four typical
semi-supervised segmentation methods [9], [28]–[30] are selected
for comparison. Where, Entropy Mini [28] is a single model and
other methods are double models. The results of the comparison are
shown in Table IV. Generally, two or more networks (e.g. the Self-
ensembling model) often have higher accuracy for medical image
segmentation than a single network. By observing Table IV, CPS
[29] has achieved 81.59% dice score, it is deduced that two models
of CPS may generate low-quality pseudo labels and utilize them
in supervising each other, which undoubtedly increases the bias.
Besides, although Entropy Mini [28] has better dice score than CPS,
it has poor performance to specific cases from Fig 8. It is obvious
that UA-MT [9] obtains better segmentation performance based on
the Mean-Teacher model and utilization of an uncertainty-aware
scheme exploiting the uncertainty information. Compared with the
above methods, our proposed approach has fewer parameters and the
segmentation performance is better than UA-MT. During an epoch,
our pseudo labels generated by leveraging information from labeled
images supervise unlabeled images and take part in back-propagation.
In other words, the unsupervised part of other methods is guided by
the network trained on labeled images instead of network and direct
information from labels. Thus our method has better performance for
extreme cases in Fig 8, which is exactly where we are distinguished.

IV. DISCUSSION

In this paper, we propose an effective semi-supervised segmen-
tation framework for liver CT image segmentation when labeled
images are insufficient. Different from previous studies, our method
generates high-quality pseudo labels guided from labeled images.
We first conduct a random patch on labeled images to obtain a
better pretrained model in pre-training stage and propose a novel
random patch based on prior locations to constrain unlabeled images
during training. By combining the features and masks of labeled
images, the class representations are calculated and further used for
guiding the generation of pseudo labels. To optimize pseudo labels,
a series of operations are adopted to fill holes and remove noises
near the liver. A more accurate network is achieved by combining
the supervised loss and unsupervised loss. With the contributions
provided by these components, our approach achieves a remarkable
segmentation performance.

Compared with other semi-supervised segmentation approaches,
the difference of our methods is that the pseudo-labels are generated
by the labeled image and the network instead of the network output.
In addition, a series of operations to optimize pseudo labels, including
a good initial network, conducting location constrains on unlabeled
images and morphological operations, which all improve the quality
of pseudo labels. In addition, our method is suitable to various
networks with encoding and decoding structures.

However, our method embraces certain shortcomings. Our network
needs to be pre-trained before training and is not one-stage. Moreover,
the number of vectors for class representation calculation is kept as
large as possible. This is because the robustness of class representa-
tions are affected by two factor: one is the network performance of
the current epoch and the other is the number of class representation
vectors involved in the calculation.

Our future work is to achieve more robust class representations
formed by the networ architecture exploring and the number of output
channel, to better guide the generation of pseudo labels. At the same
time, more strategies [31] should be adopted to adjust our framework
into a more flexible single phase. Besides, the lightweight network
is also a potential research topic when data is insufficent [32].

V. CONCLUSION

This paper introduces a novel semi-supervised framework for liver
image segmentation under the low-labeled images paradigm, which
generates high-quality pseudo labels for unlabeled images by utilizing
the guidance from labeled images. To reduce noises and improve the
quality of pseudo labels, a series of operations are adopted to optimize
pseudo labels. Besides, a novel random patch based on prior locations
is proposed for unlabeled images during the training. Our experiments
on LiTS dataset substantiate that our method can obtain a competitive
performance over other models for liver segmentation.



Fig. 8: The visual results of various methods.
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