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Learning Two-Stream CNN for Multi-Modal
Age-related Macular Degeneration Categorization

Weisen Wang, Xirong Li, Zhiyan Xu, Weihong Yu, Jianchun Zhao, Dayong Ding, Youxin Chen

Abstract—This paper tackles automated categorization of Age-
related Macular Degeneration (AMD), a common macular dis-
ease among people over 50. Previous research efforts mainly focus
on AMD categorization with a single-modal input, let it be a color
fundus photograph (CFP) or an OCT B-scan image. By contrast,
we consider AMD categorization given a multi-modal input, a
direction that is clinically meaningful yet mostly unexplored.
Contrary to the prior art that takes a traditional approach of
feature extraction plus classifier training that cannot be jointly
optimized, we opt for end-to-end multi-modal Convolutional
Neural Networks (MM-CNN). Our MM-CNN is instantiated by
a two-stream CNN, with spatially-invariant fusion to combine
information from the CFP and OCT streams. In order to visually
interpret the contribution of the individual modalities to the
final prediction, we extend the class activation mapping (CAM)
technique to the multi-modal scenario. For effective training of
MM-CNN, we develop two data augmentation methods. One
is GAN-based CFP/OCT image synthesis, with our novel use
of CAMs as conditional input of a high-resolution image-to-
image translation GAN. The other method is Loose Pairing,
which pairs a CFP image and an OCT image on the basis of
their classes instead of eye identities. Experiments on a clinical
dataset consisting of 1,094 CFP images and 1,289 OCT images
acquired from 1,093 distinct eyes show that the proposed solution
obtains better F1 and Accuracy than multiple baselines for multi-
modal AMD categorization. Code and data are available at
https://github.com/li-xirong/mmc-amd.

Index Terms—Multi-modal AMD categorization, multi-modal
fundus imaging, two-stream CNN, data augmentation, loose
pairing training, image synthesis

I. INTRODUCTION

AGE-related Macular Degeneration (AMD) is a common
retinal disease among people over the age of 50. Without

timely and proper treatment, patients with AMD may suffer
from impaired vision or even blindness [1]. Subject to the pres-
ence of choroidal neovascularization in the retina, the medical
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Fig. 1. Color fundus images (first row) and OCT B-scan images (second
row) of normal eyes and eyes with specific diseases. Color fundus images
show en face of the fundus, while OCT B-scans visualize cross-sectional
information of the retina and choroid. Images per group are randomly selected
from our dataset based on their classes.

profession classifies the disease into dry AMD (atrophic AMD
and early stage AMD) and wet AMD (neovascular AMD) [2].
Moreover, when neovascularization occurs below the retinal
pigment epithelium, such a type of wet AMD is known as
Polypoidal Choroidal Vasculopathy (PCV) [3]–[5], typically
characterized by polypoidal or aneurysmal dilations [6]. For
the ease of description, we refer to wet AMD excluding PCV
as wetAMD hereafter. Due to different treatments of dryAMD,
PCV and wetAMD [5], we need to not only distinguish AMD
from normal, but also perform a fine-grained classification of
the three AMD subcategories. To perform an AMD exami-
nation for a specific eye, an ophthalmologist commonly uses
two noninvasive fundus imaging techniques, i.e., color fundus
photography (CFP) and optical coherence tomography (OCT).
Given the retina, a CFP image shows its en face, while an OCT
B-scan image captures its longitudinal section. Examples of
normal CFP and OCT images and those with specific AMD-
related pathologies are shown in Fig. 1. A recent study [7]
reports that when provided with multi-modal information
(CFP / OCT images and clinical notes), experts make fewer
diagnostic errors for referral recommendation. Unsurprisingly,
due to the shortage of experienced ophthalmologists, there is a
growing amount of research efforts towards automated AMD
screening based on either color fundus images [8]–[10], OCT
images [11]–[13] or both [14].

Existing works on AMD categorization mainly exploit one
modality, let it be CFP images of the posterior pole [8]–[10],
[15] or OCT images of the macular [11]–[13], [16], [17].
In [9], for example, Burlina et al. deal with CFP, training
AlexNet [18], a deep convolutional neural network (CNN),
from scratch. An OCT-based method is developed by Lee
et al. [11], where a VGGNet [19] is trained to predict the
presence of AMD in OCT images.

Given that CFP and OCT images reflect the state of the
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retina in distinct aspects, and thus complement each other, a
joint utilization of both modalities appears to be natural. To
our surprise, however, few attempt is made in this direction.
To the best of our knowledge, the first work on multi-modal
AMD categorization is by Yoo et al. [14]. The authors leverage
a pre-trained VGGNet to extract features from CFP and
OCT images. The features are concatenated and classified
by a random forest classifier. Their preliminary experiment
indicates that the multi-modal method outperforms its single-
modal counterpart. Nevertheless, given the rapid progress of
deep learning for visual recognition, the VGGNet feature and
the random forest classifier are both suboptimal. We thus see
multiple crucial questions left unanswered. First, suppose the
single-modal baseline is re-implemented based on a state-of-
the-art CNN trained end-to-end for the task, will the current
multi-modal method [14] remain more effective? If the answer
turns out to be “no”, further questions naturally follow as what
deep learning network is suited for the task and how to train
it effectively? Training a multi-modal network is nontrivial,
as paired multi-modal training instances are far fewer than
single-modal training instances. Therefore, one cannot take for
granted that a multi-modal CNN will be better than its single-
modal competitor. Last but not least, how to visually interpret
the contribution of each modality to the final prediction?

Towards answering the above questions, we make contribu-
tions as follows:
• We propose a novel end-to-end solution for multi-modal
AMD categorization, the first of its kind to the best of our
knowledge. The backbone of our solution is a two-stream
CNN, see Fig. 2(a). While such an architecture has been
applied for video action recognition [20], the fusion layer
needs to be re-considered for the new task, not only for
effectively fusing information from the individual modalities,
but also for visualizing their contributions to the final pre-
diction. To that end, we propose to use spatially-invariant
fusion (SI-Fusion), which simply performs global average
pooling on modal-specific feature maps followed by vector
concatenation. SI-Fusion is not new by itself. Its novelty is
due to its suitability for multi-modal AMD categorization.
Compared to EarlyFusion which concatenates CFP and OCT
together as a whole, LateFusion which averages predictions of
CFP- / OCT- CNNs, and multi-head self-attention based fusion
[21], SI-Fusion strikes a proper balance between a network’s
learning capacity (for exploiting the complementarity between
CFP and OCT) and its training complexity (for being more
data-efficient). SI-Fusion also allows us to extend the CAM
visualization technique [22] for the first time to the multi-
modal scenario for visual interpretation.
• Due to the natural shortage of multi-modal training data,
learning two-stream CNN with conventional data augmenta-
tion methods is insufficient. For multi-modal training data aug-
mentation, we introduce two methods, i.e., CAM-conditioned
Image Synthesis and Loose Pairing. The first method, working
at the image level, is to synthesize CFP / OCT images by a
high-resolution generative adversarial network (GAN) [23] re-
purposed in the new context, see Fig. 2(b). The second method
pairs CFP and OCT images w.r.t their classes instead of eye
identities. Consequently, we develop a training pipeline, as

illustrated in Fig. 2(c), to effectively learn two-stream CNN
from the augmented data.
• Experiments on a clinical dataset, with 1,094 CFP and 1,289
OCT images acquired from 1,093 eyes, verify the effectiveness
of our solution. It surpasses the prior art [14] clearly, with
0.914 vs 0.792 in F1-score and 0.863 vs 0.690 in Accuracy,
for four-class AMD categorization. Code, data and model links
are available at github1.

To sum up, the novelty of this paper is two-fold, i.e., clini-
cally, the end-to-end multi-modal approach to AMD detection
and technically, the CAM-based data augmentation with loose
pairing. A preliminary version of this work was published at
MICCAI’19 [24]. We improve over the conference version
in three aspects, i.e., problem setup, method and evaluation.
First, PCV is considered, making our setup more clinically
meaningful, yet more challenging due to its high resemblance
to other wet AMD. Second, we enhance our data augmentation
process with GAN-based CFP / OCT image synthesis (Sec.
III-B1). For an effective use of both real and synthetic training
data, a new training pipeline is developed (Sec. III-C). The
above changes in problem setup and method naturally lead to
a substantial extension of our evaluation.

The rest of the paper is organized as follows. We discuss
related work in Sec. II, followed by the proposed solution in
Sec. III, experiments in Sec. IV, and conclusions in Sec. V.

II. RELATED WORK

As this paper contributes to automated AMD categorization
in terms of network designs and data augmentation methods,
we review prior art for AMD categorization in Sec. II-A and
data augmentation in Sec. II-B. Note that we focus on deep
learning approaches. For tackling AMD categorization by non-
deep learning approaches, we refer to [25].

A. Deep Learning based AMD categorization

Existing works are largely based on a single modality, either
CFP images [8]–[10], [15] or OCT images [11]–[13], [16], see
Table I. In [8], [15], for instance, Burlina et al. tackle AMD
categorization via a classical image classification approach,
i.e., feature extraction plus classifier training. In particular,
the authors employ a CNN pretrained on ImageNet to extract
visual features from CFP images and then train a linear SVM
classifier. In a follow-up work [9], Burlina et al. find that an
end-to-end trained CNN performs better than the classical ap-
proach. Ensemble learning is exploited by Grassmann et al. to
combine multiple CNNs [10]. As for OCT-based methods, Lee
et al. [11] train a VGG16 model from scratch to classify OCT
images either as normal or as AMD. By contrast, Karri et
al. [12] and Treder et al. [13] train their CNNs by fine tuning.
Different from the above works, we exploit both CFP and OCT
images as multi-modal input.

Few attempt has been made for multi-modal AMD cate-
gorization. To the best of our knowledge, Yoo et al. [14]
make the first effort in this direction, where the authors
perform three-class categorization, i.e., normal, dryAMD and

1https://github.com/li-xirong/mmc-amd
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(a) Two-stream CNN

(b) CAM-conditioned image synthesis (c) Two-stage training pipeline

Fig. 2. Proposed end-to-end solution for multi-modal AMD categorization. Given a pair of CFP and OCT images from a specific eye, our two-stream
CNN makes a four-class prediction concerning the probability of the eye being normal, dryAMD, PCV and wetAMD, respectively. Extending class activation
mapping (CAM) to the multi-modal scenario allows us to visualize contributions of each modality to final predictions. For effective training, we introduce
two data augmentation methods. The first method is to synthesize CFP / OCT images by pix2pixHD, a high-resolution image-to-image translation network
re-purposed in the new context. Given a 3× 448× 448 source image, we pre-train the corresponding single-modal CNN to produce CAMs w.r.t each AMD
class. The CAMs are stacked to form an three-channel image [CAMdry ;CAMpcv ;CAMwet] of 3 × 14 × 14, which is then fed into pix2pixHD for
image synthesis. A fully convolutional network Ga is used as an auxiliary generator to generate a 3× 224× 224 image. With the help of Ga, another fully
convolutional network Gm is then used as a main generator to generate a double-sized image. Manipulating the CAMs results in multiple synthesized images.
The second method pairs CFP and OCT images based their classes instead of eye identities. A two-stage training is performed, where the two-stream CNN
is first pre-trained on synthetic and loosely paired CFP and OCT images, and then fine-tuned on real and loosely paired multi-modal data.

TABLE I
STATE-OF-THE-ART FOR AUTOMATED AMD CATEGORIZATION. THIS PAPER PROPOSES TWO-STREAM CNN FOR MULTI-MODAL AMD

CATEGORIZATION, AND DEVELOPS MULTI-MODAL DATA AUGMENTATION FOR EFFECTIVE TRAINING.

Modality Paper Categorization model Data augmentation

CFP
Burlina et al. [8], [15] OverFeat feature + linear SVM classifier unmentioned
Burlina et al. [9] AlexNet trained from scratch unmentioned

Grassmann et al. [10] Ensemble of AlexNet, GoogLeNet, Inception-V3,
VGG11, ResNet-101, and Inception-ResNet-V2 ◦ crop, flip, rotation

OCT

Lee et al. [11] VGG16 trained from scratch unmentioned
Treder et al. [13] Fine-tuned Inception-V3 ◦ flip
Karri et al. [12] Fine-tuned GoogLeNet unmentioned
Russakoff et al. [16] A customized CNN ◦ rotation, additive noise

CFP + OCT Yoo et al. [14] VGG19 features + random forest classifier ◦ translation, rotation, brightness change, additive noise

This work Two-Stream CNN
◦ crop, flip, rotation, changes in brightness / saturation / contrast
• CAM-conditioned image synthesis
• Loose pairing

wetAMD, given CFP and OCT images. Similar to [8], [15]
in the single-modal context, the authors follow the classical
approach, employing a pre-trained VGG19 model to extract
visual features from both modalities. The features are then
concatenated and used as input of a random forest classifier.
Different from [14], our model is trained end-to-end.

B. Data Augmentation for CNN Training

Ever since the great success of AlexNet [18], data aug-
mentation using low-level image processing techniques such
as crop, flip, rotation and changes in brightness, saturation
and contrast has been a rule of thumb for CNN training. Not
surprisingly, we observe from Table I that data augmentation
used by existing works for AMD categorization all follows
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this convention. We notice a very recent attempt by Burlina et
al. [26] to train a binary AMD classifier using GAN-generated
examples. In particular, the authors train two PGGANs [27],
one for generating normal CFP images and the other for
synthesizing CFP images with AMD. Their motivation, i.e., to
substitute GAN-generated data for manually labeled data,
differs from ours. Moreover, according to their study, the
classifier trained on synthetic data has lower performance
than its counterpart trained on real data (0.8292 vs 0.9112 in
Accuracy and 0.9235 vs 0.9706 in AUC). The result suggests
that synthetic data alone is insufficient.

For synthesizing high-resolution training images, there is an
increasing interest in leveraging image-to-image GANs [28]–
[32]. For detection of exudates in CFP images, Zheng et
al. [28] expand their training data by developing a pix2pix [33]
based network that converts exudate segmentation maps into
CFP images. As illustrated in Fig. 3(a), a pix2pix model
converts an input image, e.g., an exudate segmentation map
in [28], to a synthetic CFP image by a fully convolutional
network known as a generator. The generator is trained to
fool another convolutional network known as a discriminator,
which is responsible for discriminating between real and fake
samples. For tumor segmentation in brain MRI images, Shin et
al. [29] train pix2pix to synthesize MRI images from tumor
and tissue segmentation maps. For lesion detection in chest
X-ray images, Xing et al. [30] also adopt pix2pix, where the
input of pix2pix is obtained by masking out all regions of
abnormal images except for lesion areas. In the context of
diabetic retinopathy grading, Zhou et al. [31] synthesize CFP
images by a pix2pixHD [23] based network, which translates
vessel and lesion masks into the images. As shown in Fig.
3(b), the major improvement of pix2pixHD over pix2pix is a

(a) pix2pix

(b) pix2pixHD

Fig. 3. Conceptual illustrations of pix2pix and pix2pixHD for image-to-
image translation. A pix2pix model converts an input image to a synthetic
image using a generator network G, the parameters of which are optimized
during training together with a discriminator network D. Note that⊕ indicates
channel-wise concatenation. A pix2pixHD model generates higher-resolution
images in a coarse-to-fine manner. An auxiliary generator Ga and an auxiliary
discriminator Da are first trained for lower-resolution synthesis. Then, a main
generator Gm and a main discriminator Dm are used to double the resolution.

joint use of two generators and two discriminators to generate
higher-resolution images in a coarse-to-fine manner.

Our proposed method uses pix2pixHD. However, in contrast
to existing works where the input is manually annotated [28],
[30], or automatically produced yet requiring manual anno-
tation for training underlying semantic segmentation mod-
els [31], or both [29], our input, namely Class Activation Maps
(CAMs), is automated extracted by image classifiers, with no
need of any lesion annotation.

III. PROPOSED SOLUTION

Given a CFP image If and an OCT image Io acquired from
a specific eye, our goal is to categorize the condition of the
eye into one of the four classes, i.e., {normal, dryAMD, PCV,
wetAMD}. We propose a multi-modal CNN (MM-CNN) to
predict a specific class c based on the paired input {If , Io}.
MM-CNN is described in Sec. III-A, followed by our data
augmentation methods in Sec. III-B. The training strategy for
MM-CNN is detailed in Sec. III-C.

A. MM-CNN for AMD Categorization

1) Network Architecture: We instantiate MM-CNN with a
two-stream CNN. As shown in Fig. 2(a), the network contains
two symmetric branches, which process If and Io in parallel.
This type of network architecture bears some similarity to
the two-stream network investigated in the context of human
action recognition in videos [20]. The main distinction lies in
at which layer multi-modal fusion is conducted. Recall that
a single-modal CNN extracts information from a given image
by producing arrays of 2-D feature maps layer-by-layer. While
being continuously down-sized, these feature maps preserve
the spatial information of the input image to some extent. As
for video data, its RGB stream and Optical Flow stream are
spatially correlated. It is this reason that fusion by combining
feature maps from the distinct streams is preferred for video
action recognition [20]. Contrary to video data, the CFP image
and the OCT image lack such spatial correlation, as noted in
Sec. I. We therefore opt for spatially invariant fusion, achieved
by performing the fusion after the Global Average Pooling
(GAP) layer, which compresses each feature map to a scalar
and thus removes the spatial information.

For each branch of the two-stream CNN, we adopt ResNet-
18 as their backbone. While other CNNs can also be used,
our consideration of choosing ResNet-18 is as follows. This
network has relatively fewer parameters and thus needs less
data for training, meanwhile its effectiveness has been justified
in other fundus image recognition tasks [34], [35]. Note that
for the OCT image, we convert each of its pixels from
grayscale to RGB by duplicating the intensity for each RGB
component. The CFP and OCT images are normalized into the
range [−1, 1] with mean and std of 0.5, using a default PyTorch
normalization operation2. As such, the same architecture and
initialization are applied to both branches.

Spatially-invariant fusion. For the CFP branch, the last
convolutional block of ResNet-18 produces an array of 512

2torchvision.transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))
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feature maps, denoted as Ff = {Ff,1, . . . , Ff,512}. Each
feature map has a size of m×m, with m subject to the size of
the input image. Instead of the commonly used input size of
3×224×224, we choose a larger size of 3×448×448, which
shows better performance in our preliminary experiment3.
Accordingly, the value of m is 14. For a specific feature map
Ff,i, we use Ff,i(x, y) to access the feature value at a specific
position (x, y). In a similar style, the feature maps from the
OCT branch are defined as Fo = {Fo,1, . . . , Fo,512}.

Our spatially-invariant fusion layer is simply implemented
as follows. For Ff and Fo, they are fed into a GAP layer
in parallel, resulting in two 512-d feature vectors, indicated
by F̄f = (F̄f,1, . . . , F̄f,512) and F̄o = (F̄o,1, . . . , F̄o,512),
respectively. A concatenation operation merges F̄f and F̄o

into a new 1024-d vector with semantic information from both
modalities combined. For the four-class classification task, by
feeding the merged vector into a fully connected layer of shape
1024×4, we obtain sc as a decision score for a specific class:

sc =

512∑
i=1

wc
f,i · F̄f,i︸ ︷︷ ︸
scf

+

512∑
i=1

wc
o,i · F̄o,i︸ ︷︷ ︸
sco

, (1)

where {wc
f,1, . . . , w

c
f,512} and {wc

o,1, . . . , w
c
o,512} denote

class-specific parameters of the fully connected layer, while scf
and sco indicate decision scores contributed by the CFP branch
and the OCT branch, respectively. Classification is realized by
selecting the class maximizing sc.

2) Multi-Modal Class Activation Mapping for Visual Inter-
pretation: We note from (1) that the class-specific score sc

is contributed by the two modalities in an additive manner. In
order to visualize their contributions, we employ Class Activa-
tion Mapping (CAM) [22]. As a response-based visualization
technique, CAM projects the classification score back to a
m×m heatmap, and thus reveals which part of the input image
contributes the most. To make the paper more self-contained,
we first depict CAM developed initially for a single-modal
CNN, with CFP images as a showcase. We then extend CAM
for the multi-modal scenario.

To simplify our notation, we re-purpose scf from (1) to
indicate the decision score of class c made by a single-modal
CNN with respect to a test CFP image If . Recalling that F̄f,i

is equivalent to 1
m2

∑
x,y Ff,i(x, y), we express scf as

scf =
∑512

i=1 w
c
f,i · F̄f,i

=
∑512

i=1 w
c
f,i · ( 1

m2

∑
x,y ·Ff,i(x, y))

=
∑

x,y
1

m2

∑512
i=1 w

c
f,i · Ff,i(x, y).

(2)

By defining CAM c
f as a m×m feature map computed by

CAM c
f (x, y) =

1

m2

512∑
i=1

wc
f,i · Ff,i(x, y), (3)

3Compared with the input size of 3× 224× 224, the larger input size of
3×448×448 leads to loss in accuracy (from 0.721 to 0.717) for CFP-CNN,
yet improvements for both OCT-CNN (from 0.811 to 0.818) and MM-CNN
(from 0.795 to 0.804).

scf is equivalently the sum of CAM c
f , i.e.,

scf =
∑
x,y

CAM c
f (x, y). (4)

We see from (4) that the classification score is spatially
distributed to each position the CAM map. Consequently, by
overlaying an input image with its corresponding (up-sampled)
CAM map, salient regions are highlighted, see Fig. 4(b).

We derive a multi-modal version of CAM for class c as
CAM c

f (x, y) = 1
m2

∑512
i=1 w

c
f,i · Ff,i(x, y),

CAM c
o (x, y) = 1

m2

∑512
i=1 w

c
o,i · Fo,i(x, y).

(5)

Putting (1), (2) and (5) together, the score sc for class c can
be reformulated using the CFP and OCT CAMs, namely

sc =
∑
x,y

CAM c
f (x, y) +

∑
x,y

CAM c
o (x, y). (6)

The decision score is now distributed via CAM c
f (x, y) and

CAM c
o (x, y) to each position on the CFP and OCT images,

in a down-sampled size of m×m. This enables us to visualize
the contribution of each modality, see Fig. 4.

B. Multi-Modal Data Augmentation

For effectively increasing the amount of multi-modal train-
ing instances, we propose two data augmentation methods, one
for image-level (Sec. III-B1) and the other for pair-level (Sec.
III-B2). Both methods are applied only on the training data.

1) CAM-conditioned Image Synthesis for Image-level Data
Augmentation: In order to generate CFP / OCT images for
a specific AMD class c, we re-purpose CAMs as input
of pix2pixHD [23], a powerful network for image-to-image
translation. The proposed CAM-conditioned image synthesis
method is illustrated in Fig. 2(b).

From a source image to CAMs. Given a source image I
from a specific AMD class c, we first use a single-modal CNN,
which we have pre-trained, to produce CAMs w.r.t. the three
AMD classes. We ignore the normal class, as its CAMs do not
reflect abnormalities by definition. As described in Sec. III-A2,
for an input image of 3×448×448, each CAM computed by
(3) has a size of 14 × 14. The CAMs are stacked to form a
three-channel image Icam = [CAMdry;CAMpcv;CAMwet].
With the CAMs treated as red, green and blue channels in
an RGB image, Icam is colorized naturally. As manifested
by the second column of Fig. 5, dominant colors are better
observed in CAMs of OCT images, suggesting this modality
is more suited for AMD categorization. Next, we describe how
to convert Icam to a positive instance w.r.t. the given class.

From CAMs to synthesized images. Different from a
classical GAN that has one generator and one discriminator,
pix2pixHD consists of a main generator Gm and an auxiliary
generator Ga that produce images at two different resolutions,
which are 3 × 448 × 448 and 3 × 224 × 224 in this work,
see Fig. 3(b). Accordingly, there are two fully convolutional
network based discriminators Dm and Da responsible for the
two resolutions. Note that we do not draw the discriminators
in Fig. 2(b) as they are used only in the training stage. A
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(a) Multi-modal input (b) Single-modal CAMs (c) Multi-modal CAMs

Fig. 4. CAM-based visualization of which part of input images contribute
to the final predictions made by single-modal / multi-modal CNNs. Input
images are shown in (a), with AMD-related regions marked out by dotted
ellipses. In (a), labels under each pair of images are ground-truth, while labels
in (b) and (c) are predictions made by corresponding models. Correct and
incorrect predictions are marked out by Xand ×, respectively. For a better
visualization, the images are overlaid with single-modal CAMs (b) and multi-
modal CAMs (c), whilst the CFP images are converted to gray scale.

new image is generated by Gm with assistance from Ga. In
our context, Icam is first up-sampled by bicubic interpolation
to two scales, i.e., 3 × 224 × 224 and 3 × 448 × 448. The
two enlarged CAMs are separately fed to Ga and Gm. As
illustrated in Fig. 3(b), information extracted by Ga is injected
into Gm by combing their feature maps by the matrix addition.
For each modality, we train a pix2pixHD model, see Section
IV-A for details of the training procedure.

We observe that the highest response region in the CAM
tends to indicate abnormal areas in the source image. Hence,
in order to synthesize diverse yet meaningful images, we ma-
nipulate Icam by moving around its highest response region.
Specifically, we localize such a region by a sliding-window
approach, with the window size empirically set to be 5 × 5.
The window that has the maximal response with respect to
the given class is selected. Then, the region is swapped with
a randomly chosen region of the same size. In this manner
we construct for the same source image a number of distinct
CAMs, which we term manipulated CAMs, to distinguish them
from the original CAM. Fig. 5 showcases some source images,
their original and manipulated CAMs, and synthesized images.

(a) Real CFP images, CAMs, and synthesized CFP images

(b) Real OCT images, CAMs, and synthesized OCT images

Fig. 5. Illustrations of images generated by the CAM-conditioned image
synthesis for (a) CFP and (b) OCT images. For better visualization, for
each source image we stack its three CAMs, i.e., CAMdry , CAMpcv and
CAMwet to form an RGB image. The fact that dominant colors are better
observed in OCT images suggests this modality is more suited for AMD
categorization. A flipped CAM indicates horizontal flip of an original CAM,
while a manipulated CAM is obtained by moving the highest response region.
Best viewed in digit.

When dealing with a novel image, it is possible that the
CAM may mis-localize some AMD lesions and thus result in
a wrong CFP / OCT image. To ensure the credibility of CAM
visualization, our tactic here is to re-use the training images
that are already been seen by CFP-CNN / OCT-CNN in their
training stage. Such an “overfitting” produces good-quality
CAM in general. In fact, we observe that feeding a CAM to
pix2pixHD reconstructs its source image well. Manipulating
the CAM by swapping is mainly for diversifying the synthetic
data. Moreover, the synthetic data will be used exclusively
for pre-training MM-CNN. We expect to reduce the negative
effect of wrongly generated images by fine-tuning.

2) Loose Pairing for Pair-Level Data Augmentation: To
obtain a multi-modal training example, a natural strategy is to
strictly select a CFP image and an OCT image based on their
eye identities. Suppose we have two PCV eyes, eyea and eyeb,
in the training set. Each eye is associated with several images,
i.e., seta = {fa, oa1 , o

a
2 , o

a
3} and setb = {f b, ob1, o

b
2}, where

f and o stand for CFP and OCT images, respectively. There
are five strict pairs only, i.e., {(fa, oai ), (f b, obj)}, i = 1, 2, 3
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and j = 1, 2. In order to increase the number of multi-modal
instances for training, we propose to construct input pairs
based on labels instead of eyes. A color fundus image can
be paired with an OCT image as long as their class labels are
identical. We coin this method Loose Pairing. Consequently,
we obtain five loose pairs from seta and setb and ten multi-
modal instances in total. With loose pairing, the size of the
training set is substantially increased.

C. A Two-stage Training Strategy for Multi-Modal CNN

Given a relatively small real-world dataset, the joint use
of the proposed CAM-conditioned image synthesis and loose
pairing enables us to construct a large amount of multi-
modal training instances. However, directly combining the real
dataset and the generated dataset is problematic, as the former
will be easily outnumbered. In that regard, we train the MM-
CNN in two stages, i.e., pre-training and fine-tuning. In the
first stage, a CFP image and an OCT image are loosely paired,
with at least one of them sampled from the generated dataset.
Given the MM-CNN trained on these fake pairs, we perform
fine-tuning in the second stage, using the real dataset. Despite
the simplicity, such a two-stage training strategy is found to
be effective, as we will shortly show in Sec. IV-C.

For the backbone network, we start with ResNet-18 pre-
trained on ImageNet [36]. Instead of using the original input
size is 3×224×224, we use a larger input size of 3×448×448.
The kernel size of the GAP layer is accordingly adjusted, from
7 × 7 to 14 × 14, to ensure the dimensionality of the last
feature vector is invariant to this change. For both single-modal
and multi-modal CNNs, we use cross-entropy, a common loss
function for multi-class classification. SGD is used as the
optimizer, with momentum of 0.9, weight decay of 1e-4 and
batch size of 8. Per training process, a model is selected based
on its performance on a held-out validation set.

Contrast-limited adaptive histogram equalization (CLAHE)
[37] is used to enhance CFP images. For noise reduction in
OCT images, median filtering with a 3× 3 kernel is applied.
Note that the proposed data augmentation methods are not
meant for replacing conventional data augmentation strategies.
In fact, the conventional strategies are needed to train better
single-modal CNNs for CAM-based image synthesis. The pro-
posed strategies and the conventional strategies shall be used
in combination. In advance to the proposed data augmentation,
we perform low-level common data augmentation operations
including random crop, flip, rotation, and random changes in
contrast, saturation and brightness on training images.

IV. EXPERIMENTS

A. Experimental Setup

Multi-modal dataset. We collected our experimental data
from the outpatient clinic of the Dept. of Ophthalmology,
Peking Union Medical College Hospital. The dataset initially
contains 1,094 CFP images from 1,093 eyes of 829 subjects,
acquired by a Topcon fundus camera. For 817 eyes, they are
associated with one to five OCT images. The OCT images
are central B-scans acquired by a Topcon OCT camera and a
Heidelberg OCT camera and manually selected by technicians.

We chose these cameras as they were the most frequently used
in our outpatient clinic, allowing us to collect a decent amount
of samples for this research. The condition of each eye is
jointly assessed by two ophthalmologists based on its CFP,
OCT, Fluorescein angiography (FA) or indocyanine green
angiography (ICGA), when applicable. Accordingly, each eye
is categorized into normal, dryAMD, PCV or wetAMD. Images
associated with a specific eye gets the same label.

Eventually, we obtain an expert-labeled multi-modal dataset
of 1,094 CFP and 1,289 OCT images. All these data are ap-
proved by the IRB of Peking Union Medical College Hospital.
We obey the principles of the Declaration of Helsinki.

TABLE II
DATA USED IN OUR EXPERIMENTS. DATA SPLIT IS MADE BASED ON

EYES. IN PARENTHESES ARE NUMBER OF EYES PER CLASS IN EACH SPLIT.
AS THE NUMBER OF OCT IMAGES VARIES PER EYE, OCT IMAGES OF THE

FOUR CLASSES ARE MORE UNBALANCED.

Class Training set Validation set Test set
CFP OCT CFP OCT CFP OCT

normal 155 (155) 156 (155) 20 (20) 20 (20) 20 (20) 20 (20)
dryAMD 67 ( 67) 33 ( 22) 20 (20) 35 (20) 20 (20) 38 (20)
PCV 259 (259) 289 (156) 20 (20) 44 (20) 20 (20) 47 (20)
wetAMD 453 (452) 531 (325) 20 (20) 38 (20) 20 (20) 38 (20)

In order to construct a class-balanced test set, for each class
we randomly sample 20 eyes from the eyes that have both
CFP and OCT images. This setting enables us to compare
an multi-modal input with its single-modal counterpart. The
setting also allows us to make a head-to-head comparison
between the two single modalities, namely CFP versus OCT.
In a similar manner, we build a multi-modal validation set for
model selection. We use the remainder for training. Data split
is based on eye identities, so images from a specific eye do
not appear in more than one subset.

Note that the relatively small amount of training samples
for dryAMD will adversely affect the stability of CFP image
based models. Its impact on OCT-based models is minor,
as dryAMD-related visual patterns such as drusen are easily
recognizable in OCT images. The effect of data shuffle on the
model performance is provided in the Appendix.

Performance metrics. For class-specific evaluation, we
report Sensitivity, Specificity and the F1 score, which is the
harmonic mean between Sensitivity and Specificity. For overall
performance evaluation, we report F1 averaged over the four
classes. Besides, we report Accuracy, the ratio of correctly
categorized instances, which are CFP or OCT images for
single-modal CNNs and CFP-OCT pairs for MM-CNNs. Due
to randomness in SGD based training, the performance of
a model obtained in a specific training round may vary. To
reduce such a random effect, for each model we run training
and evaluation three times, and report averaged score per
metric. That is, for a given model, its reported Sensitive,
Specificity and F1 scores per class are all averaged based on
the three runs. Hence, the reported F1 is not the harmonic
mean between the reported Sensitivity and Specificity.

Implementation. For fair comparisons, all CNN models
assessed in our experiments use ResNet-18, pre-trained on
ImageNet, as their backbones. For all the models, common



8 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. X, NO. X, XX 2022

data augmentation is applied for training. A model trained
with the proposed data augmentation methods, when appli-
cable, will be postfixed with -da. Per abnormal image in
the original training data, we synthesize three new images,
yielding 201 dryAMD / 777 PCV / 1,359 wetAMD for the
CFP modality and 99 dryAMD / 867 PCV / 1,593 wetAMD
for the OCT modality. Loose pairing these synthetic images
results in nearly 2.9M multi-modal samples for pre-training.
As for finetuning, loose pairing is conducted on the real set,
resulting in 317.6K multi-modal samples. All deep models are
implemented using PyTorch [38] on a Ubuntu 16.04 server
with an NVIDIA® GeForce® RTX 2080 Ti GPU.

For the single-modal baselines, two ResNet-18 models are
separately trained on the CFP and OCT images, referred to
as CFP-CNN and OCT-CNN. For both models, their input
dimension is 3 × 448 × 448. They are trained in a similar
manner as that of MM-CNN described in Section III-C,
i.e., SGD as the optimizer, momentum of 0.9, weight decay
of 1e-4 and mini-batch size of 8. To deal with the imbalanced
training samples, per mini-batch we select samples of the four
classes in equal proportions.

Following [23], we train pix2pixHD in a coarse-to-fine
manner. Specifically, for the first p epochs, only the auxiliary
generator Ga and the auxiliary discriminate Da are trained to
generate images of 3× 224× 224. For the next q epochs, the
main and auxiliary networks are jointly trained to synthesize
images of 3×448×448. Horizontal flip with probability of 0.5
and random crop are utilized as data augmentation. Training
a pix2pixHD model on our dataset (batch size 1) typically
requires 150 epochs, with p = 100 and q = 50. This amounts
to a training time of around 8 hours, exploiting about 120k
augmented images in total. We did not observe model collapse.
Artifacts, e.g., synthesized CFP images with two optic discs,
are occasionally observed, see Fig. 8.

B. Experiment 1. Multi-modal versus Single-modal

Baselines. Our single-modal baselines are CFP-CNN and
OCT-CNN. To study if the synthetic images help the single-
modal models, we train them using the two-stage strategy de-
scribed in Sec. III-C. The resultant models are named as CFP-
CNN-da and OCT-CNN-da. As for multi-modal baselines,
we consider the following three methods, i.e., EarlyFusion,
LateFusion and MM-MHSA. EarlyFusion stacks the CFP
and OCT images into a 4-channel input, while LateFusion
combines CFP-CNN and OCT-CNN by averaging the output
of their softmax layers. MM-MHSA uses multi-modal multi-
head self attention [21] to fuse CFP and OCT features4.

Results. As Table III shows, MM-CNN, trained without
using the proposed data augmentation, is less effective than
OCT-CNN (0.872 vs 0.886 in F1 and 0.804 vs 0.818 in Accu-
racy). Similarly, EarlyFusion, LateFusion and MM-MHSA do

4MM-MHSA is implemented as follows. Given F̄f and F̄o produced by
CFP-CNN and OCT-CNN, each feature first goes through a specific 512×512
FC layer and is stacked afterwards to form a 2×512 feature array. The feature
array is then fed into a 4-head self-attention block followed by an Add&Norm
layer, a feedforward network and another Add&Norm. The resultant 2× 512
features are flattened and fed to a 1024× 4 FC layer for classification.

not surpass OCT-CNN. These results suggest that exploit two
modalities does not necessarily guarantee better performance.

Compared to OCT-CNN, our MM-CNN-da obtains relative
improvements of 3.2% in F1 and 5.5% in Accuracy. As Fig.
6 shows, MM-CNN-da effectively reduces misclassification
between PCV and wetAMD.

Concerning the two single-modal models, OCT-CNN out-
performs CFP-CNN, 0.886 vs 0.774 in terms of the overall F1
score. The confusion matrices in Fig. 6 reveal more details.
CFP-CNN recognizes the normal class as easy as OCT-CNN.
It also has a good ability to find true PCV. However, CFP-
CNN tends to incorrectly predict dryAMD as wetAMD and
wetAMD as PCV. OCT-CNN also has difficulty in distinguish-
ing PCV from wetAMD. Due to its relatively distinct visual
patterns, dryAMD is relatively easier to be recognized than
PCV and wetAMD, thus better separated in the learned CNN
feature spaces, see Fig. 7. Hence, although dryAMD has fewer
training samples, its result is better than that of the other two.

Fig. 6. Confusion matrices. Recall that per model we run training and
evaluation three times. So for a fair comparison, we plot the confusion
matrix of each model with its median-performance run. Compared to the
best single-modal baseline (OCT-CNN), MM-CNN-da effectively reduces
confusion between PCV and wetAMD.

(a) CFP-CNN feature space (b) OCT-CNN feature space

Fig. 7. Visualization of test image distribution in specific CNN feature
spaces by t-SNE [39].

The better overall performance of OCT-CNN-da against
OCT-CNN (and CFP-CNN-da against CFP-CNN) suggests
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TABLE III
COMPARING SINGLE-MODAL AND MULTI-MODAL MODELS. WE USE OCT-CNN, THE BEST SINGLE-MODAL BASELINE, AS A REFERENCE. RELATIVE
IMPROVEMENTS OVER OCT-CNN ARE SHOWN IN PARENTHESES. Sen. INDICATES SENSITIVITY AND Spe. AS SPECIFICITY. FOR EACH MODEL WE RUN

TRAINING AND EVALUATION THREE TIMES AND REPORT AVERAGE SCORES PER METRIC. OUR PROPOSED MM-CNN-da PERFORMS THE BEST.

normal dryAMD PCV wetAMD Overall
Model Sen. Spe. F1. Sen. Spe. F1. Sen. Spe. F1. Sen. Spe. F1. F1. Accuracy
CFP-CNN 1.000 1.000 1.000 0.783 0.867 0.798 0.533 0.928 0.636 0.550 0.828 0.661 0.774 (↓-12.6%) 0.717 (↓-12.3%)
CFP-CNN-da 1.000 0.989 0.994 0.817 0.867 0.831 0.667 0.906 0.764 0.417 0.872 0.555 0.786 (↓-11.3%) 0.725 (↓-11.4%)
OCT-CNN 1.000 1.000 1.000 0.877 1.000 0.934 0.745 0.889 0.810 0.754 0.854 0.801 0.886 0.818
OCT-CNN-da 1.000 0.992 0.996 0.868 0.994 0.927 0.766 0.910 0.831 0.763 0.860 0.809 0.891 (↑+0.6%) 0.825 (↑+0.9%)
EarlyFusion 1.000 0.992 0.996 0.825 0.997 0.902 0.759 0.847 0.796 0.640 0.851 0.730 0.856 (↓-3.4%) 0.779 (↓-4.8%)
LateFusion 1.000 1.000 1.000 1.000 0.943 0.971 0.553 0.948 0.698 0.790 0.827 0.808 0.869 (↓-1.9%) 0.792 (↓-3.2%)
MM-MHSA 1.000 1.000 1.000 0.763 0.997 0.863 0.667 0.924 0.753 0.816 0.771 0.785 0.850 (↓-4.1%) 0.779 (↓-4.8%)
MM-CNN 1.000 1.000 1.000 0.737 0.997 0.847 0.787 0.910 0.841 0.790 0.819 0.801 0.872 (↓-1.6%) 0.804 (↓-1.7%)
MM-CNN-da 1.000 1.000 1.000 0.868 1.000 0.929 0.794 0.948 0.864 0.868 0.860 0.864 0.914 (↑+3.2%) 0.863 (↑+5.5%)

that the single-modal models also benefit from the synthetic
instances. As Table 3 shows, CFP-CNN-da has higher sen-
sitivity for dryAMD (0.817) and PCV (0.667) than CFP-
CNN (0.783 and 0.533). This, however, comes at the cost of
losing sensitivity in wetAMD (from 0.550 to 0.417). More
examples of wetAMD are misclassified. Recall that for both
human and CNNs, the CFP modality alone is inadequate for
recognizing wetAMD. We tried to train CFP-CNN on the
synthetic data without finetuning on real data. That model
recognizes wetAMD at sensitivity of 0.417, specificity of
0.928 and F1 of 0.547. The performance, though lower than
that of CFP-CNN trained on real data, remains meaningful. We
therefore attribute the performance degeneration of wetAMD
to the unreliability of the CFP modality other than the CAM-
conditioned image synthesis. The data augmentation is in
general beneficial for CFP-CNN and OCT-CNN.

Compared to the single-modal CNNs, the amount of train-
able parameters in MM-CNN is doubled, from 11.2M to
22.4M. This makes MM-CNN more data-hungry and more
likely to overfit when learning from the small amount of
real multi-modal samples, thus worse than OCT-CNN. For
this reason, the proposed data augmentation brings more
improvement to MM-CNN than the single-modal baselines.
MM-MHSA, despite its excellent performance in various CV
tasks [21], is not on par with MM-CNN for the current task,
where multi-modal training samples are in short supply. Some
qualitative results are shown in Fig. 4.

C. Experiment 2. Ablation Study on Data Augmentation

In the previous experiment we report the performance ob-
tained by the joint use of the two data augmentation methods.
We now present an ablation study to reveal the effect of the
individual method and the training strategy. We also investigate
the advantage of the proposed CAM-based image synthesis
against the state-of-the-art alternative [26].

Effect of the individual data augmentation methods.
Table IV shows the effect of different data augmentation
methods and their combinations on the performance of multi-
modal CNNs. Note that common data augmentation is applied
to all methods. For instance, the performance of Loose Pairing
in the third row is actually obtained by a joint use of common
data augmentation and Loose Pairing, while “Loose Pairing +

TABLE IV
PERFORMANCE OF MM-CNN TRAINED WITH VARIOUS DATA

AUGMENTATION METHODS, SORTED IN ASCENDING ORDER IN TERMS OF
F1. WE USE MM-CNN, EXCLUSIVELY TRAINED WITH COMMON DATA
AUGMENTATION, AS A REFERENCE. RELATIVE IMPROVEMENTS OVER

MM-CNN ARE SHOWN IN PARENTHESES. WHILE ALL DATA
AUGMENTATION METHODS ARE HELPFUL, THE JOINT USE OF LOOSE
PAIRING AND CAM-CONDITIONED IMAGE SYNTHESIS IS THE BEST.

Data augmentation F1 Accuracy
◦ Common data augmentation
(MM-CNN in Table III) 0.872 0.804

◦ Common data augmentation
◦ Label-conditioned image synthesis 0.887 (↑+1.7%) 0.825 (↑+2.6%)

◦ Common data augmentation
◦ CAM-conditioned image synthesis 0.892 (↑+2.3%) 0.846 (↑+5.2%)

◦ Common data augmentation
◦ Loose Pairing
(Our conference version [24])

0.897 (↑+2.9%) 0.837 (↑+4.1%)

◦ Common data augmentation
◦ Loose Pairing +
CAM-conditioned image synthesis,
one-stage training

0.904 (↑+3.7%) 0.849 (↑+5.6%)

◦ Common data augmentation
◦ Loose Pairing +
CAM-conditioned image synthesis,
two-stage training

0.914 (↑+4.8%) 0.863 (↑+7.3%)

CAM-conditioned image synthesis” is a combination of com-
mon data augmentation, Loose Pairing and CAM-conditioned
image synthesis. As shown in Table IV, using either Loose
Pairing or CAM-conditioned image synthesis is beneficial,
bringing in relative improvements of 2.9% and 2.3% in F1
and 4.1% and 5.2% in Accuracy, respectively, when compared
to MM-CNN that uses only common data augmentation. The
best combination is to use CAM-conditioned image synthesis
to expand the single-modal samples, Loose Paring to expand
the multi-modal samples, followed by the two-stage training
strategy to properly balance the synthetic and real samples.
Such a strategy gives relative improvements of 4.8% in F1
and 7.3% in Accuracy.

Training strategy. To justify the necessity of the two-
stage training strategy described in Section III-C, we instead
train the two-stream CNN on the real and synthetic data
simultaneously, with a ratio of 1:3. The performance of this
one-stage training strategy is provided in the second last row
of Table IV. While also improving over MM-CNN, it is not
on a par with the two-stage training strategy.

Alternative for image synthesis. As we have noted in
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(a) Label-conditioned GAN

(b) CAM-conditioned GAN

Fig. 8. Images generated by label-conditioned / CAM-conditioned GANs. The latter generates images that are visually more realistic and show better
details around the macula. For our method, a synthetic image can be paired with its source image (from which CAMs are extracted), whilst a synthetic image
by label-conditioned GAN can only be paired with a class label and random noise. So a controlled comparison given the same source image is unfeasible.
Failed cases are shown in the last column in each group, with unrealistic regions marked out by dotted ellipses.

Section II-B, Burlina et al. [26] use PGGAN to generate
CFP images for binary AMD categorization. In order to use
PGGAN to generate CFP / OCT images for each of the
three AMD subclasses in this study, we construct the input
of PGGAN by concatenating a 3-dimensional one-hot label
vector and a random noise vector. Following [40], we set the
size of the input vector to be 100. We term this baseline label-
conditioned image synthesis. As Table IV shows, the baseline
is less effective than CAM-conditioned image synthesis. Note
that our proposed method is capable of explicitly leveraging
the spatial information of abnormal regions in a source image
in the form of CAMs (Fig. 5). By contrast, the input of the
baseline is limited to the class label and the random noise.
Some synthetic images are presented in Fig. 8. Compared
to images generated by the label-conditioned GAN, images
generated by our CAM-conditioned GAN are visually more
realistic with better details, in particular around the macular.
We also observe failed cases that contain unrealistic regions,
see the last column of each group in Fig. 8. Nonetheless, such
base cases are not common. As the confusion matrices in Fig.
6 show, the synthetic training examples contribute to AMD
categorization by reducing misclassification between PCV and
wetAMD. To assess the overall quality of the synthetic data,
we train a four-class MM-CNN on the synthetic data plus real
images of the normal class. With F1 of 0.826 and Accuracy of
0.741, the model is somewhere between CFP-CNN and OCT-
CNN, suggesting that the synthetic data is largely meaningful.

D. Experiment 3. Comparison to the State-of-the-Art

Baselines. As we have noted in Section I, the only prior
art on multi-modal AMD categorization is by Yoo et al. [14].
As their experimental data is non-public, we replicate their

method, i.e., feature extraction by a pretrained CNN and
classification by a random forest classifier. To make the
comparison fair, we replace VGG19 used in [14] by ResNet-
18. In addition, we are interested in whether the proposed
multi-modal data augmentation method is also useful for this
baseline. We term this enhanced baseline Yoo et al. -da.

Results. As Table V shows, the proposed MM-CNN-da
clearly outperforms Yoo et al. , 0.914 vs 0.792 in F1 and 0.863
vs 0.690 in Accuracy. the proposed data augmentation methods
also work for Yoo et al. , brining in relative improvements of
5.7% in F1 and 7.8% in Accuracy, respectively. Still, Yoo et
al. -da is less effective than MM-CNN-da. The result justifies
the superiority of our end-to-end learning method.

TABLE V
COMPARISON WITH SOTA FOR MULTI-MODAL AMD

CATEGORIZATION.

Model F1-score Accuracy
normal dryAMD PCV wetAMD Overall

Yoo et al. [14] 1.000 0.783 0.648 0.736 0.792 0.690
Yoo et al. -da 1.000 0.880 0.740 0.726 0.837 0.744
MM-CNN-da 1.000 0.929 0.864 0.864 0.914 0.863

E. Discussion

There are several limitations in the current study. Due to the
tremendous cost of collecting multi-modal data with ground-
truth, the dataset used in our experiments is relatively small.
While this does not affect our major conclusions (see the
Appendix), the performance of our model is likely to drop
when directly applying it on external data collected from
different devices. Although we believe that our multi-modal
approach can go beyond AMD categorization, its applicability
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for recognizing more retinal diseases remains to be justified.
We have release our source code1 so readers of interest may
train and evaluate based on their own data.

Despite its effectiveness for improving classification, CAM-
based image synthesis is not guaranteed to generate clinically
and physiologically valid images. For instance, the fundus
image generated with manipulated CAM on the first row of
Fig. 5(a) appears to have two macular structures. A hotfix to
deal with the issue is probably to detect primary physiological
structures such as macula and optic disc [41] on the generated
images and heuristically exclude the invalid.

Our multi-modal framework accepts only one single OCT
image per input. So there is a gap between our setup and the
real clinical settings, where an OCT scan typically renders a
3D volume, and very often the operator will choose more than
one B-scan from the volume. To handle the OCT volume as
input, a simple way is to select the central B-scan, with the
other B-scans ignored. Alternatively, we may consider pairing
each of the B-scans with the CFP image, using the current
framework to make predictions per pair, and finally adopting
certain score aggregation strategy, say max pooling, to make
the volume-level prediction. We leave this for future work.

V. CONCLUSIONS

This paper tackles multi-modal AMD categorization by
end-to-end deep learning. Extensive experiments on a clinical
dataset allow us to answer the questions asked in the beginning
and consequently draw conclusions as follows. Comparing the
two modalities, OCT is more effective than CFP. When end-
to-end trained, OCT-CNN obtains F1 of 0.886 and Accuracy of
0.818 on our dataset, making it a nontrivial baseline to beat.
Compared to OCT-CNN, our multi-modal CNN recognizes
PCV and wetAMD with higher sensitivity and specificity,
scoring F1 of 0.914 and Accuracy of 0.863. However, using
the two-stream network architecture alone is insufficient. In
order to surpass the best single-modal baseline, the multi-
modal CNN needs to be properly trained on data augmented
by CAM-conditioned image synthesis and loose pairing.

APPENDIX

The effect of CLAHE. Table VI shows the performance of
models with and without the CLAHE enhancement on color
fundus images. Concerning the overall performance, CLAHE
is helpful for CFP-CNN and MM-CNN-da, while no positive
nor negative effect is observed on MM-CNN.

TABLE VI
PERFORMANCE OF MODELS WITH (+) / WITHOUT (–) CLAHE.

Model CLAHE F1-score Accuracy
normal dryAMD PCV wetAMD Overall

CFP-CNN
– 1.000 0.816 0.663 0.570 0.762 0.700
+ 1.000 0.798 0.636 0.661 0.774 (↑+1.6%) 0.717 (↑+2.4%)

MM-CNN
– 1.000 0.859 0.818 0.809 0.872 0.804
+ 1.000 0.847 0.841 0.801 0.872 ( 0.0%) 0.804 ( 0.0%)

MM-CNN-da
– 0.989 0.882 0.858 0.860 0.839 0.897
+ 1.000 0.929 0.864 0.864 0.863 (↑+2.9%) 0.914 (↑+2.5%)

The effect of distinct data splits. So far all the experiments
are performed based on the data split provided in Table
II. To check whether our major conclusions depend on this

specific data split, we re-run our experiments on four new data
splits, each obtained by shuffling the entire dataset followed
by training / validation / test partition as described in Sec.
IV-A. Viewing the data split as a random factor, averaging
the performance of a model obtained on distinct data splits
allows us to cancel out this random factor. As shown in Fig.
9, our major conclusions, i.e., OCT-CNN is better than CFP-
CNN, MM-CNN alone is insufficient, and MM-CNN-da is the
best, remain valid. In addition, we observe that the relatively
small amount of dryAMD for training mainly affects CFP-
CNN, which has a relatively large standard deviation (std) of
0.120 in F1 for dryAMD. In contrast, OCT-CNN has a much
smaller std of 0.040, largely because dryAMD-related visual
patterns such as drusen are more visible in OCT images.

Fig. 9. Model performance given five distinct data splits.

We have also tried with subject-level split, adjusting the
previous data split in Table II to ensure zero subject overlap
between the training / validation / test sets, see Table VII. The
performance of the primary models on the new data split is
presented in Table VIII. Our major conclusions, i.e., the two-
stream network architecture alone is insufficient to beat the
best single-modal baseline and the proposed multi-modal data
augmentation is effective, remain valid.

TABLE VII
SUBJECT-LEVEL DATA SPLIT. IN PARENTHESES ARE NUMBER OF

SUBJECTS PER CLASS.

Class Training set Validation set Test set
CFP OCT CFP OCT CFP OCT

normal 155 (155) 156 (155) 20 (20) 20 (20) 20 (20) 20 (20)
dryAMD 67 (57) 42 (23) 20 (19) 36 (19) 20 (18) 28 (17)
PCV 259 (228) 294 (137) 20 (20) 43 (20) 20 (19) 43 (19)
wetAMD 453 (340) 532 (245) 20 (20) 35 (19) 20 (19) 40 (19)
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