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SimSearch: A Human-in-The-Loop Learning
Framework for Fast Detection of Regions of
Interest in Microscopy Images

Ankit Gupta?, Alan Sabirsh

Abstract—Objective: Large-scale microscopy-based ex-
periments often result in images with rich but sparse in-
formation content. An experienced microscopist can visu-
ally identify regions of interest (ROIls), but this becomes
a cumbersome task with large datasets. Here we present
SimSearch, a framework for quick and easy user-guided
training of a deep neural model aimed at fast detection of
ROls in large-scale microscopy experiments. Methods: The
user manually selects a small number of patches represent-
ing different classes of ROIs. This is followed by feature
extraction using a pre-trained deep-learning model, and
interactive patch selection pruning, resulting in a smaller
set of clean (user approved) and larger set of noisy (un-
approved) training patches of ROls and background. The
pre-trained deep-learning model is thereafter first trained
onh the large set of noisy patches, followed by refined
training using the clean patches. Results: The framework
is evaluated on fluorescence microscopy images from a
large-scale drug screening experiment, brightfield images
of immunohistochemistry-stained patient tissue samples,
and malaria-infected human blood smears, as well as trans-
mission electron microscopy images of cell sections. Com-
pared to state-of-the-art and manual/visual assessment, the
results show similar performance with maximal flexibil-
ity and minimal a priori information and user interaction.
Conclusions: SimSearch quickly adapts to different data
sets, which demonstrates the potential to speed up many
microscopy-based experiments based on a small amount
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of user interaction. Significance: SimSearch can help bi-
ologists quickly extract informative regions and perform
analyses on large datasets helping increase the throughput
in a microscopy experiment.

Index Terms—Human-in-the-loop, microscopy, autom-
ation, self-supervised learning, semi-supervised learning.

[. INTRODUCTION

ICROSCOPY imaging is an essential tool for investi-
M gating complex biological processes. With the increase
in high throughput imaging techniques, the amount of data
being generated is increasing at an unprecedented rate. The
high resolution images created in biology often contain rich but
sparse information, i.e., only a small section of the data contains
information useful for deeper analysis. Expert annotators are
usually required for sifting through the data and generating
insights about those informative regions. As a result, manual
annotation is difficult to scale with the amount of data being
generated. Hence, there is a need for an efficient and flexible
user-guided detection of informative regions in the data.

A. Related Work

Current state-of-the-art tools [1]-[3] for automated human-
in-the-loop region of interest (ROI) detection and classification
typically rely on manual feature selection and training machine
learning classifiers with pre-defined extracted features. In Cell-
Profiler [1], the user is asked to create a ‘pipeline’ consisting of
a sequence of individual modules typically performing image
processing, object segmentation and feature measurements. For
each module, methods need to be chosen and parameters interac-
tively tuned. The extracted measurements can then be imported
into CellProfiler Analyst [2] to classify different objects based
on a few user-defined examples and machine learning classifiers
such as SVM and RandomForest.

Tlastik [3] provides a graphical user interface (GUI) for seman-
tic image segmentation where the user defines training regions
using mouse-clicks and brush strokes. Pixel classification is
based on a set of user selected pre-defined local neighborhood
features, such as color, intensity, and texture, on which the
classifier makes its predictions.

In both these tools, the user is expected to select the image
features required to classify the ROIs which means that the
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results are limited by the ability of selected features to separate
the ROIs of different classes. Any shift in imaging conditions,
intensity or texture will easily cause the features to fail and,
hence, reduce the performance of these tools [3]. Furthermore,
even though both tools provide estimators of feature importance
to prune irrelevant features, method choices and feature selection
still require expertise in image analysis and biology.

Deep learning techniques have proven to be very effective
and useful for biological image analysis [4], [5]. In many
situations, these techniques provide a distinct advantage over
task-specific feature engineering which is time-consuming and
often inadequate for dealing with contextual variations, and
instead learn hierarchical feature representations of the image
content from labeled samples [6]. Although the learned features
are task and data specific, the first few layers of the represen-
tations are often generic (edges, blobs, shapes) and can serve
as features to represent different ROI classes as shown in this
paper.

However, deep learning requires a large amount of labeled
data to perform well, which in case of biological data is very re-
source demanding to produce due to its requirement of domain-
expertise that increases the logistic and financial burden. Various
human-in-the-loop and active learning methods [7] have been
proposed in medical image analysis to alleviate the need of
large amount of labelled data and increase the credibility in the
method. In ImJoy [8], the user provides the rough segmentation
for the model to learn and edits the segmentation output of the
model repeatedly leading to better performance.

Recently, the emergence of self-supervised learning tech-
niques ([9], [10]) has shown great promise in reducing the re-
quirement of massive amounts of labeled data. In self-supervised
learning, the model learns the feature representation of the input
data using a pre-designed task without using the annotations.
The model can then be fine-tuned to be used in a variety of
down-stream tasks with a small amount of labeled data.

B. Contribution

In this paper, we introduce a human-in-the-loop ROI detection
framework, SimSearch, which combines established deep learn-
ing techniques with modified self-supervised learning to make
efficient use of limited user interaction. The main contributions
of this paper are as follows:

® A novel framework for building GUI-based human-in-the-
loop ROI detection applications using recent advances in
deep learning that requires minimal user input and adapts
to the data at hand.

e The introduction of Iterative Patch Selection (IPS) which
automatically suggests positive ROIs based on user
marked example patches in a few displayed images and
collects negative ROIs in the interactive curation process.

e Utilizing the positive and negative ROIS, to extract noisy
ROIs (not shown to the user) from the un-displayed images
and employing them in a self-supervised training process
to learn the general data representation.

e Facilitating user input for the final refinement of predic-
tions with confidence threshold selection.

The paper is organized as follows. The components of the
framework and model training are described in Section II. Sec-
tion III describes the datasets and evaluation criteria used to
demonstrate and evaluate the framework. Section IV presents
the results and discussion of SimSearch on on experiments and
an ablation studies, and V concludes our findings.

Il. METHODS
A. Overview and Notations

The framework pipeline consists of data preprocessing, com-
bined manual and automated iterative patch selection, deep
learning model training, and final patch confidence thresholding.
All the steps are described in detail in the following sections and
illustrated in Fig. 1. Since the input may come from different
modalities with different bit-depth and number of channels,
all available images are pre-processed and the user is asked
to select relevant channels to include in the ROI detection. In
fact, irrelevant image channels may introduce unwanted bias in
ROI selection, and focusing on relevant channels reduces com-
putation time and latency. Next, the user initiates the iterative
patch selection process on a displayed subset of the images.
The user selects ROIs by drawing rectangular patches in the
images. These patches are denoted as the prototype patches of the
instantiated class. The corresponding feature vectors extracted
by a simple pre-trained model are called prototype vectors. New
patches in the displayed images are suggested to the user based
on their similarity (see Section II-C1) to the prototype patches.
The user chooses a similarity threshold using a slider, manually
curates the suggestions and then approves clean patches con-
sisting of the positive and negative (the manually curated) ROIs
for each class, i.e., belonging to the class, and not belonging to
the class respectively. Based on the similarity threshold, noisy
patches, i.e., unapproved and uncurated ROIs are generated from
the rest (undisplayed) of the images.

A task-specific deep learning model is trained next using the
clean and noisy data. The user is then presented with the patch
classification result from the trained model, and asked to choose
a suitable confidence threshold for the final ROI definition.
Finally, the complete dataset is (again) processed by the model,
and the ROIs are displayed and/or saved.

B. Preprocessing and Channel Selection

Images captured by a digital camera connected to a micro-
scope usually have a bit-depth of 12-16 bits/pixel. This wide
dynamic range is sometimes useful for precise feature extraction,
but the information contained within a smaller dynamic range is
often sufficient for detection of ROIs. In addition, fluorescence
microscopy images often consist of multiple channels that con-
tain information about different structures. Channels also may
be correlated, and in many cases only a subset of the channels are
relevant for ROI selection. Hence, to reduce computational costs
and speed up the ROI selection, the dynamic range is re-scaled
and channel correlation is measured.

All images of a channel are re-scaled to the same dynamic
range. We assume that the instrument settings are kept constant
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Overview of the SimSearch framework. The human-in-the-loop system requires minimal input at each interactive step in the pipeline.

Iterative Patch Selection (IPS) is done on a subset of images and the parameters are used to generate noisy data. Thereafter, a deep learning
model is trained, and the output is shown to the user in Confidence Threshold Selection. Finally, the model and results are saved.

throughout the experiment and apply the same gentle normal-
ization to all images in the set. For each channel, we extract
the (5, 95) intensity percentile of all images. We then find the
(0.5,99.5) of these intensity percentiles and re-scale intensities
in this dynamic range to [0-1]. This minimizes the influence
of image artifacts. The mean of the correlation between image
channels is calculated and shown to the user for manual channel
selection in the GUI. The user can then make a statistically
informed decision by clicking on the channels that are relevant
for the experiment. The manual channel selection can be skipped
if information from all channels should be used for the ROI
detection.

C. lterative Patch Selection (IPS)

After preprocessing and channel selection, the user is pre-
sented with a graphical user interface (GUI) shown in Fig. 1 dis-
playing n images randomly chosen or selected from the dataset.
The user then selects a small number of prototype patches
and interacts with the GUI to generate clean training patches
representing ROIs and background following the flowchart in
Fig. 2. The number of images, n, can be chosen by the user and
should preferably be kept small (less manual work) while still
contain representative objects and the variation in the dataset.

To start the definition of ROISs, the user first instantiates a ROI
class and then marks prototype patches representing this ROI
class. Based on ‘Similarity Extraction,” as described below in
Section II-C1, patches similar to the prototypes are highlighted
in the displayed images. The user then adjusts a similarity
threshold to include or exclude more patches based on their
similarity to the prototype patch. The user can select more
prototype patches and adjust the threshold to annotate the images
until a representative number of patches (typically 80-90% of
the objects of the instantiated class in the displayed images) are
marked. If incorrect patches are included after thresholding, the

user may manually mark them to exclude these patches, which
are kept as negatives.

Once patches from all the instantiated ROI classes are an-
notated, the user is presented with patches that are assumed
to belong to the background. The user is asked to mark the
patches that do not belong to the background. Once this process
is completed, all clean patches, i.e., positive and negative patches
approved by the user, are gathered and the similarity threshold
is saved for each ROI class. Thereafter, based on the prototype
patches and the similarity threshold, noisy training patches are
extracted from the rest of the dataset.

1) Similarity Extraction (SE): With the selection of the first
prototype patch for a ROI class, the patch shape and stride (0.1
x the patch width) for the experiment are fixed and similar
patches are shown to the user following Similarity Extraction
as described in Fig. 2. The prototype and its rotations (90°,180°
and 270°) are passed through a pre-trained CNN feature extractor
(shown in Fig. 3) to get the feature representation of the patch,
referred to as prototype vectors of that class. In this paper, a deep
learning model pretrained on ImageNet [11] dataset is used. This
may not be optimal, but sufficient, as the goal of the IPS is to
find a few general features roughly representing the ROIs. The
primary interest here is to swiftly label many patches.

Similarly, the feature representations of the images are ex-
tracted by dividing the image into patches using a sliding window
with the set patch shape (from the first manually drawn ROI) and
stride. The cosine similarity between the profotypes and the fea-
ture representation of all image patches is calculated, providing
aheat-map of similarities over the images. The locations of local
maxima above the set similarity threshold from the heat map are
calculated and projected back to the image and shown as similar
patches to the user. The user can then adjust the threshold to see
patches with higher or lower similarity.

However, as the threshold is decreased, all patches displayed
might not belong to the instantiated class. This “false-positive”
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detection of similar patches in multiple places in the flowchart. After all the classes are defined, the user marks the background class in the
Background Extraction block. Noisy training patches are generated using the class prototypes and similarity threshold.
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Fig. 3. Description of the model architecture and training strategy.
Training is divided into two parts. The model is first trained with noisy
patches generated in 1I-C3 (top). Afterwards, the model is trained with
both clean negative patches and clean positive patches and finally, a
fully connected layer is added and trained in the end to make predictions
(bottom).

number can be reduced by increasing the threshold but at the cost
of getting fewer clean positive patches to train the model with.
Reducing the threshold would result in more examples but also
more false-positive examples. To eliminate this issue, a negative

flagging step is introduced in the class data selection process.
After having selected a similarity threshold, the user is asked
to flag the patches that do not belong to the class. This results
in more clean positive examples to be available for training and
also clean negative examples to make the classifier more robust
towards difficult examples.

All the prototype vectors and final similarity threshold are
saved once the user is done with negative flagging. These are
used to extract the background patches, and generate noisy
samples for the rest of the data, as described in Section II-C2
and Section II-C3 respectively.

2) Background Extraction: After labeling all the relevant
classes, the user is presented with some previously unlabeled
patches that potentially belong to the background and is asked
to flag the patches that do not belong to the background. The
semi-automated background extraction step is introduced to
eliminate the need for manual background patch selection. The
patches presented to the user are the unlabeled patches with
highest and lowest similarity to the average of all prototypes
for all classes. The patches with the lowest similarity represent
the easy examples of the background and the highest similarity
represent difficult examples. An approach similar to the SE is
used (see Algorithm 1).

3) Generation of Noisy Training Data: Based on the proto-
types and similarity thresholds (ROIs and background), noisy
data can be generated automatically from the images in the
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Algorithm 1: Find 2n Probable Background Patches in the
Image.

Result: Getting probable background patches
Total user selections: n;
All patch regions marked by user: Ry;
All prototypes: py,,c € C;
Feature map extracted: Iy;
Initialize S ;
for p; in pf, do
s = cosine_similarity(p;, I t):
S append s;
end
S = sum(S);
set S = 0 on the locations of Ry;
Find n local maxima M = {z,y | S(z,v) };
Find n local minima m = {z,y | S(z,y) };
Display 2n patches;

dataset not displayed to the user. The images are passed through
the feature extractor and the local maxima are extracted from the
cosine similarity between the feature map and profotypes, and
thresholded based on the user-selected similarity threshold for
the class as described in II-C1. The background patches are then
similarly generated using the algorithm 1. The generated data is
noisy due the lack of user verification, but it provides valuable
information for tuning the feature extractor to the characteristics
of the images and task at hand.

D. Deep Learning Model Training

The model training is done in two steps, first the noisy patches
are used to train the network in self-supervised way to learn
the general representation of the data and, second, the model
is refined towards the class representation using the patches
verified by the user. Finally, a fully connected layer is added
and a classifier is trained.

1) Training on Noisy Patches: The feature representations
of the patches in the datasets are learned on the noisy patches
using SimCLR, the self-supervised contrastive learning frame-
work introduced in [12]. Since only the most relevant noisy
patches are extracted by the method described in II-C3, the
feature representation learned by contrastive learning enhances
supervised training on the limited amount of labeled data. In
SimCLR, a projection head (a multi-layer perceptron (MLP)
with one hidden layer) is attached to the pre-trained feature
extractor model and the whole architecture is then trained with
the NT-Xent (normalized temperature-scaled cross entropy) loss
using two differently augmented views of the same noisy patch
in each mini-batch.

The NT-Xent loss for the correlated views of the same exam-
ple is defined as follows,

£ =~ 3 log

el

exp (sim(z4,Z;(;))/Tself)

> exp(sim(zi,2q)/Tserf)’
acA(7)

(D

Here, ¢ is a sample in a multi-viewed minibatch of size 2" N
where each sample appears twice, augmented differently, i.e.,

I =1...27N.Index i is referred to as anchor, and j(7) is called
its positive and other 2(N — 1) indices in A(i) = I\ {i} are
called negatives. Further, sim(u, v) = u?v/||u||||v|| denotes
the cosine similarity between v and v and 7,y denotes the
temperature parameter for the self-supervised training.

The initial layers of the feature extractor are frozen to enable
only the task specific high-level features to be learned during
the noisy refinement. An alternative noisy training scheme has
been proposed in [13] which tried to achieve learning with
noisy samples by simultaneously training with noisy labels and
corrected labels. This scheme was tested but did not lead to
improvements since the feature representation of negative and
positive patches could not be separated meaningfully.

2) Further Refinement on Clean Patches: As previously
shown in [14], the training procedure above can be generalized
to be used in supervised learning conditions where labels of
the samples are available. The loss function is then modified to
incorporate the class labels for the patches in order for the model
to learn the representation that maximizes the similarity between
patches of a class (positives) and minimize the similarity to
patches of a different class (negatives).

The supervised contrastive loss can be defined as follows,

® S o) CXD(SIm(2i, 70), Teup)

=2 Gy 2
@)

peP(i)
where A(i) ={a|aecl\i} and P(i)={pec A(i):y, =
yi}-

The negative patches marked by the user provide challenging
examples where the original similarity measure (from the unre-
fined model) failed in the patch selection process. We can utilize
these negatives and add them directly into the denominator of
the log term in (2). The denominator can then be written as,

e exp(sim(zi, Zp) / Tsup)

D= Z exp(sim(z;, Zq) /Toup) + €xp (Sim(2;, 2y ) /Toup)
acA(1)
3

where A(7) = {{a,n} |a € I\ i,n € N(i)} and N(7) is a set
of all negative examples marked by the user during the patch
selection of class y;. The final loss then becomes

ey =2 0]
neg )

el

Z log exp(sim(z;, 2p) /Tsup) @
D
peP(i)

L3P helps the model learn feature representation of the
dataset that maximizes the similarity between the positive sam-
ples of the same class, but minimizes the similarity of positive
samples of a class with the negative samples of that class, and
the samples of other classes.

Finally, the projection head is removed and a fully-connected
layeris added, see Fig. 3. The refined feature extractor part of the
model is then frozen and only the fully connected layer is trained
with cross-entropy loss to get the patch class prediction as output.
Since the data from the user selection tends to be imbalanced,
a weighted oversampling was used in both the noisy and clean
patch training steps to prevent overfitting and skewing the results
towards the over-represented class. By default, the framework
trains the model with both the noisy and clean patches but noisy
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training and negative training can be switched off depending on
the precision and computation requirements by the user.

E. Confidence Threshold Selection

The inference is done in a patch-wise manner where the
image is divided into patches using a sliding window and a
softmax value of the prediction for each class is obtained for the
patches. The confidence threshold is then defined as the softmax
threshold above which the local maxima in the softmax image
are chosen. Results on the dataset images are displayed in the
GUI and the user has the option of changing the confidence of
each class separately and choosing a threshold that produces the
desired result. This gives the user an option to prioritize either
precision or recall in accordance with the research question. A
higher threshold will result in predictions with higher precision
but lower recall and a lower threshold will result in predictions
with higher recall and lower precision. After threshold selection,
the location and class of each detected patch is saved for all the
images in the dataset along with the confidence.

[ll. EXPERIMENTAL SETUP, DATASETS, AND EVALUATION
CRITERIA

We use two image datasets, one fluorescence microscopy
and one immunohistochemistry to quantitatively evaluate the
performance of SimSearch. Two other datasets, one transmission
electron microscopy (TEM) and one blood smear brightfield
microscopy dataset are used for ablation studies to evaluate the
influence of different design choices and parameter settings in
the framework.

A. Cell Classification for GFP Translocation Analysis

The first evaluation dataset consists of fluorescence mi-
croscopy images from the open dataset originally provided by
Ilya Ravkin and made publicly available via the Broad Bioim-
age Benchmark Collection [15]. The images are from a drug
screening experiment, where human U20S cells are grown in a
96-well plate with varying dose of two drugs. As the drug dose
increases, a protein tagged with the green fluorescent protein
GFP is translocated from the cytoplasm to the nucleus, and thus
the amount of GFP expressed in the nuclei increases and GFP
expressed in the cytoplasms decreases. The goal of the analysis
is to quantify this translocation of GFP, or more specifically, to
measure the fraction of cells in an image that have nuclear or
cytoplasmic GFP expression. Not all cells express GFP, meaning
that we also need a third class, referred to as the “no GFP” class.
This gives three classes of interest for the experiment, i.e, “GFP
in Nucleus,” “GFP in Cytoplasm,” and “No GFP”.

The experimental setup using SimSearch consists of a work-
flow where the user is asked to define the three classes of cells
as described above, and the output is the number of patches per
image representing the three classes. Five prototype patches of
size 48 x 48 pixels from each of the “GFP in Nucleus,” “GFP
in Cytoplasm,” and “No GFP” were selected from six images
and the threshold was adjusted individually until five negative
patches were marked for each class. The confidence threshold

was set to 0.65 for each class after manual inspection of the
results.

Here we compare the results achieved with SimSearch to those
achieved with CellProfiler [1] and CellProfilerAnalyst [2]. We
tuned a CellProfiler pipeline on the translocation dataset, and
extracted a large number of intensity and morphology features.
We thereafter trained a RandomForest classifier in CellProfiler-
Analyst to detect the three cell classes described above. In order
to make the comparison between SimSearch and CellProfiler
Analyst as fair as possible, we used the same set of training cells
as were used in the first step of the SimSearch workflow.

To evaluate the SimSearch performance, we compared
the classification results to those obtained using CellPro-
filer/CellProfilerAnalyst in relation to the known drug dose per
well. The ratio of cells from each class with respect to the total
number of cells detected in each image in CellProfiler and the
ratio of patches of each class with respect to all the patches
detected in SimSearch was calculated and plotted against the
drug dose.

B. Segmentation of Brightfield Images of Tissue

The second evaluation dataset consists of publicly available
tissue samples obtained from the Human Protein Atlas [16],
where protein expression in different human tissue types is de-
rived from antibody-based immunohistochemistry. Antibodies
are labeled with DAB (3,3’-Diaminobenzidine) and the resulting
brown stain indicates where an antibody has bound to its corre-
sponding antigen. The sections are furthermore counterstained
with hematoxylin to enable visualization of other tissue compo-
nents, such as cell nuclei. Ethical approval was not required for
usage of this human data as confirmed by the license attached
with the open access data.

In our experimental setup, we wanted to investigate Sim-
Search’s ability to identify different sub-cellular protein local-
izations, and therefor chose two proteins with known local-
izations: ERBB2, which is membranous and BRCA1 which is
located mostly in nuclei. To limit the influence of variation in
general tissue morphology, we included (when available) paired
ERBB2 and BRCA 1 samples from the same patient. Note that all
tissue samples also consist of various amounts of tissue without
DAB stain. In total 33 images were extracted and used in the
study.

Five prototype patches of 48 x 48 pixels each representing
nuclear stain, membranous stain, and tissue without DAB stain
were selected from six training images. The similarity threshold
was decreased individually until a representative number of
patches were displayed in the images, and approximately ten
negative patches were marked for each class. Once trained,
the classifier was applied to the full dataset. The confidence
threshold was set to be 0.6 for each class. This was motivated by
the need to get a more exact outline of the different regions in
the tissue, and a more stable quantification of the different tissue
fractions.

For this dataset, the output from SimSearch was modified
to provide a semantic segmentation of the tissue sample. This
was done by resizing the patch-wise prediction outputs to the



GUPTA et al.: SIMSEARCH: A HUMAN-IN-THE-LOOP LEARNING FRAMEWORK FOR FAST DETECTION OF REGIONS OF INTEREST

4085

original image size, and assigning the class with maximum
probability above the confidence threshold at each pixel as
final prediction.

C. Ablation Studies

Ablation studies were performed to assess the variability in
performance of the framework under different training condi-
tions. Datasets of transmission electron microscopy images and
blood smear brightfield microscopy images were used for this
purpose.

Cilia Detection: The first ablation dataset consists of negative
stain transmission electron microscopy (TEM) images of cell
sections for cilia morphology analysis. Mouth swabs of respi-
ratory epithelial cells of which some have protruding cilia were
redissolved, fixated, and embedded in plastic before sectioned
into slices of (= 50 - 70 nm) in thickness, using a microtome.
The slices of the specimen were then floated onto carbon coated
copper mesh grids and post-stained to increase contrast. The
images were acquired with a low-voltage (25 keV) MiniTEM
(Vironova AB, Stockholm, Sweden) as 16-bit TIFF images of
size 2048x2048 pixels and a pixel size of 1 nm. The cilia
positions were annotated using bounding boxes and the centers
were treated as the ground truth. The dataset consisted of 39
images with a total of 393 cilia, of which 31 images with 296 cilia
were used for training and eight images with 97 cilia were kept
separately for testing. From the training set, six random images
were displayed and used for user interaction, and the rest were
used for noisy data extraction. The performance was evaluated
on the test set. The patch size was chosen to be 72 x 72 pixels
to include also slightly bigger (stretched during sectioning) cilia
as well.

Trophozoites and RBC Detection: The other dataset used for
ablation studies consists of image set BBBC041v1 made pub-
licly available via Broad Bioimage Benchmark Collection [15].
The dataset consists of 1384 brightfield microscopy images of
blood smears stained with Giemsa reagent divided into three
different sets, containing two classes of uninfected cells (RBCs
and leukocytes) and four classes of infected cells (gametocytes,
rings, trophozoites, and schizonts). For the purpose of this study,
a subset of the images containing only RBCs and trophozoites
was used as the other classes were very rare. This meant that 258
images containing 607 trophozoites and 19784 RBCs were used
in the experiments. Of these, 206 images with 502 trophozoites
and 15262 RBCs were used for training and 52 images with 105
trophozoites and 4522 RBCs were kept separate for testing. Ten
random images from the training set were chosen to be displayed
for user interaction, and the rest of the images in the training
set were used for noisy data extraction. The performance was
evaluated on the test set. To utilize the iterative patch selection
better in this evaluation study, the random image set chosen for
display were required to have at least 20 trophozoites present in
the images. The patch size was chosen to be 64 x 64 pixels.

In both ablation studies, a detected patch is counted as a true
positive (TP) if the distance between the center of the ground
truth patch and detected patch is less than three times the stride
of the sliding window patch extraction. The rest of the detected

patches are counted as false positives (FPs) and the undetected
ground truth patches are counted as false negatives (FNs).

The performance of the framework was measured on the area
under the precision-recall curve (AUC) by varying the number
of prototypes and negative patches. The number of prototype
patches P was varied as P = {5, 10} and the number of negative
patches N was varied as N = {0,5}. This was achieved by
selecting P ground truth patches randomly and then adjusting
the similarity threshold until only IV negative patches remained
in the displayed images. The effect of different training strate-
gies, especially the self-supervised training on noisy patches and
negative supervised contrastive training which were introduced
inanovel way in the framework was also compared. Pos training
refers to training only with the clean positive patches obtained
during the iterative patch selection, Pos + Neg training refers to
the training with both clean positive and clean negative patches,
and Sel flearn refers to the self-supervised training of the noisy
patches as described in Section II-C3.

For statistical significance, the experiments in each combina-
tion of P and IV were repeated 20 times by selecting new images
and new prototypes for iterative patch selection randomly. Since
the user-approved data is minimal (5-15 patches per class), a
validation set of patches to assess model performance cannot
be meaningfully extracted without affecting the performance.
Currently, the training is stopped after a fixed number of itera-
tions (empirically chosen) which results in some variance in the
results. Hence, to test the repeatability of a particular training
strategy, each training strategy was repeated five times (with
the same training data and hyper-parameter settings) for each
iteration and the standard deviation in AUC is recorded.

In the first experiment, the effect of the number of P and IV
on the AUC was computed. In the second experiment, the effect
of training strategies on the AUC was compared. Lastly, the
repeatability of the training strategies was shown by computing
the mean standard deviation in AUC for a particular training
strategy.

All the strategies were compared against the fully supervised
baseline using Pos training on the whole training set to qual-
itatively assess the performance of SimSearch with the fully
supervised approach that requires significantly larger sets of la-
belled data. The background patches were extracted from images
by removing the labelled class patches. For supervised baseline
training in cilia experiments, 311 patches were extracted, and
for trophozoites and RBCs experiments, 913 patches were ex-
tracted. The supervised experiments were also repeated 20 times
and mean and standard deviation of the AUC was recorded.

D. Implementation Details

Iterative Patch Selection: In all experiments, patch selection
was done based on the features extracted from the pre-trained
ResNet-18 [17] network trained on ImageNet [11]. Since the
deeper layers are task specific, only the first 3 blocks of ResNet
were used. A convolutional filter of size (H/16 x WW/16), where
H and W are the height and width of the patch respectively, ini-
tialized with a gaussian was added to get a center focused single
feature vector output for every patch. The inference was done on
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Fig. 4. Comparison between CellProfiler pipeline and SimSearch results. The fraction of each cell class of the total number of cells detected is

shown with respect to the drug dose.

NVIDIA Titan X GPU with 12 GB and took approx. 0.5 sec /
image for initial patch feature extraction (which happens when
the first patch is selected) and SE is almost instantaneous (mil-
liseconds) afterwards. The generation of noisy training patches
also takes approx. 0.5 sec / image.

Noisy Training: For self-supervised training, a projection head
consisting of 2 fully-connected layers was added. The model
architecture is shown in Fig. 3. The initial convolution layer and
the first 2 blocks of ResNet were frozen and the network was
then trained for 100 epochs with the Adam optimizer [18] and
a learning rate of 10~2 with a step decay of 0.05 after each
50 epochs. The model was trained with a batch size of 128
and augmentations were performed with random horizontal and
vertical flips, rotation, solarize, coarse-dropout, and brightness
and contrast changes. 7,; was chosen to be 0.5.

Supervised Refinement: For supervised contrastive training,
the model is then trained with a batch size of 32 for 50 epochs
with Adam optimizer and a learning rate of 10~ with a step
decay of 0.1 after each 25 epochs. 7,,, was chosen to be
0.07. The same augmentation strategy as in the self-supervised
training step except solarize and coarse-dropout was used.

IV. RESULTS AND DISCUSSION
A. Cell Classification for GFP Translocation Analysis

As shown in Fig. 4, the output of SimSearch corresponds
well with the drug dose in the wells. The fraction of ROIs with
GFP expression in the nuclei increases sharply as the drug dose
reaches 15.6 nM. Similarly, the fraction of ROIs with GFP ex-
pression in the cytoplasms decreases at the same drug dose. The
fraction of ROIs of cells with no GFP (which is independent of
drug dose) remains similar. At each dose, the SimSearch results
follow the CellProfiler results very well. However the magnitude
differs slightly. This is likely due to the fixed bounding box size
in SimSearch, i.e., if cells of the same class are close together,
they will be detected and counted as one. As a result, the ratio of
cells with GFP in cytoplasm is higher and No GFP is lower for
smaller drug doses in SimSearch. The numerical result of the

@® GFPinCytoplasm [ GFP in Nuclei

No GFP

Fig. 5. Display of the SimSearch results on the GFP translocation
images. The centers of the detected ROls of the different classes are
marked.

comparison used in Fig. 4 is available in Supplementary Table
Iv.

As can be seen in Fig. 5, the detected ROI centers are usually
not located perfectly at the center of the cells. The objects are not
symmetrical, and the clean ROIs detected in the iterative patch
selection process are compared to the prototype patches and their
rotations. The similarity local maximum then falls to the center
of the patch and not the center of the object. These patches are
then used in training the model, and hence the local maxima
found in the final detections are usually at a small distance from
the corresponding cell centers.

B. Segmentation of Brightfield Images of Tissue

The area fraction of tissue classified by SimSearch as showing
membraneous and nuclear DAB-staining patterns, as well as no
DAB stain is presented in Fig. 6. The area fraction classified
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Fig. 6.

Fraction of tissue classified as containing membraneous, nuclear, or no DAB-staining patterns, correlating with targeted proteins ERBB2

and BRCA1. Images marked with an asterisks (**) were used during training.

SimSearch Results

ERBB2 Staining

SimSearch Results BRCA1 Staining

A2 E.A

Fig. 7. Examples of DAB staining patterns and the resulting patch
classification and semantic segmentation by SimSearch. A-D ERBB2
stained tissue cores. E-H BRCA1 stained tissue cores. Regions clas-
sified as having membraneous patterns are overlaid with red, while
nuclear DAB patterns are overlaid with green, and regions without DAB
stain are overlaid in blue. B, D, F, and H show a zoomed-in region of A, C,
E, and G respectively. Note that C.2 and G.2 show mixed classification
results.

as having membranous DAB is generally higher in samples
stained for ERBB2, while the area fraction with nuclear stain
is higher in samples stained for BRCA1, as expected. Examples
of the full semantic segmentation results are shown in Fig. 7.
SimSearch is fairly consistent in identifying membraneous and
nuclear stain localization, as illustrated by the examples A,B,
E, and F in the top half of Fig. 7. The bottom half of the figure
shows some difficult examples. C shows an example where the
ERBB?2 staining (which should be membraneous) is so strong it

o
o
3
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o
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| |
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0.

Fig. 8. Area under precision-recall curve (AUC) comparison of differ-
ent training strategies and number of training examples on the Cilia
dataset. On the left, we show the mean AUC (of 5 iterations) of each
training strategy for 20 experiments, and on the right, the standard
deviations of the iterations for each experiment. The mean AUC and
standard deviation of 20 repetitions of fully supervised baseline is shown
as horizontal lines in the plots.

appears to also stain nuclei. Similarly, G shows a sample stained
for BRCA1, which should be nuclear, but SimSearch finds both
nuclear and membraneous patterns. Careful inspection reveals
that the DAB staining has spread to the surrounding tissue,
resulting in a false membranous pattern. The numerical table
used for Fig. 6 is available in Supplementary Table V.

C. Ablation Studies

Figs. 8 and 9 show the results of the ablation studies on the
Cilia and Blood Smear datasets respectively. The violin plots
show the probability density of the data at different values.
The “body,” hence, shows where the values are concentrated
for different experiments and the long tail with the neck shows
the outliers. The normal box plot is shown inside the violin.

The left plots of Figs. 8 and 9 show mean AUC (of 5 rep-
etitions) for 20 different experiments of each combination of
number of prototypes(P) and negatives(N). This plot shows
how the AUC varies with the different numbers of prototypes
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Fig. 9. Area under precision-recall curve (AUC) comparison of differ-
ent training strategies and number of training examples on the blood
smear dataset. On left (top and bottom), mean AUC (of 5 iterations)
of the each training strategy for 20 experiments (for RBCs and Tropho-
zoites respectively). On right, the standard deviations of the iterations for
each experiment (for RBCs and Trophozoites respectively). Mean AUC
and standard deviation of 20 repetitions of fully supervised baseline is
shown as horizontal lines in the plots.

and negatives and training strategies. It also shows how different
training strategies adapt with different selections of prototypes
and negatives in a category.

The right plots of Figs. 8 and 9 show the standard deviation of
AUC (of 5 repetitions) for the different P and N combinations
and training strategies. This plot shows how stable a particular
training strategy is, given a clean and noisy dataset and helps in
accessing the repeatability of an experiment. Higher repeatabil-
ity corresponds to lower variance for a training scheme.

As can be seen from Figs. 8 and 9 (left), there is not a signif-
icant difference in the median AUC for different combinations
of P and N, which shows that even with a smaller number of
samples a reasonable performance can be achieved. However,
the necks become shorter with an increase in P (except for train-
ing with only positives). This indicates that performance is less
dependent on selecting a good prototype if more examples of
both positives and negatives are included. A similar effect can be
seen with the introduction of self-learning within the same P, N
category (smaller body and shorter necks) which indicates that
self-learning helps make the AUC more robust with respect to the
choices of random patches in iterative patch selection process.

As can be seen in Figs. 8 and 9 (right), self-learning makes
the framework more robust in general (as indicated by smaller
standard deviation between repetitions of the same experiment),

thus increasing repeatability and making the results more
reliable.

In comparison with the fully supervised approach, as can
be seen from Fig. 8, for cilia most combinations of P and N
outperform the baseline, however, the standard deviation seems
to be higher than the baseline. Similarly, for the RBC and
trophozoite experiments, even with relatively low numbers of
P and N the performance can reach the mean of the supervised
baseline and even surpass it in some cases. It is also worth
noting that the standard deviation is usually lower than that
of the supervised baseline which shows the robustness of the
method. This clearly shows the advantages of using SimSearch
over manually labelling a large dataset.

In the case of abundant and ‘“‘easy” classes like Cilia and
RBCs (as the objects in these classes have definitive shape with
small variations in size and color), training with negative patches
(Pos + Neg) helps reduce the inter-measurement variability
(lower standard deviation between repeated measurements). It
also makes the model more independent of the choice of pro-
totypes and reduces variance in mean AUC between different
experiments. Pos + Neg training helps the model learn more
relevant features for a class which help to distinguish it from
other classes.

However, for a rare and “difficult” class like Trophozoites
(objects with large variation in shape, size and color), training
with just (Pos + Neg) does not seem to improve performance.
This can be attributed to fewer clean positive patches being
available for the model to learn the relevant features for the class.
However, self-learning with noisy patches in this case increases
the performance significantly. This shows the effectiveness of
self-learning in learning the general features for all the classes.
This is shown in reduction of both inter-experiment (Fig. 9
(bottom left)) and inter-measurement (Fig. 9 (bottom right))
standard deviation. Although, Pos + Sel flearn has higher
median than Pos + Neg + Sel flearn for trophozoites, overall
Pos + Neg + Sel flearn seems to be the better choice for both
the “easy” and “hard” classes in a dataset.

The numerical results of comparison between different exper-
iment and training strategy is available in Supplementary Table
L, I, and III for Cilia, RBCs and Trophozoites respectively.

V. CONCLUSION

We have presented a human-in-the-loop framework for fast
and flexible ROI detection in biological image datasets. The
proposed framework uses a pre-trained model to extract features
removing the need for feature engineering and domain-expertise
from the user. The framework is fast when using a GPU which
makes it suitable for real-time applications. The framework em-
ploys self-supervised learning and negative training to make the
most efficient use of user input during the training process. The
GUTI also provides the user with a confidence threshold to control
the output of the experiments in accordance with what is most
relevant/important for the research question/application at hand.
We demonstrated the framework on different research scenarios
and four biological datasets, and presented good performance
and robustness under different prerequisites and requirements.
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The framework successfully reciprocated the results from Cell-
Profiler in drug response analysis without manual and time-
consuming feature selection and extraction. The framework also
performed well detecting and segmenting areas exposed to dif-
ferentimmunohistochemical stains. Using ablation experiments,
we showed that the training strategy and methods implemented
in the framework are robust against different variations in user
inputs. We hence conclude that we have shown that the frame-
work has great potential to increase research throughput in a
broad variety of biological microscopy experiments.
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