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Abstract— The pandemic of COVID-19 has become a
global crisis in public health, which has led to a massive
number of deaths and severe economic degradation. To
suppress the spread of COVID-19, accurate diagnosis at
an early stage is crucial. As the popularly used real-time
reverse transcriptase polymerase chain reaction (RT-PCR)
swab test can be lengthy and inaccurate, chest screening
with radiography imaging is still preferred. However, due
to limited image data and the difficulty of the early-stage
diagnosis, existing models suffer from ineffective feature
extraction and poor network convergence and optimisa-
tion. To tackle these issues, a segmentation-based COVID-
19 classification network, namely SC2Net, is proposed for
effective detection of the COVID-19 from chest x-ray (CXR)
images. The SC2Net consists of two subnets: a COVID-19
lung segmentation network (CLSeg), and a spatial attention
network (SANet). In order to supress the interference from
the background, the CLSeg is first applied to segment the
lung region from the CXR. The segmented lung region is
then fed to the SANet for classification and diagnosis of the
COVID-19. As a shallow yet effective classifier, SANet takes
the ResNet-18 as the feature extractor and enhances high-
level feature via the proposed spatial attention module. For
performance evaluation, the COVIDGR 1.0 dataset is used,
which is a high-quality dataset with various severity levels
of the COVID-19. Experimental results have shown that, our
SC2Net has an average accuracy of 84.23% and an average
F1 score of 81.31% in detection of COVID-19, outperforming
several state-of-the-art approaches.

Index Terms— COVID-19, chest x-ray imaging, SC2Ne,
lung segmentation, ResNet-18
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Fig. 1: A heat map shows the class-discriminating regions
using GRAD-CAM++. Specifically, for the examples on the
third columns, the size and the position are normalized with
the background region suppressed. The severity levels from
top to bottom rows are: MILD, MODERATE and SEVERE,
respectively.

S INCE January, 2020, the novel coronavirus pneumonia
(COVID-19) has rapidly spread to more than 188 coun-

tries and regions, and caused more deaths, than the previous
coronavirus strains, namely, Severe Acute Respiratory Syn-
drome (SARS) and the Middle East Respiratory Syndrome
(MERS) [1]. As a result, many countries have taken substantial
losses in terms of their population health [2]. It is therefore
imperative in the fight against this disease for medical insti-
tutions to be equipped with the tools necessary for fast and
effective diagnosis.

Currently, the gold standard for diagnosing of the COVID-
19 is the real-time reverse transcriptase polymerase chain
reaction (RT-PCR) swab test [3]. However, the diagnostic
results from RT-PCR requires several hours to process, and
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studies have shown that the test suffers from a high false
negative rate [4], often requiring repeated tests.

An alternative and quicker diagnostic method is based
on chest radiography imaging (CRI), where patients with
suspected COVID-19 symptoms may undergo computed to-
mography (CT) or chest X-ray (CXR) screening to visualize
observable thoracic lesions. Some have argued that CT is
more suitable for COVID-19 detection over CXR imaging
[5]. However, CT imaging is expensive, time-consuming,
and not always readily available. At the detriment of image
resolution and contrast, CXR imaging presents a cheaper,
quicker, and more easily accessible alternative to CT, with
demonstrated high efficacy in detecting COVID-19 [6]. How-
ever, no matter the selected data modality, key radiological
features such as ground-glass opacities, crazy-paving patterns,
bilateral involvement, and peripheral distributions consistent
with the COVID-19 are also partially presented in SARS and
MERS [7]. With such a short time period for radiologists
to build requested knowledge and experience, discriminating
COVID-19 from other pneumonias becomes a challenging
task. To this end, also taking the increased pressure on health
services from rising cases into account, it is a need to develop
robust computer-aided diagnosis systems for automating the
diagnostic process and to ease the burden on clinical staff.

In recent years, deep convolutional neural networks
(DCNN) have emerged as an effective tool for a wide range
of image analysis tasks such as segmentation, classification,
and object detection. DCNNs, or deep learning models, have
actually learned the handcrafted features on their own by
framing the learning process as an optimization problem.
This has enabled them to iteratively determine the key class-
discriminating distributions in the data without any manual
intervene in prior. Having a model that can effectively leverage
the data is therefore crucial to medical image analysis, which
has motivated the wide deployment of deep learning in med-
ical imaging and computer-aided diagnosis. For tacking the
pandemic of the COVID-19, therefore, a deep learning-based
computer-aided diagnosis (CAD) system can have the potential
to learn from hundreds of imaging cases and thus provide
an effective tool for improved decision-making in terms of
COVID-19 detection and diagnosis. Recently, DCNN based
methods have achieved promising performance on detecting
COVID-19 [8], [9]. However, there still exists challenges on
detect COVID-19 cases:

i. As seen in Figure 1, existing models detect the COVID-
19 cases from the whole CXR directly, where the
information from the background regions, e.g., arms and
neck, may affect the training of the classifiers and lead
to degraded accuracy and robustness, i.e., the models
of COVID-19 may have the learning target altered due
to background noise caused by non-lung regions (NLR)
and variations of the size and position of the lung (SPL);

ii. As discussed in the previous works [10], [11], and
also validated in our experiments, existing CNNs have
difficulty on tackling data shift of CXR-based COVID-
19 detection. In other words, the classifier may achieve
a promising performance on one dataset, but fail when
tested on another;

iii. Under limited training samples, to increase the depth
of CNNs cannot necessarily improve the accuracy of
COVID-19 diagnosis, thus a more effective model is
needed to tackle this challenge;

iv. As illustrated in [10], existing methods focus mainly on
the diagnosis of severe cases, where early-stage cases,
which are hardly detectable, are seldom considered;

Motivated by this, we have proposed a segmentation based
deep learning based COVID-19 network, namely SC2Net,
to detect the COVID-19 from early-stage to late-stage, with
a high reliability. A COVID-19 lung segmentation network
is utilized to exclude the non-lung area and normalize the
size of lung. Due to the limited number of samples, the
size normalization may lead to overfitting. Thus, a bounding-
box oscillation strategy is proposed, which slightly shift the
position of lung during training. Meanwhile, a spatial attention
module and a multi-scale learning strategy are proposed, to
further enhance the efficacy of feature extraction.

The major contributions of this paper can be summarized
as follows:

i). We propose a cascaded segmentation-classification net-
work (SC2Net), to alleviate the interference of the
background noise, which may cause learning alternation
issue and vulnerability to data shift. This is achieved by
utilizing a novel COVID-19 lung segmentation network
(CLSeg) before classification, for suppressing the effect
of the background region in the extracted features;

ii). A bounding-box oscillation strategy is proposed to the
segmented lung region for normalizing the position of
the segmented lung in order to avoid overfitting of the
fixed lung position;

iii). When trained on small datasets, increasing the number
of layers may bring no improvement on the classification
accuracy. Thus, a shallow CNN, namely spatial attention
network (SANet) is proposed, in which a novel spatial
attention module (SAM) is utilized to enhance the dis-
criminability of high-level features, followed by a multi-
scale learning method for improved feature extraction;

The remaining parts of this paper are organized as follows.
Section II briefly introduces the related work. The architec-
ture and implementation detail of the proposed method are
presented in Section III, followed by the experimental results
discussed in Section IV. Finally, some concluding remarks are
given in Section V. The abbreviations utilized in this paper are
summarized in Table I.

II. RECENT WORK

Since the outbreak of the COVID-19, many deep learning-
based methods and models have been proposed for its detec-
tion and diagnosis from medical images, especially the CT
and CXR images. Initially, two-class solutions were focused
whereby COVID-19 was distinguished from either healthy
images [21], [22], or from lung infections with similar image
features, such as Vir. pneumonia (viral pneumonia) [23] and
others [24], [25]. Wang et al. [9] proposed one of the first
deep learning models, COVID-Net, a CNN based model for
discriminating CXR of COVID-19 patients from samples of
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TABLE I: Abbreviations used in this paper.

Abbreviations CXR Pneum. Vir.
Pneum.

Bact.
Pneum.

NLR SPL BBOX Acc. Spec. Prec. Rec. Sens. MACs ROC AUC

Description chest
X-ray
image

pneumonia viral pneu-
monia

bacterial
pneumo-

nia

non-lung
region in

CXR

size-
position of

lung

bounding
box

accuracy specificity precision recall sensitivity multiply–
accumu-

late
operations

receiver
operating
character-

istic

area under
curve

Fig. 2: Flowchart of the proposed SC2Net.

healthy, Vir. pneumonia, and Bact. pneumonia (bacterial pneu-
monia) patients. Using a dataset consisting of 1203 normal,
660 Vir. pneumonia, 931 Bact. pneumonia, and 45 COVID-19
patients, a testing accuracy of 83.5% was achieved. However,
with such a large class imbalance, the reliability of COVID-
Net for use on different datasets could hardly be assured.

Following this, Karim et al. [12] proposed the DeepCOVID-
Explainer, which was built with an ensemble of two different
classification networks, i.e., DenseNet-161 and VGG-19. By
training their ensemble method on a dataset of 11,896 normal,
pneumonia, and COVID-19 CXR images, they outperformed
COVID-Net [9] with a precision and recall of 89.61% and
83.00% on a hold-out test set containing 77 COVID-19
samples. They also demonstrated the effectiveness of the Grad-
CAM++ method [26] for highlighting the class-discriminating
pixels on the test images, enabling more interpretable decisions
of their models to the clinical doctors.

In [13], Bassi et al. attempted to overcome the class
imbalance issue of limited COVID-19 images, where a trans-
fer learning technique was used to leverage the pre-trained
CheXNet model [8]. The model was trained on 127 COVID-
19, 1285 pneumonia, and 1281 normal CXR images. They also
implemented conventional data augmentation methods (e.g.,

flipping, translations, and rotations) to boost their sample sizes
to 9144, 8128, and 8128 for the COVID-19, pneumonia, and
normal cases, respectively. A tested mean accuracy of 97.8%
was achieved.

Zhang et al. [14] proposed the so-called COVID-DA model,
in which both labeled and unlabeled data were used to train the
model in a semi-supervised fashion. In [15] another ensemble
strategy was proposed to include three ResNets [27], where
each of them was trained on a subset of their CXR training
dataset for a separate binary classification. Once trained, the
three models were stacked and fine-tuned on a fourth dataset.
The multi-channel ensemble model could obtain a precision
and recall values of 94% and 100% respectively, giving
superior performance over an individual ResNet trained only
on the fourth dataset.

A comparative study was conducted by Chawki et al.
[16], where various network architectures used for deep
learning based COVID-19 detection were implemented, in-
cluding VGG-16, VGG-19, DenseNet-201, Inception-ResNet-
V2, Inception-V3, ResNet-50, and MobileNet-V2 for classi-
fying images as either normal, bacterial, viral, or COVID-
19 pneumonia. Their dataset consisted of 1583 normal, 2780
bacterial, 1493 viral, and 231 COVID-19 cases. With an 80/20
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TABLE II: Summary of methods and findings for approaches
on Chest X-ray images.

Reference Dataset Method Results

Karim
[12]

COVID-19 259
Pneum. 8614
Normal 8066

DenseNet, ResNet, VGG19 (ensemble)
89.1% (Prec.)
83.0% (Rec.)

Bassi
[13]

COVID-19 219
Vir. Pneum. 1345

Normal 1341
Pre-trained CheXNet (DenseNet-121) 98.3% (Acc.)

Zhang
[14]

Training Testing
COVID-19 258 60

Pneum. 2306 n/a
Normal 8154 885

semi-supervised domain adaption.
Uses a generator-discriminator design

to learn pneumonia CXR data distributions
to enable COVID-19 data distribution

to be better distinguished.

0.9298 F1 score

Kim
[15]

COVID-19 184
Pneum. 4245
Normal 1579

Ensemble three ResNets
94% (Prec.)
100% (Rec.)

Chawki
[16]

COVID-19 231
Bact. Pneum. 2780
Vir. Pneum. 1493

Normal 1583

Inception-ResNetV2 92.18% (Acc)

Wang
[9]

COVID-19 386
Pneum. 5551
Normal 8066

COVID-Net 95.9% (F1 score)

Tabik
[10]

COVID-19 426
Normal 426 COVID-SDNet (GAN based) 81.00% (Acc.)

Tuncer
[17]

COVID-19 135
Pneum. 150
Normal 150

a fuzzy transform (F-transform) is used
as feature extractor, and 16 conventional

classifiers are utilized.
97.01% (Acc.)

Hu
[18]

Dataset 1 COVID-19. 520
non-COVID 5000

Dataset 2
COVID-19 219

Pneum. 4290
Normal. 1583

LetNet-5 is used as feature extractor.
Extreme Learning Machines is applied

as classifier.

98.25% (Acc. on dataset 1)
99.11% (Acc. on dataset 2)

Gilanie
[19]

COVID-19 1066
Pneum. 7021
Normal 7021

CNN 96.68% (Acc.)

Afifi
[20]

COVID-19 1056
Pneum. 5541
Control 7218

DenseNet-161 91.2% (Acc.)

Lin
[11]

Dataset 1 COVID-19. 363
Pneum. 3736
Normal 1408

Dataset 2
COVID-19 617

Pneum. 5575
Normal. 8066

Dataset 3
COVID-19 427

Pneum. 426
Normal. 427

adaptive deformable ResNet
98.55% (Acc. on dataset 1)
95.00% (Acc. on dataset 2)
89.53% (Acc. on dataset 3)

training and testing split, the Inception-ResNet-V2 was found
to outperform all other models, giving an overall accuracy of
92.18% and F1-score of 92.07%, respectively.

More recently, Tuncer et al. [17] proposed a lightweight
multileveled feature extraction method via a fuzzy transform
(F-transform) based on triangle fuzzy sets and a formed fuzzy
tree. Taresh et al. [28] and Nayak et al. [29] utilized different
pretrained CNNs for COVID-19 diagnosis. When classify
COVID-19 cases from normal cases and viral pneumonia
cases, VGG16 and MobileNet achieved the best performance
[28]. ResNet-34 surpasses other CNNs, if viral pneumonia
cases are not considered [29]. Hu et al. [18] replaced the
fully connected layer in CNN by extreme learning machines.
A new CNN architecture is proposed by Gilanie et al. [18],
which can be applied to both chest X-Ray and CT images for
diagnosis of COVID-19. For a more concise comparison of
the literature, we have listed the discussed literature, together
with their respective methods and results, in Table II.

Actually, attention modules have showed their particular
strengthen and values on detection of COVID-19. In [30],
a context attention network, formed by 3D depth-wise and
3D residual squeezing and excitation block, was proposed
for segmenting the lesion region on CT scans. Sitaula et
al. [31] utilized an attention module to enhance the spatial
relationships between the regions of interests in CXR images.
Afifi et al. [20] proposed a bi-path attention architecture,
where both global and local deep features were adopted in a
multi-label classification framework. Lin et al. [11] enhanced

Fig. 3: Architecture of the proposed CLSeg model.

(a)
(b) (c)

Fig. 4: The proposed bounding-box oscillation strategy
(BBOS).

the efficacy of feature extraction via adaptive deformable
convolution. Zhang et al. [32] proposed a multiple-input
CNN, where the feature was enhanced by the convolutional
block attention module. Zhou et al. [33] introduced two
contrastive abnormal attention models to discover intra- and
inter-contrastive abnormal between two lungs.

Although previous works have achieved promising perfor-
mance in COVID-19 detection and diagnosis, experimental
results in Maguolo et al. [34] showed that the background
region may affect result prediction as well, causing the altered
learning target of the network. In addition, Tabik et al. [10]
argued that most of the previous methods only collected severe
cases for training and testing, without considering the early-
stage cases. To tackle these issues, in this paper, we aim
to improve the feature representation capability of a shallow
network, which will be more suitable for training on a small
number of samples yet with high prediction reliability.

III. PROPOSED METHOD

In this section, we will discuss the proposed method in
detail. At first, the overall classification pipeline will be
introduced, followed by the architectures of the proposed
segmentation network and the classification network.

A. Overall classification pipeline
The overall classification pipeline is shown in Figure 2,

where ”NLR” and ”SPL” denote the noise caused by non-lung
region and size-position of lung, respectively; ”BBOX” is the
bounding-box containing the segmented lung region; ”CLSeg”,
”BBOS”, ”SAM” and ”SANet” denote the proposed COVID-
19 lung segmentation network, bounding-box oscillation strat-
egy, spatial attention module and the classifier enhanced by
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(a)
(b)

Fig. 5: Architecture of the proposed SANet (a) and spatial
attention module (b), where the weights of the fully-connected
layers are shared between two feature maps in the proposed
multi-scale learning.

our spatial attention module, respectively; ”C5” is the ResNet
extracted features, and ”C5 ATT” is the features enhanced by
the proposed SAM. As visualized using Grad-CAM++, after
background suppression, the classifier predicts based on the
lung region only, without interfered by the background. Both
C5 and C5 ATT are utilized for training, while in evaluation,
only C5 ATT is utilized for prediction. The structure of the
proposed CLSeg is detailed in Figure 3.

As illustrated in Tabik et.al [10], the CXRs produce images
of the upper body, in which additional body parts may also
be included, e.g., arms, neck, and stomach. The information
from these additional body parts may inevitably affect the
diagnosis of the COVID-19. To suppress the information of
these background regions, the proposed segmentation network
is first applied to segment the lung area from the plain CXR
images, where the architecture will be detailed in Section III-
B. Based on the predicted segmentation mask, a bounding
box can be extracted to cover both the left and the right lung
regions. The original CXRs are cropped using the generated
bounding box, where non-lung area is excluded, and the sizes
of the cropped CXRs are then unified for trained and evalua-
tion. To further exclude the unwanted background information,
the background pixels are filtered by multiplying the cropped
image with the predicted segmentation mask. Cropping the
CXR image by the extracted bounding box can help to nor-
malize the position and the size of the lung region. However,
the fixed position of the lungs constrains the variety of the
dataset, especially when the number of samples is limited.
As a result, the classifier can easily go overfitting during
the training. To alleviate this position normalization caused
problem, we proposed a bounding-box oscillation strategy
(BBOS) on the cropping procedure, where the position of
the lung is slightly shifted during cropping whilst remaining
the whole lung region within the cropped image. The details
of the proposed BBOS are presented in Section III-C. After
surpassing the background information, CXR images are fed
to the proposed SANet for classification and diagnosis of the
COVID-19. The proposed SANet based classifier consists of a
spatial attention module for feature enhancement, which will
be detailed in Section III-D.

TABLE III: Result comparison (%) in terms of lung segmen-
tation on the Cohen’s dataset [35].

Methods Dice Precision Sensitivity Specificity

UNet 92.43 90.06 95.09 95.70
CLSeg 94.09 93.18 95.08 97.11

(a) (b)

(c) (d)

Fig. 6: Lung region segmentation results. The rows shown
from top to bottom present: (a) original CXR images, (b)
UNet prediction, (c) CLSeg prediction and (d) ground truth,
respectively.

B. COVID-19 Lung segmentation network

The architecture of the proposed COVID-19 Lung segmen-
tation network (CLSeg) is shown in Figure 3. Inspired by
the U-Net [36], the proposed CLSeg consists of the encoder
and decoder parts. The encoder of a plain U-Net is shallow,
which constrains the capability of feature extraction. Thus,
we adopt the pretrained ResNet, which are commonly used
in medical imaging tasks [10], [37], as the encoder of the
proposed CLSeg. As seen in Figure 3, the ResNet consists of
5 residual blocks, whose outputs are denoted respectively as
”C1”, ”C2”, ”C3”, ”C4”, and ”C5”. Specifically, the original
ResNet reduces the feature map size by 32, i.e., the size of
input image is 352 × 352, while the size of C5 is 11 × 11.
According to experiments in FCN [38], such a small size is too
coarse to capture local information of the high-level features.
To tackle this drawback, we assign the downscale factor on
the ”layer 4” from 2 to 1. As a result, the downscale factor
of the encoder becomes 16, which is identical to the U-Net.
For the architecture of the decoder, the bilinear interpolation
is utilized for upscaling the feature map. Similar to the U-Net,
we adopt the feature fusion on the decoder. However, we did
not directly concatenate the feature maps as used in the U-Net,
simply because the channel size of the ResNet is much higher
than the U-Net. As the decoder is trained from scratch, the
increased parameters will impede the network optimization,
especially for small datasets. Thus, the feature maps are fused
via a mixture of addition and concatenation in the decoder part
of the CLSeg. To further reduce the number of parameters,
the channel size of C4 and C5 are normalized to 512 before
addition. As suggested in the InfNet [37], low-level feature
maps in the ResNet contribute little to the predicted result,
hence the feature maps from C3 to C1 are excluded in the
fusion. After applying the proposed CLSeg to the extracted
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TABLE IV: Hyperparameters utilized in this paper.

CLSeg SANet

Image size 352 480

Optimizer Adam

Learning rate 1e-4

Batch size 24 16

Epoch 100 10

lung region, the predicted map is produced as the outputted
lung mask.

Let O and I respectively denote the prediction outputs and
the CXR decision region of the classifier. For simplifying the
discussions, only COVID-19 prediction task is considered in
this section. Thus, the set of O is {+,−}, corresponding to the
COVID-19 and normal cases, respectively. As the CXR-based
COVID-19 diagnosis is achieved by determining the infected
lung region, we assign the set of I as {l, u}, where l is the
lung region and u is the remaining region of the upper body,
respectively. Based on the assumptions above, the inference
process of the previous works can be expressed by:

P (O | I) = P (O | l)P (l) + P (O |u)P (u) (1)

After utilizing the CLSeg, the inference process becomes:

P (O | I) =P
(
O | l× FCLseg (l)

)
P
(
l× FCLseg (l)

)
+

P
(
O |u× FCLseg (u)

)
P
(
u× FCLseg (u)

)
=P (O | l)P (l)

(2)

where FCLSeg denotes the proposed CLSeg. The mask-based
feature suppression can help to eliminate the prior of non-lung
region. This enforces the decision region to be focused on the
lung, resulting in more accurate and reliable diagnosis.

C. The proposed bounding-box oscillation strategy

With the CLSeg, the lung mask can be obtained from the
image as the foreground, where the non-lung region will be
considered as the background for diagnosing the COVID-19.
As shown in Figure 2, the non-lung region may affect the
learning of the classification model. Thus, the background
information needs be suppressed. After background suppres-
sion, following the work in COVID-SDNet [10], the bounding-
box is generated. The lung region is then cropped with the
boundary of the cropped CXR image as the bounding-box,
i.e., reassigning the lung region to the centre of the image. To
further unify the size of the cropped lung region, the cropped
CXRs are resized to 480× 480 as suggested in [9]. However,
with the normalized size and the position of the lung, the
feature variety of each pixel is still limited, resulting in the
overfitting of the classifier. This phenomenon is also observed
in our experiments, which will be detailed in the next section.

To tackle the overfitting when normalizing the position
and the scale of the lung region, we proposed a bounding-
box oscillation strategy (BBOS). The bounding-box can be
represented by (x, y, w, h), indicating its center coordinates,

width and height, respectively. According to the definition of
the convolution, a pixel with a coordinate [m,n] on a feature
map Y is determined by:

Y [m,n] =
∑
i

∑
j

X[i, j] · h[m− i, n− j] (3)

where, X and h respectively denote the input and the convo-
lution kernel. After utilizing the BBOS, the coordinate of the
bounding box shifted by δ and becomes (x ± δ, y ± δ, w, h).
Meanwhile, the pixel [m,n] on the feature map Y can be
extracted by:

Y [m,n] =
∑
i

∑
j

X[i± δ, j ± δ] · h[m− i, n− j] (4)

An example is illustrated in Figure 4: the initial bounding-
box,colored in red in (a), delimited the lung region, is acquired
based on the segmentation result. In the proposed BBOS, the
bounding-box is slightly shifted before cropping. Compared
with the original center crop (see (c)), BBOS (see (b)) also
maintains the whole lung region within the cropped image.
However, the proposed BBOS remarkably increases the variety
of samples.

D. Spatial attention module

After suppressing the background information, the CXR
image is then fed to a classifier for COVID-19 diagnosis.
As depicted in Section II, existing methods are still weak on
diagnosing early-stage cases, i.e., at mild level. This is because
the lesion area is still small in comparison to the healthy
region. Thus, a spatial attention module (SAM) is proposed,
to further suppress the background information caused by the
healthy region of lung and to enhance the lesion area.

The architecture of the proposed SAM is shown in Figure
5. As seen, the proposed SAM is deployed to enhance the
high-level feature map extracted via the pretrained ResNet-18.
Here, a pretrained network is exploited due to the lack of suffi-
cient training samples for the COVID-19 cases. Experimental
results in [9], [10] found that, ImageNet pretrained networks
outperforms the networks that are trained from scratch or via
transfer learning. The process of feature enhancement in the
SAM can be expressed by:

Y = σ
(
F3×3

(
F1×1(X)

))
×X (5)

where X is the input feature map from layer 4; F3×3 and F1×1
are the convolution layers with the kernel sizes of 1 × 1 and
3×3, respectively; Σ(∗) is the sigmoid activation function and
Y is the output of the proposed SAM.

After enhanced by the SAM, the values of the background
pixels are further suppressed. However, those low-value pixels
still affect the predicted result due to the used average pooling.
Thus, the output of the SAM is further upsampled by 2, using
a max-pooling layer. To improve the performance in terms of
the fully connected layer, we propose a multi-scale learning
in terms of the high-level feature maps as follows. During the
training, the fully connected layer independently predicts the
category using feature maps in both a high resolution (C5) and
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TABLE V: Ablation study (%) of the proposed method on the COVIDGR 1.0 dataset.

Class Metric Methods

Baseline + Masked + BBOS + SA + MSL

Normal
Spec. 87.06± 7.10 91.76 ± 3.83 87.00± 7.83 86.47± 2.12 90.12± 4.45
Prec. 78.91± 4.39 77.39± 4.56 82.63± 3.70 83.53 ± 3.76 83.07± 4.75
F1 82.41± 1.41 83.78± 2.06 84.50± 3.99 84.88± 1.21 86.29 ± 2.75

COVID-19
Sens. 70.63± 1.05 66.52± 10.39 77.34± 6.70 78.83 ± 6.19 77.05± 8.17
Prec. 83.34± 7.49 87.42 ± 3.88 84.03± 7.59 82.79± 1.46 86.89± 4.71
F1 75.37± 4.43 74.85± 7.15 80.07± 3.89 80.60± 2.96 81.31 ± 4.80

Accuracy 79.64± 1.75 80.39± 3.42 82.65± 3.76 83.03± 1.88 84.23 ± 3.39

TABLE VI: Ablation study (%) of the proposed preprocessing
method on the COVIDGR 1.0 dataset.

Class Metric Methods

w/o CLSeg w/o Masking Proposed

Normal
Spec. 81.18 ± 5.45 81.35 ± 9.92 87.00 ± 7.83
Prec. 81.38 ± 4.24 84.64 ± 4.00 82.63 ± 3.70
F1 81.01 ± 1.37 82.42 ± 4.26 84.50 ± 3.99

COVID-19
Sens. 76.70 ± 9.06 81.21 ± 7.95 77.34 ± 6.70
Prec. 77.42 ± 3.74 79.52 ± 7.90 84.03 ± 7.59
F1 76.73 ± 2.14 79.65 ± 3.21 80.07 ± 3.89

Accuracy 79.16 ± 1.25 81.29 ± 3.35 82.65 ± 3.76

a low resolution (SAM). We refer the classifier with the SAM
module as SANet, and the loss of the SANet is defined by:

L = LSA + LC5 (6)

where LSA and the LC5 denote the cross-entropy losses
predicted using feature maps of the SAM and C5, respectively.

IV. EXPERIMENTAL RESULTS

In this section, a series of ablation study will be conducted
to validate the effectiveness of each module, followed by
performance assessment of the proposed approach in com-
parison to a few state-of-the-art methods. In addition, the
hyperparameters and the dataset will also be introduced.

A. Experimental setup and evaluation metrics
Classification related experiments are conducted on the

COVIDGR 1.0 dataset [10] and COVIDx dataset [9],
COVIDGR is a CXR dataset labeled by four highly trained
radiologists from the Hospital Universitario Clı́nico San Ce-
cilio, Granada, Spain. COVIDGR contains 852 images, equally
distributed in two classes, i.e., COVID-19 and normal cases,
respectively. According to the infection severity introduced in
[41], COVID-19 CXR image is further annotated based on
the RALE score [42] in four levels, i.e., Normal-PCR+, Mild,
Moderate and Severe. Specifically, CXR image with positive
PCR and annotated as ”Normal” by expert radiologists are
labeled with Normal-PCR+. Following the previous works [9],
[10], we only consider the classification task of Normal vs
COVID-19, due to the limited samples of each severity level.

To further validate the robustness of the proposed SC2Net,
the results are also compared on the COVIDx dataset [9],
which is another publicly available dataset with respect to
the diagnosis of COVID-19 cases. The COVIDx dataset

consists of 14003 images in three categories, i.e., 8066 normal,
5551 non-COVID19 infection (pneumonia) and 386 COVID-
19, respectively, where the COVID-19 samples are collected
from more than 266 COVID-19 patients. In total 300 images
are randomly selected as the testing set, 100 per category,
according to the patients’ ID. For a particular patient, the
associated data will be used either for training or testing, hence
there is no overlapped data in this context. In addition, patient
cases of normal and non-COVID19 pneumonia are collected
from RSNA Pneumonia Detection Challenge dataset [9] The
training and testing sets are randomly divided according to
the patient ID, which means that for a particular patient, the
associated data will be used either for training or testing, hence
there is no overlapped data in this context. We train our models
on the training dataset and evaluate the performance on the
testing dataset.

As in Table IV, similar to the previous works [9], [10],
the height and the width for training and evaluation are 480.
Training images are randomly flipped with a probability of 0.5.
The Adam [43] optimizer is adopted with an initial learning
rate of 1e-4. The training lasts 10 epochs with a batch size of
16. The model with the highest accuracy on the validation set
is selected for the testing and evaluation.

As discussed in [10], there exists a high degree of variations
on dataset distributions between different training sets. For
a fair evaluation, a five-fold cross validation is used in all
the experiments. Each experiment uses 80% of COVIDGR-
1.0 samples for training and the remaining 20% for testing,
and the average results from five individual runs are used for
comparison. In addition, 10% of each training set is utilized
as the validation set.

The ResNet-18 is utilized as the baseline method, and all the
experimental results are reported on the test set. We compare
the results with several popularly used quantitative metrics,
which include the sensitivity, specificity, precision, F1 score
and Accuracy as defined below:

Sensitivity =
TP

TP + FN

Specificity =
TN

TN + FP

Precision =
TP

TP + FP

F1 Score =
2 ∗ Precision ∗ Sensitivity

Precision + Sensitivity

Accuracy =
TP + TN

TP + FP + FN + TN

(7)

where ”TP” ”TN”, ”FP” and ”FN” denote the numbers of
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TABLE VII: Result comparison (%) to state-of-the-art methods on the COVIDGR 1.0 dataset.

Class Metric Methods

COVIDNet COVID-CAPS FuCiTNet COVID-SDNet MSRCovXNet SC2Net

Normal
Spec. 83.42± 15.39 65.09± 10.51 82.63± 6.61 85.20± 5.38 82.35± 6.49 90.12 ± 4.45
Prec. 69.73± 10.34 71.72± 5.57 79.94± 4.28 78.88± 3.89 85.12± 4.07 83.07 ± 4.75
F1 74.45± 8.86 67.52± 5.29 81.05± 3.44 81.75± 2.74 83.46± 3.13 86.29 ± 2.75

COVID-19
Sens. 61.82± 22.44 73.31± 9.74 78.91± 5.88 76.80± 6.30 82.01 ± 5.76 77.05± 8.17
Prec. 79.50± 11.47 68.40± 5.13 82.43± 5.43 84.23± 4.59 79.73± 5.04 86.89 ± 4.71
F1 65.64± 15.90 70.20± 4.31 80.37± 3.16 80.07± 0.04 80.60± 2.83 81.31 ± 4.80

Accuracy 72.62± 7.6 69.20± 3.61 80.77± 3.15 81.00± 2.87 82.20± 2.83 84.23 ± 3.39

TABLE VIII: Results comparison in terms of F1 score (%)
with several state-of-the-art deep learning models on the
COVIDx test dataset.

Methods
F1 Score(%)

Normal Pneumonia COVID-19

ResNet-18* [27] 93.5 93.1 95.3
ResNet-50* [27] 93.3 93.9 95.9
Res2Net-50* [39] 93.7 94.9 96.4

ChexNet* [13] 94.2 94.9 95.9
COVID-Net [9] 92.5 91.6 95.9

MSRCovXNet [40] 94.2 95.4 96.4
SC2Net (proposed) 94.7 95.4 95.9

∗ Trained by author with 5 runs

samples as ”True Positive”, ”True Negative”, ”False Positive”
and ”False Negative”, respectively. Considering that the pro-
cessing time is both device dependent and framework depen-
dent, the number of multiply–accumulate operations (MACs)
is reported for a fair comparison of the computational cost.
In addition, the number of parameters is used to measure the
sizes of corresponding models. As each model is evaluated in
25 runs, the averaged results and the standard deviation are
used for comparison.

By using the re-cropped CXR image for training can
significantly improve the training efficiency. Actually, the
original CXR image is firstly pre-processed as introduced in
the COVID-SDNet, i.e. centered cropping of the lung region
with the size of the bounding-box extended by 2.5%. During
the training, the cropped image is resized to 490 × 490 and
then randomly cropped to 480×480, where the size of cropped
CXR image is the same as previous works [9], [10]. As
the bounding-box is extracted via the boundary of the lung
region, directly shifting the bounding-box may exclude lesion
region in the cropped CXR image and result in misled results
of training. By expanding the original CXR image before
the cropping, the randomly shifting of the lung region does
not exclude the lung region outside the bounding-box. For
performance evaluation, the bounding-box oscillation strategy
(BBOS) is unnecessary. Thus, only the centered cropping is
utilized at the last step.

B. Comparison of the segmentation results

We train the proposed CLSeg on the dataset of Cohen et al.
[35], using the hyperparameters as suggested in InfNet [37].
Apart from the precision, sensitivity, and specificity, the dice

similarity coefficient (Dice), another golden metric in medical
image segmentation [36], [37], is also used for comparison.
The proposed CLSeg is compared with the standard UNet,
which is used as the baseline method of COVIDGR dataset
[10]. Experimental results on the dataset of Cohen et al. [35]
are given in Table III, and the lung region segmentation results
are shown in Figure 6. As seen, our CLSeg surpasses the UNet
by 1.66% on the Dice. Specifically, the segmentation results
from CLSeg are much closer than that of the UNet to the
ground truth, as we have much less mis-segmented pixels. In
contrast, results from the UNet are unsatisfactory, where a
large number of lung pixels are mis-segmented. Additionally,
the performance is reduced by 2% on the Dice, if feature maps
are all fused via concatenation. This implies the efficacy of the
mixed feature fusion method utilized in the CLSeg.

C. Effect of background suppression and the
bounding-box oscillation strategy

The results of the ablation study are shown in Table V,
where ”+mask” implies the images are prepossessed by the
lung mask, and ”+BBOS” indicates the model is trained
with our bounding-box oscillation strategy; ”SA” and ”MSL”
denote the classifier using spatial attention module and the
multi-scale leaning, respectively. Results of each column
reported are from methods including its previous columns.
As seen, the average accuracy is improved by about 3%
after utilizing the background suppression and the proposed
bounding-box oscillation strategy (BBOS). This has validated
the effectiveness of the proposed pre-processing methods.
Specifically, the average sensitivity of COVID-19 is improved
by about 10% by utilizing the BBOS during training. This
is because the BBOS enriches the varieties of local features
in each layer, which alleviates the overfitting issue caused
by the limited training samples. Furthermore, the gradient-
guided class activation maps (Grad-CAM++) [26] is adopted
to determine the class-discriminating regions in the input CXR
image. As illustrated in Figure 1, the proposed background
suppression method can focus the decision region on the
lung, rather than other regions in the thoracic cavity. Thus,
the proposed background suppression method could improve
the reliability of the prediction, though it has only slightly
increased the average accuracy by about 0.7%.

Effect of the proposed preprocessing method is shown in
Table VI, where ”w/o CLSeg” implies the images are masked
and cropped by the lung mask generated using UNet; ”w/o
Masking” indicates the images are trained with cropping only,
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(a) (b)

Fig. 7: Plots of the training loss (a) and the validation accuracy
(b) of the proposed SANet, respectively.

of which the mask is generated via CLSeg. The proposed
method utilizes masking and cropping as in the third column
of Table V. We notice that by adding the mask for background
suppression, the average sensitivity is improved by 4.1%.
This is because, as illustrated in [34], when being evaluated
on the original CXRs, the prediction may be affected by
the background region, causing unreliable predictions. This
has also been validated in Figure 1. However, by applying
the masking, background information has been remarkably
suppressed, leading to much improved average precision and
more reliable prediction of the results. When utilized crop
without masking, as seen in Table VI, the average accuracy
drops by 1.4%, which further validates the necessary of the
proposed BBOX for masking.

As discussed above, masking is essential in the proposed
method. Accurate segmentation is then vial important for
COVID-19 diagnosis. To validate the effect of the proposed
CLSeg on classification of COVID-19, we adopt the masks
predicted by UNet, with all others remaining the same. As
shown in Table VI, the average accuracy of CLSeg surpasses
the method using UNet by 3.5%. This is caused by the
ineffective background suppression of UNet: as shown in Table
III, the precision and low specificity of UNet is lower than
CLSeg, which indicates that more false positive pixels are
generated by UNet. As a result, the prediction using the UNet-
masked CXR images suffers more interference by background
region, than using the CLSeg-masked CXR images.

D. Improvements over the SANet

As seen in Table V, by utilizing the spatial attention (SA)
module and the multi-scale learning, the average accuracies
are further improved by 0.4% and 1.2%, respectively. As
suggested in [44], [45], the auxiliary learning brings extra
benefits to model training, where, the feature sizes of the
main prediction branch and the auxiliary branch are the same.
We have also trained the model with the identical feature
size on those two branches. However, the advantages of the
equal feature size in the two branches are not validated in
our experiments. After the max pooling layer, the non-local
maximum features will be discarded in forward propagation,
which are also not utilized in back propagation. Thus, the
compressed features will not contribute to the training. For
comparison, the auxiliary branch of the proposed MSL utilizes
C5, which enables the background features to be included in
optimizing the weights.

TABLE IX: Performance (%) of the SC2Net with different
classifiers.

Class Metric Methods

ResNet-18 ResNet-50 DenseNet-121

Normal
Spec. 87.00± 7.83 86.47± 8.07 87.47 ± 6.41
Prec. 82.63± 3.70 82.42 ± 3.64 82.22± 3.25
F1 84.50± 3.99 84.06± 3.67 84.52 ± 2.36

COVID-19
Sens. 77.34 ± 6.70 76.99± 6.88 76.48± 5.94
Prec. 84.03± 7.59 83.38± 6.95 84.09 ± 5.58
F1 80.07 ± 3.89 79.58± 3.36 79.75± 2.19

Accuracy 82.65 ± 3.76 82.20± 3.23 82.52± 2.02

TABLE X: Result comparison of computational cost.

Methods Metric

#Params (M) MACs (G)

ResNet-18 11.18 8.35
ResNet-50 23.51 18.87
COVIDNet 500.84 22.84
FuCiTNet∗ 11.95 195.45

COVID-SDNet∗ 41.56 357.67
MSRCovXNet 20.43 10.43

ClSeg 46.60 157.36
SANet 11.18 8.35

SC2Net∗ 57.78 165.71
∗ indicates the preprocessing module is applied

As seen in Figure 7, by utilizing the proposed spatial
attention module and multi-scale learning, the training loss
drops further by a margin, i.e., indicated reduced training
difficulty. Meanwhile, the validation accuracy increases by at
least 5%. This has clearly validated the effectiveness of the
proposed SANet on small dataset whilst overfitting is avoided.

E. Effect on different severity levels
The ROCs of the proposed SC2Net, in comparison with the

baseline method, are shown in Figure 8. When considering all
three severity levels, the superiority of the proposed SC2Net
over the baseline is insignificant, due mainly to the low
difficulty in classifying severe cases. To validate this, we
further plot the ROC for each severity level. As the severity
level goes light, the gap between the proposed model and the
baseline becomes obvious. For the mild level, the proposed
SC2Net surpass the baseline by 4% on AUC, which indicates
the effectiveness of the proposed method on diagnosis of
COVID-19 in early-stage.

F. Comparison with state-of-the-art methods
In this subsection, we compare our proposed SC2Net in

terms of COVID-19 detection and diagnosis with several state-
of-the-art methods, and the results are compared in Table
VII. As seen, the proposed SC2Net outperforms the existing
methods by at least 3% in terms of the average accuracy.
When compared to the FuCiTNet and the COVID-SDNet, the
precision, on the COVID-19 class, of our SC2Net surpasses
those methods by 4.8% on average. This further validates the
effectiveness of the background suppression components uti-
lized in the SC2Net. It is worth noting that the COVID-SDNet
uses the ResNet-50 as the backbone, while the FuCiTNet and
SC2Net have a quite narrower backbone, the ResNet-18. To
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(a) (b) (c) (d)

Fig. 8: ROC plots of the proposed SC2Net on the COVIDGR dataset: (a) all three severity levels, (b) severe, (c) moderate,
(d) mild, where only the COVID-19 (positive), though in three severity levels, and the normal (negative) classes are used.

TABLE XI: Cross-dataset evaluation on the COVIDx test
dataset.

Methods
F1 Score(%)

Normal COVID-19

ResNet-18 plain 37.3 68.4
+CLSeg 77.9 80.0

COVIDNet plain 70.2 60.5
+CLSeg 72.6 77.8

MSRCovXNet plain 46.9 69.8
+CLSeg 56.8 70.6

SC2Net - 80.8 80.2

explore further how the depth of the classifiers may affect the
predicted results, we replace the backbone of the SANet with
the three commonly used classifiers, i.e., ResNet-18, ResNet-
50, and DenseNet-121. According to the results given in Table
IX, the deeper network does not necessarily improve the
classification accuracy. In contrast, the overall performances
of the three classifiers are quite similar. Therefore, we deduce
that the performance of deeper networks is constrained by
the limited varieties of the samples, which could be improved
when more high-quality samples are collected.

We compared the proposed SC2Net with other state-of-
the-art deep learning models on the COVIDx dataset. The
MSRCovXNet, also proposed by us, is compared with other
methods that are trained on the same COVIDx dataset. Ex-
perimental results are shown and compared in Table VIII.
The proposed SC2Net has achieved the state-of-the-art perfor-
mance in classification of the Normal and Pneumonia classes,
and comparable performance on COVID-19 class, which has
validates its efficacy. Although the F1 score on the COVID-
19 class is 0.5% lower than that of MSRCovXNet, we deduce
that this is caused by the highly biased distribution of the
severity levels. As illustrated in [10], the main severity level
of COVID-19 cases in the COVIDx dataset is “Severe”, which
is unsuitable for demonstrating the efficacy of the proposed
method in detecting early stage cases at a lower severity level.
As seen in TableVII, with the balanced data distribution, our
SC2Net outperforms MSRCovXNet by 2% on accuracy, which
further validates its robustness on detection of early stage
COVID-19 cases.

Furthermore, we compared the MACs and the number of
model parameters in Table X. In comparison with the FuCiT-
Net and COVID-SDNet that adopt the preprocessing modules

TABLE XII: Result comparison (%) to the models trained with
or without Normal-PCR+, where Normal-PCR+ samples are
included in both evaluations

Class Metric Methods

w/o. Normal-PCR+ w. Normal-PCR+

Normal
Spec. 83.47 ± 10.56 82.41 ± 0.88
Prec. 75.78 ± 4.33 73.05 ± 4.40
F1 78.88 ± 4.56 77.03 ± 3.69

COVID-19
Sens. 72.45 ± 8.83 68.73 ± 9.20
Prec. 82.86 ± 7.84 80.71 ± 6.40
F1 76.51 ± 4.11 73.49 ± 4.48

Accuracy 77.97 ± 3.53 75.58 ± 3.16

(a) (b) (c)

Fig. 9: Effect of Normal-PCR+ samples on classification.

before classification, SC2Net can reduce the computational
cost by 15.22% and 53.67%, respectively. When compared
with methods with only the classification module, i.e., ResNet,
COVIDNet and MSRCovXNet, the proposed SC2Net needs
much more MACs. However, about 94.96% of the overall
computational cost is spent on CLSeg, which is essential for
producing high-confidence prediction. If excluding the costs
for segmentation, the proposed SANet only consumes as much
as ResNet-18 in data classification. As a result, the cost of the
proposed classifier module, i.e., SANet, is much lower than
most of the methods without any preprocessing module.

G. Effect on data shift
In addition, we conduct cross-dataset evaluation to further

validate the robustness of the proposed method. Following the
same procedure as suggested in [10], we train our model on
the COVID-GR dataset yet test it on the COVIDx dataset.
This is because, in comparison to the COVIDx dataset, the
COVID-GR dataset collects wider severity levels, though in
fewer samples. For a fair comparison, we only report results
on the COVD-19 and normal categories, as shown in Table XI.
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By training on a different dataset, the F1 scores of the recently
published methods all seem to degrade, due to the data shift
caused by the settings during the CXR collection procedure
[9], [10], [34]. However, the proposed SC2Net, thanks for
the proposed spatial attention and background suppression
modules, can still achieve state-of-the-art performance, out-
performing existing works by at least 2% on detecting the
COVID-19.

We have also applied the proposed CLSeg on the ResNet-
18 and COVIDNet models, where the F1 scores in both cases
are increased by a large margin. We deduce that the interfer-
ence of background noise may be magnified on cross-dataset
evaluation, as the data shift can affect both the foreground and
the background regions. By combining with the proposed seg-
mentation module, i.e., CLSeg, the background noise can be
effectively suppressed for alleviating the interference caused
by data shift hence the much-improved detection accuracy
even for existing models such as ResNet-18 and COVIDNet.
This further validate the efficacy of the proposed CLSeg on
tackling the data shift issue, as well as the robustness of the
proposed SC2Net.

H. Impact of Normal-PCR+ samples
As pointed out in the COVID-SDNet [10], the accuracy in

diagnosing the Mild and Moderate severity levels is degraded
if the Normal-PCR+ is absent. We also train the proposed
method with Normal-PCR+ samples, where the result is re-
ported in Table XII. The average accuracy is found to decrease
by 2.4% when the Normal-PCR+ samples are used for training.
The image features, extracted by the last hidden layer of
the ResNet-18, are visualized in Figure 9. Values of the top
node which contributes most to each category are selected
for feature visualization. To be more specific, each sample is
expressed by a pair of coordinates (x, y), where x and y are
the values of node which contribute the most to the normal
class and COVID-19 class, respectively. As x or y grows,
the classier tends to output ”Normal” or ”COVID-19”. The
category IDs, for 0 and 1, correspond to the severity levels
of Normal and Normal-PCR+, respectively. The category ID
2 contains samples with Mild, Moderate and Severe cases.
Samples are selected from the validation set and the test set
of the COVIDGR dataset (first fold, first partition). As seen,
the feature differentiation between the Normal and the last two
levels, Moderate and Severe, are significant. The features of
the Mild level lie between the normal and the last two levels,
which can be considered as hard samples. For majority of
the Normal-PCR+ samples, however, they are mixed with the
Normal samples. As illustrated in the COVIDGR dataset [10],
there are no visual differences between the Normal and the
Normal-PCR+ samples. However, we deduce that, by taking
the Normal-PCR+ samples, as extremely hard samples into
training, may be imped the weight optimization.

I. Limitations and future directions
The proposed SC2Net can be developed into a robust

computer-aided diagnosis system for automating the diagnostic
process and helping to ease the burden on clinical staff.

To further provide the more detailed information when the
severity accumulates, we will work on the prediction of the
severity of the COVID-19 as well as the analysis of the
dynamic pathology of the lesion in the lung regions.

At present, the segmentation module is utilized to alle-
viate the learning target alternation which has been misled
by the background region. By further segmenting the lesion
region, rather than whole lung region, the efficacy can be
more improved. Meanwhile, the segmentation module and the
classification module of the proposed SC2Net are in cascade,
resulting in high computational burden. To tackle these lim-
itations, the future work will focus on the prediction of the
lesion region and parallel implementation of the segmentation
and classification modules. Although the data shift issue is
alleviated by the proposed CLSeg, the detection accuracy still
lags the single-dataset-trained method with a large margin. As
a result, transformation between datasets will also be explored
in the future.

V. CONCLUSION

Detecting the COVID-19 at the early stage is essentially
important for reducing the damage on patients and alleviating
the burden on the clinical staff. At present, building a relatively
large dataset of high clinical quality, consisting of equally
distributed severity levels, is still a very challenging task.
Accordingly, it is necessary to build a COVID-19 detector
under limited samples, which is the major motivation of
our proposed cascaded segmentation-classification method,
SC2Net. Different from the previous works, the proposed
SC2Net takes all severity levels into consideration, especially
for early sage of COVID-19 samples.

As the lesion region is small at the early stage of COVID-
19 CXRs and suffers from the interference of the background
noise, a novel COVID-19 lung segmentation network, namely
CLSeg, is utilized to effectively suppress the background of
CXR. Different from the UNet, the proposed CLSeg module
contains fewer training parameters and sparser encoder-coder
connections, resulting in improved efficacy in dealing with
small datasets. To alleviate the overfitting problem under
limited training samples, a bounding-box oscillation strategy
(BBOS) is proposed, by augmenting the local feature of the
training sample. Moreover, a spatial attention module (SAM),
in conjunction with a multi-scale learning method, is proposed
to enhance the foreground feature on the high-level feature
map. The architecture of the proposed SAM is lightweight,
enabling high detection efficiency and efficacy. By embedding
on a shallow backbone, the proposed SANet can outperform
deep CNNs under a small number of training samples. Ex-
perimental results on COVIDx and COVIDGR datasets have
validated the efficacy and robustness of the proposed approach
in effective detection of the COVID-19 from CXR, there are
still rooms for further improvements, such as working on the
prediction of the severity of the COVID-19 and the analysis
of the dynamic pathology of the lesion in the lung regions.
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