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RFormer: Transformer-Based Generative
Adversarial Network for Real Fundus Image
Restoration on a New Clinical Benchmark
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Abstract— Ophthalmologists have used fundus images
to screen and diagnose eye diseases. However, different
equipments and ophthalmologists pose large variations to
the quality of fundus images. Low-quality (LQ) degraded
fundus images easily lead to uncertainty in clinical screen-
ing and generally increase the risk of misdiagnosis. Thus,
real fundus image restoration is worth studying. Unfor-
tunately, real clinical benchmark has not been explored
for this task so far. In this paper, we investigate the real
clinical fundus image restoration problem. Firstly, We es-
tablish a clinical dataset, Real Fundus (RF), including 120
low- and high-quality (HQ) image pairs. Then we propose
a novel Transformer-based Generative Adversarial Network
(RFormer) to restore the real degradation of clinical fun-
dus images. The key component in our network is the
Window-based Self-Attention Block (WSAB) which cap-
tures non-local self-similarity and long-range depen-
dencies. To produce more visually pleasant results, a
Transformer-based discriminator is introduced. Extensive
experiments on our clinical benchmark show that the pro-
posed RFormer significantly outperforms the state-of-the-
art (SOTA) methods. In addition, experiments of down-
stream tasks such as vessel segmentation and optic
disc/cup detection demonstrate that our proposed RFormer
benefits clinical fundus image analysis and applications.

Index Terms—Real Fundus Image Restoration,
transformer, generative Adversarial Network, self-
Attention.
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I. INTRODUCTION

DUE to the safety and cost-effectiveness in acquiring, fun-
dus images are widely used by ophthalmologists for early

eye disease detection and diagnosis, including glaucoma [3]–[5],
diabetic retinopathy [6]–[8], cataract [9], [10], and age-related
macular degeneration [11], [12]. However, different equipments
and ophthalmologists pose large variations to the quality of
fundus images. A screening study of 5,575 patients found that
about 12% of fundus images are of inadequate quality to be
readable by ophthalmologists [13]. We analyze the factors caus-
ing the degradation in real fundus image capturing. Firstly,
patients, especially infant patients, do not cooperate with the
capturing process of fundus images. Specifically, most patients
are reluctant to undergo pupil dilation, which causes poorly
lit and blurred fundus images. Besides, infant patients usually
can not resist the eye-closing reflex caused by a bright light
during flash photography. Secondly, in practice, spatial pixel
misalignment, color, and brightness mismatch are inevitable
due to the changes in light conditions and misoperations of
inexpert ophthalmologists. Thirdly, high-quality (HQ) fundus
images can be collected in hospitals of developed areas using
high-precision fundus cameras. However, these equipments are
expensive and unaffordable for hospitals in some remote ar-
eas of under-developed or developing countries. As a result,
low-precision and portable fundus cameras are used to capture
low-quality (LQ) fundus images. These LQ fundus images easily
mislead the clinical diagnosis and lead to unsatisfactory results
of downstream tasks like blood vessels segmentation. Various
biomarkers of the retina (e.g., hemorrhage, microaneurysm,
exudate, optic nerve and optic cup) are essential in different
diseases. Therefore, it is necessary to ensure the prominence and
visibility of each marker for precise clinical diagnosis. Thus,
when LQ fundus images are captured in clinical diagnosis,
ophthalmologists often repeat dozens of shots until HQ fun-
dus images are obtained. Nonetheless, this repeated capturing
process harms patients, degrades hospital efficiency, prevents
reliable diagnosis of ophthalmologists, and impacts automated
image analysis systems.

We observe the clinical fundus images and find that the main
degradation types of LQ images include out-of-focus blur, mo-
tion blur, artifact, over-exposure, and over-darkness. Compared
with other types of degradation, blur, especially out-of-focus
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Fig. 1. Our Real Fundus vs. Synthetic Dataset. (a) The pipeline of
establishing our clinical fundus image benchmark, Real Fundus (RF).
(b) Artificial degradation models are used to synthesize low-quality (LQ)
fundus images from their high-quality (HQ) counterpart. (c) Compar-
isons of synthetic LQ fundus image and our real clinical LQ image.
(d) Restoration results of models trained with synthetic data on RF.
The two CNN-based methods, I-SECRET [1] and Cofe-Net [2], fail to
reconstruct the real clinical degraded fundus images.

blur, poses the most severe threat to image analysis and clinical
diagnosis. An example is shown in Fig. 2, where the uneven
illumination, haze, and out-of-focus blur degradation are pre-
sented in (a), (b), and (c), respectively. It can be observed that
the performance of blood vessel segmentation only collapses on
out-of-focus blurred fundus images.

Traditional fundus image restoration methods [14], [15] are
mainly based on handcrafted priors. However, these model-
based methods achieve unsatisfactory performance and gen-
erality due to the poor representing capacity. Recently, deep
Convolutional Neural Networks (CNNs) have been widely used
in natural image restoration and enhancement [16]–[18], e.g.,
super resolution [19]–[25], deraining [26], deblurring [27]–[31],
enlighten [32], [33], etc. Inspired by the success of natural
image restoration, CNNs have also been applied to fundus image
restoration [1], [2], [22], [23], [34]–[39]. Although impressive
results have been achieved, CNN-based methods show limita-
tions in capturing long-range dependencies. In recent years, the
natural language processing (NLP) model, Transformer [40] has
been introduced into computer vision and outperformed CNN-
based methods in many tasks. The Multi-head Self-Attention
(MSA) in Transformer excels at modeling non-local similarity
and long-range dependencies. This advantage of Transformer

Fig. 2. Fundus images of different degeneration types and their blood
vessel segmentation results. From top to bottom are the low-quality (LQ)
fundus images, blood vessel segmentation of the LQ fundus images,
the ground-truth high-quality (HQ) fundus images, and blood vessel
segmentation of the ground-truth HQ fundus images.

may provide a possibility to address the limitations of CNN-
based methods.

Existing deep learning methods rely on a large amount of LQ
and HQ fundus image pairs. Unfortunately, real clinical bench-
mark has not been explored for fundus image reconstruction.
There remains a data-hungry problem. As shown in Fig. 1(b), to
get more image pairs, artificially designed degradation models
such as Gaussian filter are used to synthesize degraded fun-
dus images from their high-quality counterparts. However, as
depicted in Fig. 1(c), artificial degradation is fundamentally
different from clinical degradation. As shown in Fig. 1(d), the
two CNN-based methods [1], [2] trained with synthesized data
fail in real fundus image restoration.

In this paper, we investigate the real fundus image
restoration problem, which has not been studied in the
literature. Our work is the first attempt. To begin with,
we establish a clinical benchmark, Real Fundus (RF),
including 120 LQ and HQ real clinical fundus image
pairs to alleviate the data-hungry issue. Based on this
dataset, we propose a novel method, namely Transformer-
based Generative Adversarial Network (RFormer), for
real fundus image restoration. Specifically, the generator
and discriminator are built up by the basic unit, Window-based
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Self-Attention Blocks (WSABs). The self-attention mechanism
equipped with each basic block excels at capturing the
non-local self-similarity and long-range dependencies, which
are the main limitations of existing CNN-based methods. In
particular, the generator adopts a U-shape structure to aggregate
multi-resolution contextual information. Unlike previous
CNN-based Generative Adversarial Networks (GANs), we
adopt a Transformer-based discriminator to extract non-local
image prior information and thus improve the ability of
discriminator to distinguish restored fundus images from
the ground-truth HQ fundus images. Our Transformer-based
adversarial training scheme encourages the generator to create
more plausible-looking natural and visually-pleasant images
with more detailed contents and structural textures.

Our contributions can be summarized as follows:
� We establish a new clinical benchmark, RF, to evaluate

algorithms in real fundus image restoration. To the best of
our knowledge, this is the first real fundus image dataset.

� We propose a novel Transformer-based method, RFormer,
for real fundus image restoration. To the best of our
knowledge, it is the first attempt to explore the potential
of Transformer for this task in the literature.

� Comprehensive quantitative and qualitative experiments
demonstrate that our RFormer significantly outperforms
SOTA algorithms. Extensive experiments of down-
stream tasks further validate the effectiveness of our
method.

II. RELATED WORK

A. Fundus Image Restoration

Traditional fundus image restoration and enhancement meth-
ods [14], [15] are mainly based on hand-crafted priors. For
example, Setiawan etal . [41] apply contrast limited adaptive
histogram equalization (CLAHE) to fundus image enhance-
ment. Some methods [42]–[44] decompose the reflection and
illumination, achieving image enhancement and correction by
estimating the solution in an alternate minimization scheme.
However, these model-based methods achieve unsatisfactory
performance and generality due to the poor representing ca-
pacity. With the development of deep learning, fundus image
restoration has witnessed a significant progress. CNNs [1],
[2], [22], [23], [34]–[39] apply a powerful learning model to
restore LQ fundus images. For instance, Zhao etal . [23] pro-
pose an end-to-end deep CNN to remove the lesions on the
fundus images of cataract patients. However, the cataract lesions
are not caused by clinical fundus imaging. Sourya etal . [22],
Shen etal . [2], and Raj etal . [39] customize different synthetic
degradation models to better simulate the degradation types in
actual clinical practice. However, real fundus image degradation
is more sophisticated than synthesized degradation. It is hard
to simulate real degradation by artificial degradation models
completely. Thus, models trained on synthesized data easily fail
in real fundus image restoration. In addition, the CNN-based
methods show limitations in capturing non-local self-similarity
and long-rang dependencies, which are critical for fundus image
reconstruction.

B. Generative Adversarial Network

Generative Adversarial Network (GAN) is firstly introduced
in [45] and has been proven successful in image synthesis
[16]–[18], and translation [17], [18]. Subsequently, GAN is
applied to image restoration and enhancement, e.g., super reso-
lution [19]–[25], deraining [26], deblurring [27], enlighten [32],
[33], dehazing [46], [47], image inpainting [48], [49], style trans-
fer [18], [50], image editing [51], [52], medical image enhance-
ment [22], [23], [53], [54], and mobile photo enhancement [55],
[56]. Although GAN is widely applied in low-level vision tasks,
few works are dedicated to improving the underlying framework
of GAN, such as replacing the traditional CNN framework with
Transformer. Jiang etal . [57] propose the first Transformer-
based GAN, TransGAN, for image generation. Nonetheless, to
the best of our knowledge, the Transformer-based GAN has not
been involved in fundus image restoration.

C. Vision Transformer

Transformer is proposed by [40] for machine translation.
Recently, Transformer has achieved great success in high-level
vision, such as image classification [58]–[62], semantic seg-
mentation [61]–[64], human pose estimation [65]–[70], object
detection [61], [71]–[74], etc.Due to the advantage of capturing
long-range dependencies and excellent performance in many
high-level vision tasks, Transformer has also been introduced
into low-level vision [75]–[81]. SwinIR [78] uses Swin Trans-
former [61] blocks to build up a residual network and achieve
SOTA results in natural image restoration. Chen etal . [77] pro-
pose a large model IPT pre-trained on large-scale datasets with
a multitask learning scheme. MST [82] presents a spectral-wise
Transformer for HSI reconstruction. Although Transformer has
achieved impressive results in many tasks, its potential in fundus
image restoration remains under-explored.

III. METHODOLOGY

A. RFormer Architecture

The architecture of RFormer is shown in Fig. 3, where (a) and
(b) depict the generator and discriminator. Fig. 3(c) illustrates
the proposed Window-based Self-Attention Blocks (WSABs),
which consists of a Feed-Forward Network (FFN) (detailed
in Fig. 3(d)), a Window-based Multi-head Self-Attention (W-
MSA), and two layer normalization.

The generator adopts a U-shaped [83] architecture including
an encoder, a bottleneck, and a decoder. The input LQ image
is denoted as ILQ ∈ RH×W×3. Firstly, the generator exploits a
projection layer consisting of a 3× 3 convolution (conv) and
LeakyReLU to extract shallow feature I0 ∈ RH×W×C . Sec-
ondly, 4 encoder stages are used for deep feature extraction
on I0. Each stage is composed of two consecutive WSABs and
one downsampling layer. We adopt a 4× 4 conv with stride 2 as
the downsampling layer to downscale the spatial size of feature
maps and double the channel dimension. Thus, the feature of the

i-th stage in the encoder is denoted as Xi ∈ R
H

2i
× H

2i
×2iC . Here,

i = 0, 1, 2, 3 indicates the four stages. Thirdly, X3 undergoes
the bottleneck that consists of two WSABs. Subsequently,
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Fig. 3. Architecture of our RFormer. (a) The generator adopts a U-shaped structure, including an encoder, a bottleneck, and a decoder. (b) Different
from CNN-based GANs, our discriminator is Transformer-based. (c) The basic unit of our RFormer is Window-based Multi-head Self-Attention Block.
(d) Feed-Forward Network consits of two 1×1 conv layers, two GLEU activations, and a depth-wise 3×3 conv layer. .

following the spirits of U-Net, we customize a symmetrical
decoder, which also contains 4 stages. Each stage of the decoder
is also composed of two WSABs and one upsampling layer.
Similarly, the feature maps of the i-th stage in the decoder

is denoted as X′
i ∈ R

H

2i
× H

2i
×2i+1C . The upsampling layer is a

bilinear interpolation followed by a 3×3 conv layer. To alleviate
the information loss caused by downsampling in the encoder,
skip connections are used for feature fusion between the encoder
and decoder. Finally, after undergoing the decoder, the feature
maps pass through a 3×3 conv layer to generate a residual image
I′ ∈ RH×W×3. The restored fundus image can be obtained by
IR = ILQ + I′.

As shown in Fig. 3(b), the discriminator aims to distinguish
the restored fundus images from ground-truth high-quality fun-
dus images. As analyzed in [17], patch-level GAN is more
effective than image-level GAN in capturing high-resolution and
fine-grained image information, which is critical for restoring
clinical fundus image restoration. Hence, we follow the adver-
sarial training scheme based on image patches as PatchGAN
and further propose a Transformer-based discriminator. More
specifically, the discriminator employs the same architecture
as the encoder in the generator followed by a 3×3 conv layer.
The restored fundus image IR ∈ RH×W×3 concatenated with
the ground-truth HQ fundus image IHQ ∈ RH×W×3 undergoes
our proposed Transformer-based discriminator to generate the
predicted map F ∈ RN×N×1.

B. Window-Based Self-Attention Block

The emergence of Transformer provides an alternative to
address the limitations of CNN-based methods in modeling
non-local self-similarity and long-range dependencies. How-
ever, as analyzed in Swin Transformer [61], the computational
cost of the standard global Transformer is quadratic to the spatial
size of the input feature (HW ). This burden is nontrivial and
sometimes unaffordable. To tackle this problem, we adopt the

Fig. 4. Illustration of the feature map partition. The feature maps
are partitioned into non-overlapping windows, where the window-based
multi-head self-attention (W-MSA) is conducted.

Window-based Multi-head Self-Attention (W-MSA) [61] as
the self-attention mechanism and integrate it with the basic
Transformer unit. The computational complexity of W-MSA
is linear to the spatial size, which is much cheaper than that of
standard global MSA. Inspired by Swin Transformer [61], we
add window shift operations(WSO) in our proposed Window-
based Multi-head Self-Attention Block (WSAB) to introduce
cross-window connections. The components of our proposed
WSAB are shown in Fig. 3(c). WSAB consists of a W-MSA,
an FFN, and two layer normalization. The details of FFN are
shown in Fig. 3(d). Then WSAB can be formulated as

F′ = W-MSA(LN(Fin)) + Fin,

Fout = FFN(LN(F′)) + F′, (1)

where Fin represents the input feature maps of a WSAB. LN(·)
represents the layer normalization.F′ andFout denote the output
feature of W-MSA and FFN respectively.

1) Window-Based Multi-Head Self-Attention: Instead of us-
ing global correspondence, we partition the feature map into
non-overlapping windows. Subsequently, the token interactions
are calculated inside each window. As shown in Fig. 4, given
the input feature map Xin ∈ RH×W×C with H and W be-
ing the height and the width. We partition Xin into L× L
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non-overlapping windows. The feature of the i-th window is
denoted as Xi

in ∈ RL×L×C , where i ∈ {1, 2, . . . , N} and N =
HW/L2.Xi

in is flattened and transposed intoXi ∈ RL2×C . We
conduct MSA on Xi. Firstly, Xi is linearly projected into query
Qi, key Ki, and value Vi ∈ RL2×C :

Qi = XiWQ,Ki = XiWK ,Vi = XiWV , (2)

where WQ,WK ,WV ∈ RC×C are learnable parameters, de-
noting the projection matrices of the query, key and value. We
respectively split Qi, Ki and Vi into k heads along the chan-
nel dimension: Qi = [Qi

1, . . . ,Q
i
k], Ki = [Ki

1, . . . ,K
i
k] and

Vi = [Vi
1, . . . ,V

i
k]. The dimension of each head is dk = C/k.

The Self-Attention (SA) for head j is formulated as

SA(Qi
j ,K

i
j ,V

i
j) = softmax

(
Qi

jK
i
j
T

√
dk

)
Vi

j , (3)

where Qi
j ,K

i
j and Vi

j respectively represent the query, key and

value of head j respectively. The output tokens Xi
o ∈ RL2×C of

the i-th window can be obtained by

Xi
o =

k
Concat

j=1

(
SA(Qi

j ,K
i
j ,V

i
j)
)
WO +B, (4)

where Concat(·) denotes the concatenating operation, B ∈
RL2×C represents the position embedding, and WO ∈ RC×C

are learnable parameters. We reshape Xi
o to obtain the output

window feature mapXi
out ∈ RL×L×C . Finally, we merge all the

patch representations {X1
out,X

2
out,X

3
out, . . . ,X

N
out} to obtain

the output feature maps Xout ∈ RH×W×C .
2) Feed-Forward Network: As depicted in Fig. 3(d), the

Feed-Forward Network (FFN) consists of a 1× 1 conv layer
with a GELU activation, a depth-wise 3× 3 conv layer with a
GELU activation, and another 1× 1 conv layer.

C. Loss Functions

During the training procedure, we exploit the weighted sum
of four loss functions as the overall training objective. They are
described and analyzed in the following part.

1) Charbonnier Loss: The first loss function is the Charbon-
nier loss between the restored and ground-truth HQ images:

L1(IR, IHQ) =

√
‖IR − IHQ‖2 + ε2 (5)

where IR denotes the restored fundus image, IHQ represents the
ground-truth HQ fundus image, and ε denotes a constant which
is empirically set to 10−3 for all the experiments.

2) Fundus Quality Perception Loss: Unlike natural images,
fundus images have specific acquisition process and anatomical
structures. This indicates fundus images have highly similar
styles. Therefore, we exploit high-level feature constraints to
improve the perceptual quality and encourage the network to
capture the fundus anatomical structures and styles. To this end,
we propose Fundus Quality Perception Loss (FQPLoss). More
specifically, we adopt VGG-19 [84] as the perception network
and pre-train it on the fundus image quality evaluation dataset,
Eye-Q [85] with the fundus image quality classification task. The

Eye-Q dataset has 28,792 fundus images with three-level quality
grading. The perception network trained on the Eye-Q dataset
is capable of extracting the difference of high-level features
between different qualities of fundus images. Subsequently, our
FQPLoss can be formulated as

Lfqp =
1

HW

H∑
i=1

W∑
j=1

(φ(IR)(i, j)− φ(IHQ)(i, j))
2 (6)

whereH andW denote the height and width of the fundus image.
φ(·) denotes the feature extraction function of the pre-trained
perception network. Our FQPLoss is customized to assess a
solution with respect to perceptually relevant characteristics.
By minimizing the FQPLoss Lfqp, the model is encouraged
to capture more high-level discriminative features and generate
more visually-pleasant results.

3) Adversarial Loss: Our proposed Transformer-based dis-
criminator aims to distinguish the restored fundus images from
ground-truth HQ fundus images. More specifically, the discrim-
inator outputs a patch score map F ∈ RNH×NW×1, where NH

and NW denote the height and width. The score of each position
indicates how realistic the corresponding fundus image patch is.
Then the adversarial loss is formulated as

LD
adv =

1

NH ×NW

NH×NW∑
i=1

(D(IR)[i])
2 + (D(IHQ)[i]− 1)2,

LG
adv =

1

NH ×NW

NH×NW∑
i=1

(D(IR)[i]− 1)2, (7)

where D(·) denotes the mapping function of our proposed
Transformer-based discriminator. LG

adv trains the generator to
fool the discriminator by generating more realistic restored
fundus images. In contrast, LD

adv encourages the discriminator
to distinguish the restored images from real images.

4) Edge Loss: To enhance the high-frequency edge details,
we exploit the edge loss function that focuses on the gradient in-
formation of images and enhances edge textures. To be specific,
the edge loss function is formulated as

Ledge(IR, IHQ) =

√
‖Δ(IR)−Δ(IHQ)‖2 + ε2, (8)

where Δ(·) represents the Laplacian operator.
5) The Overall Loss Function: Finally, the overall training

objective is the weighted sum of the above four loss functions:

L = L1 + λ1Lfqp + λ2Ledge + λ3(LG
adv + LD

adv), (9)

where λ1, λ2, λ3 are three hyper-parameters controlling the
importance balance of different loss functions. Our proposed
RFormer is end-to-end trained by minimizing L. The weights
of the perception network are fixed. Each mini-batch training
procedure can be divided into two steps: (i) Fix the discrim-
inator and train the generator. (ii) Fix the generator and train
the discriminator. This adversarial training scheme encourages
the reconstructed fundus images to be more photo-realistic and
closer to the real clinical HQ fundus image manifold.
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IV. REAL FUNDUS

This section introduces our clinical benchmark, Real Fundus
(RF). It consists of 120 LQ and HQ clinical fundus image pairs
with the spatial size of 2560× 2560. The training and testing
subsets are split in proportional to 3:1. Since blur significantly
impacts clinical diagnosis and automated image analyzing sys-
tems, it is set to the primary degradation type of LQ fundus
images. Besides, there are other degradation types such as arti-
facts and uneven illumination which are inevitably introduced
in the fundus image capturing process.

A. Data Collecting Process

The collection process of our RF obtains the exemption deter-
mination from Shenzhen Eye Hospital and contains three steps:
capturing, selecting, and calibrating fundus images.

1) Capturing: Instead of exploiting artificial degradation
models (e.g., Gaussian Filter.) to synthesize LQ fundus images as
shown in Fig. 1(b), we directly use the degraded fundus images
from the fail cases in practical capturing. As depicted in Fig. 1(a),
the fundus images are captured by ophthalmologists using a
ZEISS VISUCAM200 fundus camera, which is a mainstream
product of fundus camera. The price of ZEISS VISUCAM200
fundus camera is about 350,000 RMB. We select clinical fundus
images from patients of different ages and different fundus states
(e.g., leopard fundus, hemorrhage, microaneurysms, and drusen)
to expand the scope of our RF.

2) Selecting: When LQ fundus images are captured in
practice, the operator will repeat capturing until HQ fundus
images are obtained. Subsequently, we manually select LQ and
HQ fundus image pairs of the same eye. To ensure the diversity
of RF and avoid similar data, only one image pair is selected
with one eye. Note that only HQ clear fundus images captured
by experienced ophthalmologists can be used as the ground
truths of degraded LQ images. Based on these strict criteria, we
finally select 120 LQ and HQ fundus image pairs from the eye
hospital database containing more than 30,00 eye instances.
Each instance contains multiple fundus images.

3) Calibrating: After selecting fundus image pairs, we ob-
serve two issues in raw unprocessed fundus data. Firstly, the LQ
and HQ fundus images are spatially misaligned (as illustrated
in Fig. 1(a)). Secondly, there is a large black area around the
eyeball. This black area is uninformative and may easily degrade
the performance of the restoration model during the training
procedure. Thus, to improve the quality of our RF, we calibrate
the collected dataset using the software, Photoshop. Specifically,
we first spatially align the image pairs and then cut off the black
area around the eyeball.

B. Comparisons With Synthetic Dataset

1) LQ Fundus Images: We compare the LQ images from our
RF and synthetic dataset in Fig. 1(c). As can be seen from the
zoom-in patches that the artificially synthesized degradation is
fundamentally different from the real clinical degradation.

2) Domain Discrepancy: To validate the huge domain dis-
crepancy between the synthetic and real clinical datasets, we

TABLE I
QUANTITATIVE COMPARISONS WITH SOTA ALGORITHMS ON OUR RF AND

CROSS-VALIDATION RESULTS OF RFORMER

adopt two CNN-based fundus image restoration methods, I-
SECRET [1] and Cofe-Net [2], to conduct ablation study. We
train them with the synthetic data and then test them on our RF.
As shown in Fig. 1(d), the two models fail to reconstruct the real
clinical LQ fundus images. They either yield over-smooth results
sacrificing detailed contents, or introduce visually unpleasant
artifacts. Since the synthetic data can not be applied to real
fundus image restoration, it still remains a severe data-hungry
issue. To meet with this research requirement, we establish a
large scale clinical dataset, RF. To the best of our knowledge,
this is the first work contributing a real clinical fundus image
restoration benchmark.

V. EXPERIMENTS

A. Implementation Details

During the training procedure, fundus images are first cropped
into the patches with the size of 128×128. Then the patches
are fed into our proposed RFormer. The Adam [89] optimizer
(β1=0.9, β2=0.999) is adopted. The initial learning rate is set
to 1× 10−4. The cosine annealing strategy [90] is employed
to steadily decrease the learning rate from the initial value to
1× 10−6 during the training procedure. Our RFormer is imple-
mented by PyTorch. It takes about 12 h using an NVIDIA RTX
3090 GPU to train for 100 epochs. The mini-batch size is set to
4. Random flipping and rotation are used for data augmentation.
In the testing phase, the input is the whole image with the size
of 2560×2560 for fair comparison with other methods. We
adopt peak signal-to-noise ratio (PSNR) and structural simi-
larity (SSIM) [91] as the metrics to evaluate the fundus image
reconstruction performance.

B. Comparisons With State-of-The-Art Methods

We provide quantitative comparisons between our RFormer
with seven SOTA methods including two model-based meth-
ods (GLCAE [87] and Bicubic+RL [86]), four CNN-based
methods (RealSR [88], ESRGAN [20], I-SECRET [1], and
Cofe-Net [2]), and one Transformer-based method (MST [82]).
The quantitative comparisons on our RF are shown in Table I,
the proposed RFormer outperforms other competitors in terms
of PSNR and SSIM. Specifically, RFormer achieves 0.33 and
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Fig. 5. Restored fundus image comparisons on our RF. Six SOTA methods and our proposed RFormer are included. (a) LQ fundus image.
(b) Bicubic+RL [86]. (c) GLCAE [87]. (d) Cofe-Net [2]. (e) ESRGAN [20]. (f) RealSR [88]. (g) I-SECRET [1]. (h) Our proposed RFormer. (i) Ground-
truth HQ fundus image. Our RFormer reconstructs more detailed contents and structural testures.

Fig. 6. CNN-based vs. Transformer-based discriminators. (a) LQ fun-
dus image. (b) Using CNN-based PixelGAN [17]. (c) Using CNN-based
PatchGAN [17]. (d) Using both CNN-based PixelGAN and PatchGAN.
(e) Equipped with our proposed Transformer-based discriminator. (f)
Ground truth HQ fundus image. Our Transformer-based discriminator
significantly surpasses traditional CNN-based discriminators in terms of
recovering detailed contents and preserving the anatomical structure.

1.59 dB improvement in PSNR when compared to RealSR [88]
and ESRGAN [20].

To verify the robustness of our RFormer, we conduct 5-fold
and 10-fold cross-validation. The results are shown in Table I.
As can be seen that our Rformer still achieves robust results,
e.g., 28.15 dB in 5-fold cross-validation and 28.38 dB in 10-fold
cross-validation. The small gap in performance suggests that
the overfitting is moderate while the effectiveness of RFormer
is reliable and promising.

Fig. 5 depicts the qualitative comparisons on RF. It can be
observed that Bicubic+RL [86], GLCAE [87], I-SECRET [1],
and Cofe-Net [2] yield over-smooth results and fail to restore
the LQ blurry fundus images. Although ESRGAN [20] and
RealSR [88] can reconstruct more high-frequency edge details,

Fig. 7. Ablation study of our FQPLoss. (a) shows the LQ fundus image.
(b) and (c) depict the images restored by RFormers without and with
using FQPLoss, respectively. (d) illustrates the ground-truth HQ fundus
image. With our FQPLoss, the model restores more detailed anatomical
structure contents and high-frequency textures.

TABLE II
ABLATION STUDY OF THE LOSS FUNCTIONS AND WINDOW SHIFT

OPERATIONS(WSO)

TABLE III
CNN-BASED VS. OUR TRANSFORMER-BASED DISCRIMINATORS

TABLE IV
ABLATION STUDY OF THE PATCH SIZE OF OUR DISCRIMINATOR
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TABLE V
THE RESULTS OF IMAGE QUALITY EVALUATION IN USER STUDY

they do not maintain the authenticity and anatomical structure
of the original fundus. Some undesired artifacts are introduced
to the restored images, which may severely mislead the clinical
diagnosis. In contrast, our RFormer is capable of restoring more
fine-grained contents and structural details without introducing
artifacts. Thus, the fundus anatomical structure can be well
preserved.

C. Ablation Study

1) Fqploss: We adopt RFormer as the restoration model to
conduct an ablation study to validate the effect of our FQPLoss.
As listed in Table II, when the FQPLoss is applied, the PSNR
and SSIM are increased by 1.07 dB and 0.129, respectively. In
addition, we provide visual comparisons in Fig. 7. As depicted
in Fig. 7(b), the model yields an over-smooth fundus image and
fails in reconstructing the fine-grained vessel details without
FQPLoss. As shown in Fig. 7(c), when using our FQPLoss, the
model restores more detailed anatomical structure contents and
high-frequency textures.

2) Discriminator: We conduct ablation study to compare
our proposed Transformer-based discriminator with Traditional
CNN-based discriminators. Please note that the Transformer-
based generator remains unchanged. The results are reported
in Table III. Compared with the discriminators in CNN-
based PatchGAN [17], PixelGAN [17], etc, our Transformer-
based discriminator yields the best performance. We provide
qualitative comparisons in Fig. 6. It can be observed that
our Transformer-based discriminator significantly outperforms
CNN-based discriminators in terms of recovering detailed con-
tents and preserving the anatomical structure consistency.

3) Patch Size: We experimentally analyze the effect of the
patch size set in the Transformer-based discriminator. The results
are shown in Table IV. Our RFormer achieves the best restoration
result with the patch size of 40×40.

4) Window Size: We change the window size of W-MSA and
conduct experiments to study its effect. The results are reported
in Table VI. It can be observed that our RFormer yields the best
result when the window size is set to 8×8.

5) Window Shift Operations: We conduct ablation study to
analyze the effect of the window shift operations. The results are
reported in Table II. The results indicate that the window shift
operations can build cross-window connections and improve the
performance of RFormer.

D. Clinical Image Analysis and Applications

The ultimate goal of restoring and enhancing fundus images
is to serve the real clinical tasks better and improve the ac-
curacy of clinical diagnosis. To validate the effectiveness of
our proposed RFormer, we use it as a pre-processing technique
for downstream clinical image analysis tasks, including vessel

TABLE VI
ABLATION STUDY OF THE WINDOW SIZE OF OUR PROPOSED WSAB

segmentation and optic disc/cup detection. LadderNet [92] and
M-Net [93] are employed as the segmentation baselines.

1) User Study: Since the restored fundus images should
meet the requirements of ophthalmologists, we adopt 30 LQ
fundus images for user study. We use different image restoration
methods to enhance these LQ images. Subsequently, we display
these results in random order and ask the experienced ophthal-
mologists to score the quality of the restored images based on
their extensive clinical experience. The score ranges from 0 to
100, larger values are better. The suppression of artifacts and
preservation of lesions are taken into account. Finally, we collect
responses from five ophthalmologists. The score results for each
method are shown in Table V. Our RFormer receives the highest
score for best restored results.

2) Vessel Segmentation: We test LadderNet [92] pre-trained
on DRIVE [94] dataset for vessel segmentation on our collected
RF. Please note that the vessel segmentation maps of real HQ
fundus images serve as the references for comparison due to the
lack of segmentation labels on our RF. The vessel segmentation
results are shown in the third row of Fig. 8. As can be seen that
LadderNet fails in segmenting the blood vessels of clinical LQ
fundus images. In contrast, LadderNet extracts obvious vessel
structure of the fundus images restored by our RFormer, which
is closest to the segmentation results of real HQ fundus images.
These results clearly suggest the effectiveness of our proposed
method.

3) Optic Disc/Cup Detection: We also evaluate the effect of
our RFormer for the downstream disc/cup detection task. We
test M-Net [93] pre-trained on ORIGA [95] dataset for optic
disc/cup detection on our collected RF. Similar to the vessel
segmentation task, the optic disc/cup detection results of real
HQ fundus images function as the references due to the lack
of segmentation labels. The qualitative comparisons of different
fundus image restoration methods are depicted in Fig. 8. The
fourth line is the optic disc/cup detection map and the fifth
line depicts the zoom-in patches of the fourth line. It can be
observed that M-Net fails to detect the disc/cup on clinical LQ
fundus images. On the contrary, M-Net detects the optic cup
and disc more accurately on the fundus images reconstructed by
our RFormer. This evidence verifies that our method benefits the
optic disc/cup detection task.
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Fig. 8. Vessel segmentation and optic disc/cup detection on our RF. From top to bottom are fundus images, optic disc/cup patches, vessel
segmentation maps, optic disc/cup detection maps, and the zoom-in patches of the optic disc/cup detection maps. (a) LQ fundus image.
(b) Bicubic+RL [86]. (c) GLCAE [87]. (d) Cofe-Net [2]. (e) ESRGAN [20]. (f) RealSR [88]. (g) I-SECRET [1]. (h) Our RFormer. (i) HQ fundus
image. Our restoration method can improve the performance of vessel segmentation and optic disc/cup detection.

Fig. 9. Fail cases of Rformer on our RF. In the (a) and (e) column, from top to bottom are low-quality fundus image, restored fundus image, and
high-quality fundus image. (b), (c), and (d) are all the zoom-in patches of (a). (f), (g), and (h) are all the zoom-in patches of (e).

E. Fail Cases

Although RFormer achieves good performance, it may not
work in some scenes. Fig. 9 shows some fail cases of RFormer
on our RF dataset. In the (a) and (e) column, from top to bottom
are LQ fundus image, restored fundus image, and HQ fundus
image. (b), (c), and (d) are three zoom-in patches of (a). (f),
(g), and (h) are three zoom-in patches of (e). It can be clearly
observed from 9(c), (f), and (g) that our RFormer fails to remove
the bright spots. As can be seen from 9(b), (d), and (h) that our
RFormer fails in enhancing the low-lights regions. It is difficult
for RFormer to learn the feature in areas with insufficient contrast
and brightness. We will continue to improve our work according
to these fail cases.

VI. CONCLUSION

In this paper, we establish the first real clinical fundus image
restoration benchmark, Real Fundus, which contains LQ and HQ
fundus image pairs to alleviate the data-hungry issue. Our dataset
can help better evaluate restoration algorithms in clinical scenes.
Based on this dataset, we propose a novel Transformer-based
method, RFormer, for clinical fundus image restoration. To
the best of our knowledge, it is the first attempt to explore
the potential of Transformer in this task. Comprehensive qual-
itative and quantitative results demonstrate that our RFormer
significantly outperforms a series of SOTA methods. Extensive
experiments verify that the proposed RFormer serving as a
data pre-processing technique can boost the performance of
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different downstream tasks, such as vessel segmentation and
optic disc/cup detection. We hope this work can serve as a
baseline for real clinical fundus image restoration and benefit
the community of medical imaging.
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