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Reliably Filter Drug-Induced Liver Injury
Literature With Natural Language

Processing and Conformal Prediction
Xianghao Zhan , Fanjin Wang , and Olivier Gevaert

Abstract— Drug-induced liver injury describes the ad-
verse effects of drugs that damage the liver. Life-
threatening results were also reported in severe cases.
Therefore, liver toxicity is an important assessment for
new drug candidates. These reports are documented in
research papers that contain preliminary in vitro and in vivo
experiments. Conventionally, data extraction from publica-
tions relies on resource-demanding manual labeling, which
restricts the efficiency of the information extraction. The de-
velopment of natural language processing techniques en-
ables the automatic processing of biomedical texts. Herein,
based on around 28,000 papers (titles and abstracts) pro-
vided by the Critical Assessment of Massive Data Analysis
challenge, this study benchmarked model performances
on filtering liver-damage-related literature. Among five text
embedding techniques, the model using term frequency-
inverse document frequency (TF-IDF) and logistic regres-
sion outperformed others with an accuracy of 0.957 on
the validation set. Furthermore, an ensemble model with
similar overall performances was developed with a logistic
regression model on the predicted probability given by sep-
arate models with different vectorization techniques. The
ensemble model achieved a high accuracy of 0.954 and
an F1 score of 0.955 in the hold-out validation data in the
challenge. Moreover, important words in positive/negative
predictions were identified via model interpretation. The
prediction reliability was quantified with conformal predic-
tion, which provides users with a control over the prediction
uncertainty. Overall, the ensemble model and TF-IDF model
reached satisfactory classification results, which can be
used by researchers to rapidly filter literature that describes
events related to liver injury induced by medications.

Index Terms—Drug-induced liver injury, natural language
processing, ensemble learning, sentence embedding,
conformal prediction.
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I. INTRODUCTION

DURG-INDUCED liver injury (DILI) is defined as the
unexpected adverse reaction of the liver to drugs. DILI

is a common and critical cause of liver injury because liver
plays a key role in drug metabolism [1]. Liver toxicity caused by
drugs can be classified into two types: intrinsic and idiosyncratic.
Intrinsic liver toxicity of drugs is more predictable and is directly
related to the dosage of a specific drug. The damage to the
liver occurs within a short time window, typically several hours
after administration of the drugs. In comparison, idiosyncratic
liver toxicity is more patient-specific and has a longer onset of
occurrence. For drugs with high lipophilicity, idiosyncratic liver
damage could be triggered even below the recommended daily
dosage [2]. The severity of DILI can be different among different
patients considering the interaction of genetic and environmental
factors [3]. Although most patients can recover from DILI, DILI
cases may lead to acute liver failure [4]. For example, the intrin-
sic liver toxicity of paracetamol, often caused by overdosing,
is reported to account for 73.7% of acute liver injury and acute
liver failure in Scotland from 1992 to 2014 [5]. Additionally,
approximately 75% of the idiosyncratic drug reactions result in
liver transplantation or death [1]. Therefore, DILI has become
one of the most common reasons that reject the promising
novel drug candidates and is strictly evaluated during the drug
development process [3].

The complex mechanism of DILI and the severity of the DILI
consequences call for a better monitoring of DILI events [3].
However, the majority of DILI reports are from clinical
practices or experimental studies in the free text of publications.
Conventionally, scientific publications need to be manually
checked and processed by researchers and pharmacists.
However, thousands of new articles are published in journals
on a daily basis, let alone millions of previous publications
on the PubMed archive, making it almost impossible for
manual inspection. Recently, the rapid development of natural
language processing (NLP) technology has enabled data mining
applications based on free text. To give some examples, long
short-term memory (LSTM) structure in recurrent neural
networks (RNN) allows the understanding of long-term
dependencies in texts [6]. Bidirectional encoder representation
from transformers (BERT) has been developed as a pre-trained
language model for understanding text information [7].
Generally, to use these learning algorithms, words are converted
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into vectors using word vectorization (embedding) techniques
like bag-of-words (BOW), term frequency-inverse document
frequency (TF-IDF), and Word2Vec. BOW is the most
straightforward word embedding method. It counts the time
that a word appears in the document. However, this leads to a
very sparse feature matrix since only a few words in the whole
vocabulary (the collection of words) will appear in the document.
As its name suggests, TF-IDF uses the term frequency and the
inverse document frequency to represent a document. It assigns
more importance to less-frequently occurring words which
might contain more meaningful information in a document. On
top of these methods, Word2Vec embedding uses a pre-trained
neural network to vectorize words to fixed-length vectors. These
techniques made it possible to process scientific publications
automatically. For example, Wang et al. constructed an NLP
model to extract clinical information to support clinical
decisions [8]. Zhan et al. used TF-IDF as the word embedding
and logistic regression to extract ICD-10 codes of common
cardiovascular disease from electronic health records [9].
Thus, it is promising to utilize NLP techniques to expedite
the labelling process of the publications with DILI results and
enable researchers to fast filter the literature.

Besides the success of individual classification models de-
veloped on different NLP text vectorization techniques, another
machine learning strategy, ensemble learning has gained success
over past decades [10]. Ensemble learning relies on a set of
models and develops a model (known as the meta learner) to
combine the different individual models (known as separate
learners) under certain rules to improve the model generaliz-
ability [10]. With the typical ensemble learning strategies such
as bagging, boosting, stacking and decision fusion, ensemble
learning makes use of the diversity across different individual
models to reduce the variance of the model, which can improve
the model’s performance on the unseen data.

In the current study, with the data from the National Institute
of Health (NIH) LiverTox database [11], the current study devel-
oped a model to filter the DILI literature from irrelevant literature
based on the title and abstract of publications with multiple
text vectorization algorithms in NLP. This study also leveraged
the ensemble learning strategy by building a logistic regression
meta learner on the top of the predicted probability of different
separate learners (also known as the decision fusion strategy) and
compared the performance of the ensemble learning model with
that of individual models. The model showed high classification
performance and interpretable results. Finally, we quantified the
prediction reliability with the conformal prediction framework.

II. METHODS

The dataset comprises approximately 14,000 DILI-related
papers (‘positive samples’) and approximately 14,000 papers
irrelevant to DILI (‘negative samples’). For the contest released
by the Annual International Conference on Critical Assessment
of Massive Data Analysis (CAMDA 2021), only 50% of the
positive samples (7,177) and negative samples (7,026) was
released while the remaining samples were held out for model
assessment. For the hold-out test data, which was referred to as

the hold-out test dataset 1, there are 14,211 samples with labels
masked to test the model performance on unseen data. For each
sample, there are the publication titles and/or the abstracts. The
challenge released an additional hold-out test data set with 2,000
abstracts, which was referred to as the hold-out test dataset 2.

A. Data Pre-Processing

The published data (excluding the hold-out datasets) was
partitioned into 80% training and 20% internal validation data.
Furthermore, pre-processing was carried out on the free text by
lowercasing, removing punctuation, numeric, special characters,
multiple white spaces, stop words, and finally tokenizing the
text with Gensim library on Python 3.7 [12]. Stemming was
also performed by changing the terms into their word stems (e.g.
“hepatotoxicity” to “hepatotox”) to reduce the number of distinct
terms for sake of avoiding model overfitting. Here, stemming
was regarded as a model hyperparameter tuned based on the
performance of the five-fold cross-validation on the training set.

B. Text Vectorization

To extract features from the free-text literature, several dif-
ferent text vectorization algorithms were used to transfer the
text into numerical features (i.e. word/sentence vectors): Bag-
of-words (BOW), term frequency-inverse document frequency
(TF-IDF), word2vec (W2V), and sent2vec (S2V).

Both BOW [13] and TF-IDF [14] are based on word counts.
They are among the simple word vectorization algorithms which
are widely used to classify text. As a basic word vectorization
approach, BOW enumerates the number of each term’s occur-
rences in a piece of text and uses the number of occurrences
of each term as the feature. Since the BOW relies on the
counts of all terms, the dimensionality of the features from the
extracted text equals the number of all different terms in the
training corpus. Based on the basic features extracted based on
BOW, TF-IDF further regularized the features by calculating
the ratio of term frequency (TF), which denotes the number of
term occurrences, and inverse document frequency (IDF), which
denotes the number of text samples that contain this term. As
a result, the value of a feature for a sample increases as the
number of occurrences in the text increases but decreases as the
total number of texts that include the term increases. With the
regularization, the TF-IDF algorithms emphasize the rare terms
over the entire training corpus. After applying the BOW and
TF-IDF word vectorization algorithms, the feature dimensions
were 30,753 and 42,452 with/without stemming.

Word2vec (W2V) [15] is a neural-network-based vectoriza-
tion algorithm. Without directly relying on the number of oc-
currences of distinct terms, W2V tries to create an embedding
matrix E of the term embeddings for all the terms that occurred
in the training corpus. Then, W2V optimizes the embedding
matrix E and finally when applying the embedding matrix for
downstream tasks, W2V maps the terms to their associated
embedding vectors in the embedding matrix. The embedding
matrix is the goal of optimization in the W2V training process.
The randomly initialized embedding matrix is learned with
shallow neural networks based on simple prediction tasks, such



ZHAN et al.: RELIABLY FILTER DRUG-INDUCED LIVER INJURY LITERATURE WITH NATURAL LANGUAGE PROCESSING 5035

as the continuous bag-of-words (CBOW) and the continuous
skip-gram. In this study, two pre-trained biomedical W2V mod-
els were used: one was trained on a corpus from Wikipedia,
PubMed, and PMC (W2V1) [16], and the other was trained
on a corpus from PubMed and MIMIC-III (W2V2) [17]. Both
models include 16,545,452 terms with an embedding dimension
of 200. After converting each term in a text into a 200-dimension
embedding, an average of all the term embeddings was taken as
the embedding for a text.

S2V is another unsupervised sentence embedding algorithm
that allows researchers to compose sentence embeddings using
word vectors along with n-gram embeddings [18]. It simul-
taneously trains the composition and the embedding vectors.
S2V can be regarded as an extension of the word contexts from
CBOW to a larger sentence context, while the sentence words are
specifically optimized via an unsupervised objective function. In
the current study, a biomedical S2V model trained on PubMed
and MIMIC-III corpora with a dimensionality of 700 for a text
was examined [19].

C. Classification Model Development and Assessment

To develop the DILI literature classification model, two proto-
cols were adopted: 1) non-ensemble learning, where classifiers
were based on 80% of the training data and the four different
vectorization algorithms; 2) ensemble learning, where the 80%
training data was further partitioned into 60% data for training
separate learners and 20% data for training and hyperparameter
tuning for the meta-learner. The separate learners output the
predicted probabilities on the samples for meta-learner training
while the meta-learner aggregates the predicted probabilities in a
logistic regression model. The rationale for developing ensemble
learning models is because the different embedding algorithms
contain much diversity as they adopted different frameworks to
compute the word vectors and document vectors and therefore
the potential of better classification performance was tested with
the ensemble learning model [10]. The diversity of the separate
learners may boost the performance of document classification
via the fusion of predicted probabilities given by different mod-
els. It is worth noting that, in the ensemble learning protocol, the
BOW model was discarded because it generally performs worse
when compared with TF-IDF while being similar to TF-IDF as
word-count-based algorithms [20]. Additionally, three different
weights were added to the positive/negative classes for the
TF-IDF/W2V/S2V models in the ensemble learning, to add
divergence and focus more on the positive cases, because in
a real-world application setting, considering the broad range of
research fields archived in PubMed, the positive case prevalence
is likely to be much lower than that in the training data.

In the development of separate learners and in the non-
ensemble learning protocol, logistic regression (LR) and random
forest (RF) models where benchmarked as the classification
algorithms. These two algorithms were applied because of their
interpretability of important features in the decision-making
process. In the meta-learner training, LR was used to reduce the
variance and avoid overfitting caused by more flexible classifiers
such as RF. The hyperparameters including the strength of L2

penalty, different class weights for LR, the number of estimators,
the number of maximum splits for RF, were fine-tuned via
five-fold grid search cross-validation on the training data, with
classification accuracy as the optimization goal. Similarly, the
hyperparameters for the meta-learner were optimized on the
20% separated training set with a five-fold cross-validation.

To evaluate the model performance, on the 20% internal
validation data partitioned from the released dataset (for which
the labels are known), the classification accuracy, the area under
the receiver operating characteristic curve (AUROC), the area
under the precision-recall curve (AUPRC), and the F1 score
were calculated. AUROC is the area under the curve in which
the x-axis denotes the false positive rate (FPR) and the y-axis
denotes the true positive rate (TPR), while AUPRC is the area
under the curve in which the x-axis denotes the recall and the
y-axis denotes the precision. AUPRC and AUROC are both
commonly used metrics in bioinformatics and cheminformatics
studies [21], [22]. The reasons why both AUROC and AUPRC
were considered in evaluating our models are: firstly, AUROC
has been a widely used metric in evaluating binary classifiers
without reliance on the decision threshold set on predicted
class probability; secondly, AUPRC was also used because it
is more sensitive to the prevalence and can better reflect model
performance in an imbalanced data set [23]. Therefore, AUPRC
and F1-score were particularly emphasized as in real-world
applications, the prevalence of the DILI-positive cases can be
much lower and the AUPRC and F1 score can be more compre-
hensive in evaluating model performance with different weights
on positive/negative cases. For the hold-out validation dataset 1
and dataset 2, the accuracy, F1 score, precision, and recall were
calculated to validate the model performance on unseen data
after the model predictions are submitted.

D. Model Robustness Test With Bootstrapping

To test the reproducibility and robustness of the model perfor-
mance and the statistical significance in the model comparison,
100 bootstrapping experiments were performed on the 80%
training data for the BOW/TF-IDF/W2V/S2V model and on the
60% training data for the ensemble learning model and the vari-
ation of the model performance metrics (AUROC, AUPRC, ac-
curacy and F1 score) was tested. To compare the computational
cost of each method, the vectorization time, modeling time (for
the classification algorithm) and the time to load the pre-trained
models were also recorded. Additionally, to test whether the
text-vectorization-based approaches perform better than the re-
cently developed transformer-based large pre-trained language
model, we tested the performance of the BioBERT (Biomedical
Bidirectional Encoder Representations from Transformers) de-
veloped by Lee et al. [24]. The latest version (BioBERT-Base
v1.2) trained with one million PubMed documents was used to
extract the text embeddings from the second last layer output
and then the prediction of DILI was done with the logistic
regression classifier on the text embeddings. The mean values
and the 95% confidence interval of the metrics were reported in
the result section. Furthermore, paired t-tests were used to test
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the statistical significance among the metrics given by different
models.

E. Prediction Reliability Analysis Using Conformal
Prediction

To quantify the uncertainty of the predictions, the conformal
prediction framework was implemented. Conformal prediction,
developed by Vladimir Vovk, assumes the data is generated
from an independent and identical distribution and calculates
the credibility and confidence level in the model inference from
a statistics aspect [25]. Simplified descriptions of conformal
prediction enough for applications can be found in the previous
articles [26], [27]. The conformal prediction framework relies on
the statistical significance on the nonconformity measurement:
a metric to quantify how well a new prediction conform to the
existing training data. Briefly, the nonconformity measurement
αi was firstly calculated with respect to each prediction label
within the training set by an previously proposed nonconformity
calculation function (details shown in [27]):

αi = 0.5− p̂(yi|xi)−maxp̂y!=yi
(yi|xi)

2
(1)

where yi andxi is the label and features, respectively. In our case
of binary classification with LR as the classifier, the equation can
be simplified as:

αi =

{
p̂(yi|xi) yi = 0

1− p̂(yi|xi) yi = 1
(2)

where the p̂(yi|xi) is prediction probability given by LR. At
the inference stage, the α∗ for the new sample x∗ with regards
to negative/positive label is also calculated with (2). Then the
P-value of the prediction is calculated by:

p∗,y =
|{i = 1, . . ., n|α∗,y

i ≤ αn
i }|

n
(3)

where p∗,y is the P-value of the assumed label y (0/1) for the new
sample x∗. The credibility of prediction is defined as the larger
P-value [26]. In this study, to quantify the prediction uncer-
tainty, the credibility of each predictions made for the validation
samples were analyzed over the 100 times of bootstrapping.
The mean, median, 95% confidence interval, and quartiles of
these credibility values for correct and incorrect predictions were
reported for the TF-IDF and the ensemble model.

III. RESULTS

Before experiments, the data were firstly visualized to give a
better understanding of the data distribution. First, text vectors
given by TF-IDF and S2V were visualized as examples, with
the unsupervised non-linear dimensionality reduction method: t-
distributed stochastic neighbour embedding (t-SNE), which has
been shown effective in visualizing high-dimensional data [20],
[28]. The results show that the positive samples and the negative
samples cluster separately, indicating the potential feasibility of
classifying the DILI-positive samples (Fig. 1). It should be noted
that the t-SNE visualization is completely unsupervised and the

Fig. 1. The t-SNE visualization of the text vectors of the training data.
(A) TF-IDF text vector visualization; (B) S2V text vector visualization.

Fig. 2. The classification performance of the models on the internal
validation data. (A) The table of classification performance metrics of dif-
ferent vectorization models. The receiver operating characteristic curves
(B), and the precision-recall curves (C) of the different models.

clusters shown are labelled with the ground truth labels from the
dataset.

A. Model Performance on Validation Data

With text vectors, classifiers based on each of the four vector-
ization algorithms were built. After performing hyperparameter
tuning in the five-fold cross validation on the training data, the
best strength of L2 penalty were 10 for the BOW model, 0.1
for the TF-IDF, W2V1 and W2V2 models, and 1 for the S2V
model. Word stemming was used for BOW and TF-IDF models
but not in the W2V1, W2V2 and S2V models. The performance
on the validation data is shown in Fig. 1. The results show that
besides the ensemble learning model, TF-IDF outperformed
the other models with the highest AUROC (0.990), accuracy
(0.957), AUPRC (0.990), and F1-score (0.958) (Fig. 2). The RF
models did not outperform the LR models and were therefore
not shown and used in our ensemble models.

Additionally, after plotting the confusion matrices, it can be
seen that among the separate learners, the TF-IDF model has
the fewest false-positive cases while the S2V model has the
fewest false-negative cases (Fig. 3). Venn plots of the false
predictions were shown in Fig. 3(A). According to the results,
although most false-positive and false-negative cases overlap
across different word-vectorization models, there is divergence
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Fig. 3. The confusion matrices and the numbers of false-positive
cases and false-negative cases of different models on the validation
data. (A) The Venn plot of the false-positive cases and false-negative
cases given by four separate learners. (B) The confusion matrices of
the six different algorithms, top, from left to right: BOW, TF-IDF, W2V1,
bottom: from left to right, W2V2, S2V, and ensemble learning models.

among different models, which motivates the ensemble learning
protocol which aggregates the diverse knowledge of diverse
learners for potentially better model performance. In addition,
Cohen’s Kappa values were calculated for quantitative analysis
of model differences before developing ensemble models [29],
from which a similar conclusion can be interpreted as the Venn
plot.

The classifiers based on TF-IDF, two W2V models, and S2V
were then assembled. The results show that it has reached the
same highest AUPRC, accuracy, and F1-score as the TF-IDF
model, with a similar AUROC (Fig. 2). According to the con-
fusion matrices (Fig. 3), the ensemble model shows the fewest
false-negative cases and a decent number of false-positive cases.
Based on the hyperparameter tuning processes, the hyperpa-
rameters of the final ensemble model have the strength of L2
penalty at 10 and the class weight at 1:1 (tuned based on five-fold
cross-validation on the 20% data used to train the meta learner).
The hyperparameters of the 12 separate LR models leveraged in
the ensemble models (tuned based on five-fold cross-validation
on the 60% data used to train separate learner): strength of L2
penalty: 0.1 for the nine TF-IDF/W2V1/W2V2 models, 1 for
three S2V models.

B. Model Interpretation

On the internal validation data, the best-performing models of
TF-IDF and ensemble learning were interpreted. For the TF-IDF
model, the training data was bootstrapped 2000 times, extracted
the coefficients of LR, and averaged the coefficients which cor-
respond to each term. Then, the mean coefficients were ranked

and the top 10 most important words for the positive prediction
and negative prediction were selected and shown respectively.
The results show the important words in the stemmed version:
the important words for the positive prediction such as “safety”,
“hepatotoxic/hepatotoxicity”, and “liver” show clear meaning
related to DILI, illustrating model interpretability (Fig. 4(A)).
Additionally, the contribution of different vectorization models
in the ensemble learning was visualized (Fig. 4(B)). The results
show that all coefficients are positive indicating the positive
contributions of different text vectorization models. Based on
these results, it is shown that among these models, TF-IDF
models and S2V models perform the best.

C. Model Robustness Test With Bootstrapping

According to the protocol introduced in Section 2.D, 100
times of bootstrapping resampling were done on the training set
and the model performance fluctuations were tested, with the
results shown in Fig. 5. The statistics and the boxplots show that
the ensemble learning model outperformed the other models on
all four classification model performance metrics with statistical
significance (p ≤ 0.001, paired t-tests), while the TF-IDF model
generally ranked the second outperforming all models other
than the ensemble learning model (p ≤ 0.001). However, since
the computation of the ensemble learning model requires the
TF-IDF, W2V1, W2V2 and S2V models, the TF-IDF models
significantly outperformed the ensemble learning model in the
computational cost. Additionally, according to the results shown
in Fig. 5, the BioBERT performance was generally inferior to
the BOW, TF-IDF, S2V and ensemble learning models.

D. Prediction Reliability Analysis Using Conformal
Prediction

The credibility values, calculated according to the conformal
prediction framework, were shown in Fig. 6(A). Wrong predic-
tions (false negative (FN) and false positive (FP) predictions)
have relatively low credibility around 0.5 and correct predictions
have a much higher mean credibility around 0.74. A clear trend
was shown in Fig. 6(B) that a better prediction accuracy went
along with a higher prediction credibility. A few example texts
were given in Table II for wrong and correct predictions with
relatively high (>0.99) and low credibilities (<0.55).

E. Model Performance on Hold-Out Data and Additional
Hold-Out Test Data

After testing the models on the internal validation data, two
best models: the TF-IDF model and the ensemble model were
chosen and tested on the hold-out test data. The performance
on the hold-out test data is shown in Table III and it should
be noted that the labels on the hold-out datasets are completely
blinded and only the performance metrics can be given upon the
submission of predictions. On the hold-out test dataset 1, both
models reach the same accuracy of 0.954, while the ensemble
model reaches a higher precision of 0.960, and the TF-IDF model
reaches a higher recall of 0.961. On the additional hold-out test
data (hold-out test dataset 2) with abstract only, the TF-IDF
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Fig. 4. Interpretation of the important words for classification based on TF-IDF and the contribution of separate learners in the ensemble learning
model. (A) The top 10 most important words for positive predictions and negative predictions with the distribution of logistic regression coefficients
in 2,000 bootstrapping experiments. (B) The normalized logistic regression coefficients of separate learners in 2,000 bootstrapping experiments.

Fig. 5. Model robustness test and classification performance variation in 100 bootstrapping experiments. (A) The variation of the metrics of model
performance. Here, mean values and 95% confidence interval values were reported. The best performing model according to each classification
performance metric was marked in bold. (*: The time of ensemble learning approach depends on the time of separate learners including TF-IDF,
W2V1, W2V2 and S2V. **: Due to the lengthy computational time of text vectorization with BioBERT, the time was tested once). The variation of
model (B) AUROC, (C) AUPRC, (D) accuracy, and (E) F1 score from different models. Machine specs: Google Cloud Platform, 16 N1 vCPUs,
104 GB RAM, no GPU acceleration.

Fig. 6. Ensemble model prediction reliability analysis from 100 boot-
strapping experiments. (A) The mean credibility of correct, FN, and
FP predictions. (B) The accuracy distribution of predictions made with
different credibility.

TABLE I
PAIR-WISE COHEN’S KAPPA VALUES FOR DIVERSITY ANALYSIS

model outperformed the ensemble model with higher accuracy
of 0.927, a higher F1 score of 0.930 and a higher precision
of 0.886, while the ensemble showed a higher recall of 0.988.
Generally, on the two datasets of the hold-out data released by
the challenge, both models show high performance in classifying
the literature with high accuracy and F1 score, which may enable
researchers to accurately filter the DILI-negative literature for
further analysis.

IV. DISCUSSION

In this study, to develop a machine-learning-based model
to automatically filter drug-induced liver injury (DILI) related
publications out of the irrelevant publications, four different
natural language processing (NLP) text vectorization methods
were used to vectorize scientific publications. Then, logistic
regression models and random forest models were built based
on the text vectors and ensemble learning, to predict whether the
publications are related to DILI or not. The TF-IDF model and
the ensemble learning model with logistic regression classifiers
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TABLE II
SAMPLES FROM THE ENSEMBLE MODEL WITH HIGH-CREDIBILITY CORRECT PREDICTIONS AND LOW CREDIBILITY WRONG PREDICTIONS

TABLE III
THE PERFORMANCE OF THE TF-IDF MODEL AND THE ENSEMBLE MODEL

ON THE HOLD-OUT DATA (1) AND ADDITIONAL HOLD-OUT DATA (2)

reached the highest classification performance in terms of accu-
racy, AUPRC, and F1 score on the internal validation set. Both
models show high classification performance on the hold-out
data. Additionally, the TF-IDF model is also interpretable with
the important words for making positive predictions showing
meanings clearly related to DILI, and important words for
making negative predictions not directly related to DILI. As
DILI, which may cause acute liver failure and even death, has
become the major killer of prospective new drug candidates and
most DILI research results are in the free-text format in scientific
publications, the models would enable researchers to fast filter
the DILI literature without time-consuming manual work.

The reason for using an ensemble model is that the different
text vectorizations are believed to capture different details in the
sentence. The concept is validated by the Venn plot in Fig. 3(A)
which showed overlapping false negatives and false positives of
predictions given by models built on various text vectorizations.
On top of these overlapping wrong predictions, different text
vectorizations also owned their distinctive false positives and
false negatives. By using a logistic regression meta-learner in the
ensemble learning process to leverage the predicted probability
from different separate learners (logistic regression models with
different vectorization techniques), this ensemble model could
potentially compensate for limitations and boost the strength of
different text vectorizations in this task. And this is evidenced
by its better prediction results on the hold-out data (Table I).
More importantly, on the internal validation data, the ensemble
learning strategy yields a lower false-negative rate (reduced to
1.69%, while the individual word-vectorization model can only
reach 2.29%). The fewer false negative predictions better help
prevent missing DILI-information for researchers, which can be
critical for the drug candidates.

Recently, there has been research pointing out the peeking
problem of ensemble learning models where the model per-
formance may be overestimated through multiple submissions
of the predicted results in machine learning challenges [30].
However, in this study, the protocol for developing the

ensemble learning models and non-ensemble learning models
prevents the peeking problem from happening. Because the
hyperparameter tuning of the ensemble learning model was
done during five-fold cross-validation on the 20% data used
for the training of the meta learner while the hyperparameters
for the non-ensemble learning models were tuned based on the
five-fold cross-validation on the 80% training data, the model
was completely developed before performance evaluation
was performed and therefore the performance metrics on the
internal validation set, hold-out validation sets were not used to
feedback the model training and hyperparameter tuning process.
Additionally, to prevent any model fine-tuning in the model
performance evaluation process, the final results on the holdout
validation sets were all based on one submission of the ensemble
learning model and one submission of the TF-IDF model.

When compared with the models developed by other candi-
dates in the CAMDA challenge, the models developed in this
study outperformed the other models reported in the CAMDA
challenge presentation at the 29th Conference on Intelligent
Systems for Molecular Biology and the 20th European Confer-
ence on Computational Biology on the same hold-out validation
dataset [31]. For example, Katritsis et al. developed a text-
mining approach for the identification of DILI-related literature
named dialogi with linear classifier, and reported an accuracy of
94.1%, a recall of 94.9% and a precision of 93.3% on the external
validation set; Liu et al. developed an AI-based DILI literature
classifier named DILIc and reported an accuracy of 94.14% on
the same validation set. However, the best model performance
in this study on the same external validation set are: accuracy:
95.4% (TF-IDF model and ensemble learning model), precision:
96.0% (ensemble learning model) and 94.7% (TF-IDF model),
recall: 96.1% (TF-IDF model) and 95.0% (ensemble learning
model), which outperformed the other candidates in the contest
on the same validation dataset.

Conformal prediction enables the model to output not only the
predicted labels but also the reliability of the predictions [25],
[32]. This can effectively provide users with a failure protection
tool by referring to the prediction credibility. In actual appli-
cations, the predictions made with high credibility should be
fairly accurate and thus trustworthy. For example, according to
the results, predictions made by the classifier with credibility
higher than 0.60 can be generally accepted by the users. For
lower credibility predictions, researchers are recommended to
double check the article manually to avoid missing any FN.

Examples of low credibility predictions were shown in
Table II. For the FP case, the title contains “hepatitis C virus”.
The word “hepatitis” may account for the reason why the model
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wrongly classified it as a DILI-positive paper. For the FN sample
listed, we cannot see any liver-related description except for the
term “hyperammonemia”. Although acquired hyperammonemia
is known to be caused by acute liver failure [33], the title
itself seems to be not discussing the drug-induced liver failure
but more related to a gene deficiency. The credibility of this
prediction is low: 0.542, which indicates that the uncertainty of
this prediction is high. In this case, the researcher can read into
the article to dig out what has been reported.

Next, a comparison between the conventional text-
embedding-based approaches and a transformer-based large
pre-trained language model is also worthy of discussion. In
this study, the results show that compared with the pre-trained
biomedical BERT [24], the simple word-vectorization-based
approaches such as the BOW and TF-IDF have statistically sig-
nificantly better AUROC, AUPRC, accuracy and F1 score. The
BioBERT’s performance was also not better than the pre-trained
word-embedding and sentence-embedding models. The results
correspond well with many previous research papers showing
that transformer-based models did not show significant improve-
ment over conventional models. For example, Wieting et al. [34]
showed that complex neural-network-based methods are outper-
formed by simpler methods with basic linear regression, while
Arora et al. [35] further validated this by showing that the
unsupervised sentence embedding can be a formidable baseline
for complicated models. Furthermore, the computational cost of
the large pre-trained language models is high: the vectorization
of the training and validation corpus took over 4,000 seconds in
this study, which can lead the model efficiency to significantly
deteriorate with no gain in the better classification performance.
Additionally, transformer-based and recurrent-neural-network-
based models are not easily interpretable when compared with
the conventional word-vector-based method with logistic re-
gression. As a result, the conventional NLP approaches are
recommended for the task of filtering DILI literature for their
satisfactory performances and low computational cost.

As for the application of this study, firstly, the models could
be applied to filter DILI literature for drug discovery researchers
from the large corpus of publications and monitor the latest
research on DILI, as assistant systems for information retrieval.
The scenario of this application is that the researchers can collect
the titles and abstracts of the newly published biomedical papers
and then apply the DILI-filter models developed in this study.
As there are tens of thousands of new publications everyday,
the models can enable the researchers to automatically fast
filter out the papers unrelated to DILI and this can improve the
efficiency of paper reading for the researchers. Albeit concerns
about ensemble learning were raised for a longer runtime and
being more computationally demanding, the application scenar-
ios of our model are less time- and resource-critical. The time
consumed (Fig. 5) for vectorization and model inference for our
ensemble model is still negligible when compared with human
performances. And thus model inference can be done everyday
to filter out related articles. Secondly, these literature-filtering
models can lay a foundation for future quantitative structure-
property relationship (QSPR) modeling in drug discovery [36]
and drug development [37] because the systems can expedite the
DILI-labeling process for different drug candidates effectively.

Furthermore, this paradigm of literature-filtering system devel-
opment can be expanded to other fields of biomedical research
well.

Although models developed in this study show good classi-
fication performance, there are limitations that can be further
addressed. For example, the training corpus is relatively small
for the model training when compared with the majority of
natural language processing applications. Here, the pre-trained
biomedical word/sentence embedding models such as S2V and
W2V were leveraged to address the issue of limited training
data. In the future, a larger training corpus can be made with
the addition of multiple additional biomedical text corpora
(which may be referred to as unlabelled data for semi-supervised
learning or data augmentation) to further improve the model
performances on real-world applications. The supplementary
data are not necessarily directly related to the DILI topic, but this
unbalanced training set better represents the actual application
scenario where the majority of the publications on PubMed are
irrelevant to DILI.

V. CONCLUSION

Several models were developed to filter DILI-related litera-
ture based on four text vectorization techniques (bag-of-words,
TF-IDF, two biomedical word2vec models, biomedical sent2vec
model) and ensemble learning. The model with TF-IDF and LR
outperformed others with an AUROC of 0.990, an accuracy of
0.957, and an AUPRC of 0.990. An ensemble learning model
with overall similar performance but the fewest false-negative
cases was developed based on the prediction probability from 12
individual word-vectorization models, which shows the highest
accuracy (0.954) and F1 score on the hold-out data (0.955).
Both models performed well on the two hold-out test data
with each model taking a lead in different classification metrics
(the ensemble learning model accuracy: 0.954, F1-score: 0.955,
precision: 0.960, recall: 0.950). Moreover, conformal prediction
was implemented to obtain the reliability of filtering results,
serving as a evaluation tool for researchers to further avoid FN
predictions. The development of both TF-IDF and ensemble
models enables the users to apply these two models for appli-
cations and the ensemble-learning-based model enables a more
efficient literature filter with fewer false negatives for researchers
who focus on the DILI in the field of drug discovery.

VI. CODE AVAILABILITY

The code and models can be found at: https://github.com/
xzhan96-stf/dili-filter
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