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Abstract—Thoracic disease detection from chest radiographs
using deep learning methods has been an active area of research
in the last decade. Most previous methods attempt to focus on
the diseased organs of the image by identifying spatial regions
responsible for significant contributions to the model’s predic-
tion. In contrast, expert radiologists first locate the prominent
anatomical structures before determining if those regions are
anomalous. Therefore, integrating anatomical knowledge within
deep learning models could bring substantial improvement in
automatic disease classification. Motivated by this, we propose
Anatomy-XNet, an anatomy-aware attention-based thoracic dis-
ease classification network that prioritizes the spatial features
guided by the pre-identified anatomy regions. We adopt a semi-
supervised learning method by utilizing available small-scale
organ-level annotations to locate the anatomy regions in large-
scale datasets where the organ-level annotations are absent.
The proposed Anatomy-XNet uses the pre-trained DenseNet-121
as the backbone network with two corresponding structured
modules, the Anatomy Aware Attention (A3) and Probabilistic
Weighted Average Pooling (PWAP), in a cohesive framework
for anatomical attention learning. We experimentally show that
our proposed method sets a new state-of-the-art benchmark by
achieving an AUC score of 85.78%, 92.07%, and, 84.04% on
three publicly available large-scale CXR datasets–NIH, Stanford
CheXpert, and MIMIC-CXR, respectively. This not only proves
the efficacy of utilizing the anatomy segmentation knowledge to
improve the thoracic disease classification but also demonstrates
the generalizability of the proposed framework.

Index Terms—Anatomy-aware attention, chest radiography,
semi-supervised learning, anatomical segmentation, thoracic dis-
ease classification.

I. INTRODUCTION

C
HEST radiography (CXR) is the most commonly used

primary screening tool for assessing thoracic diseases

[1]. Each year a massive number of CXRs are produced,

and the diagnosis is performed mainly by radiologists. With

the severe shortage of expert radiologists, especially in devel-

oping countries, computer-aided disease detection from chest

radiographs is considered the future of medical diagnosis [2],
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Fig. 1: Overview of the proposed semi-supervised anatomy-

aware attention-based thoracic disease classification frame-

work. A semi-supervised technique is utilized to generate

anatomy masks for unannotated CXR images. Then, with the

help of our proposed novel anatomy-aware attention module,

anatomical information is integrated into the classification

network for pathology detection.

[3]. Advancement in deep learning and artificial intelligence

offers several ways of rapid, accurate, and reliable screening

techniques [4]. These techniques can significantly impact the

health systems in the resource-constrained regions of the world

where there is a high prevalence of thoracic diseases and a

shortage of expert radiologists.

Driven by many publicly accessible large-scale CXR

datasets, a significant amount of research efforts have been

carried out for the automatic diagnosis of thoracic diseases.

Wang et al. [5] first announced the ChestX-ray14 dataset and

proposed a unified weakly-supervised classification network

by introducing various multi-label DCNN losses based on

ImageNet pre-trained deep CNN models. LLAGnet [6] is

a novel lesion location attention guided network containing

two corresponding attention modules which focus on the dis-

criminative features from lesion areas for multi-label thoracic

disease classification in CXRs. Wang et al. [7] proposed a

DenseNet-121 based triple learning approach that integrates

three attention modules which are unified for channel-wise,

element-wise, and scale-wise attention learning.

In medical practice, interpretation of chest X-rays, or any

other medical imaging modalities for that matter, requires

an understanding of the relevant human anatomy that is

being imaged. For example, fundamental analysis of chest

X-rays involves the radiologist determining if the trachea is

central, the lungs are uniformly expanded, the lung fields

are clear, and the heart size is normal [8]. These and other

similar observations form the basis of CXR interpretation by

human vision, where it is clear that knowledge of anatomical

http://arxiv.org/abs/2106.05915v3
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structures is vital. Real-world radiologists tend to locate the

vital anatomy regions first and then determine if those regions

have abnormalities. Similarly, successful implementation of

deep learning-based thoracic disease classification approaches

requires not only higher accuracy but also interpretability.

However, most previous research works in automated analysis

of CXRs do not consider this aspect and address the problem

as any other computer vision problem. Most previous methods

employed a global learning strategy [5], [9], or relied on

attention mechanisms [6], [10], [11], that try to determine the

spatial regions that are more responsible for model predic-

tion. In [12]–[15] methods have been proposed to integrate

segmentation masks into the backbone framework. However,

proper contour-level annotations for large-scale datasets [5],

[16], [17] are unavailable. Generating segmentation masks

from a minimal amount of annotated datasets (e.g., Japanese

Society of Radiological Technology (JSRT) [18]) for these

large-scale datasets lead to imperfect segmentation masks.

However, the approaches in [12]–[15] did not consider the

effect of the imperfect segmentation masks in their proposed

frameworks. These imperfections of the segmentation masks

lead to difficulty for the backbone model to properly identify

the anatomy regions.

In this work, we propose an anatomy-aware attention-based

architecture named Anatomy-XNet that utilizes the anatomy

segmentation information along with CXRs frames to classify

thoracic diseases. A significant challenge to integrate anatomy

information into the framework is the lack of proper contour-

level anatomy region annotations for large-scale datasets such

as NIH [5], CheXpert [16], and MIMIC-CXR [17]. To solve

this problem, we leverage a semi-supervised learning tech-

nique [19], requiring only a handful of annotated instances

that enables us to utilize small scale dataset like JSRT [18]

to train the segmentation network and generate the anatomy

segmentation masks for the NIH, CheXpert, and MIMIC-CXR

datasets. However, one downside of this method is that it

doesn’t guarantee similar performance compared to any super-

vised learning method [19]. In order to mitigate this problem,

we incorporate a novel structured module called Anatomy

Aware Attention (A3) on top of the backbone feature extractor,

Densenet-121, in a united framework. The A3 module not

only reinforces the sensitivity of the different stages of the

model to prioritize the anatomical location responsible for

a thoracic disease, but also retains information outside the

masks through the residual attention vector and thus is less

affected by the imperfect anatomy masks. In addition, we

propose a novel pooling operation layer, named Probabilistic

Weighted Average Pooling (PWAP), that explicitly leverages

the probability attention map derived from the feature activa-

tion map to enhance the salient regions of the feature space.

An overview of our proposed framework is presented in Fig. 1.

The contributions of this paper are summarized as follows:

• We propose novel hierarchical feature-fusion-based A3

modules that learn to re-calibrate the feature maps in

different stages of the model based on anatomical knowl-

edge to improve the classification performance and the

model’s robustness to imperfection in anatomy masks.

• We incorporate novel PWAP modules that utilizes a learn-

able re-weighting mechanism based on spatial feature

importance before performing spatial feature aggregation.

• Our proposed Anatomy-XNet achieves new state-of-the-

art performances with AUC scores of 85.78%, 92.07%,

and, 84.04% on three publicly available large-scale CXR

datasets, NIH, Stanford CheXpert, and, MIMIC-CXR,

respectively. These extensive experiments demonstrate

the effectiveness of utilizing prior anatomy knowledge

and prove the generalizability of the proposed framework.

II. RELATED WORK

A. Organ Segmentation from Chest Radiographs

There are several methods for organ segmentation from

a CXR image. Among the classical signal processing based

methods, a hybrid approach by Shao et al. [20] combining

active shape and appearance models, a combined approach of

landmark-based segmentation and a random forest classifier by

Ibragimov et al. [21], an active shape framework addressing

the initialization dependency of these active shape models

proposed by Xu et al. [22] are noteworthy. In the advent

of deep learning, Convolutional neural network (CNN) based

segmentation of medical images has attracted wider attention

of researchers. An end-to-end contour-aware CNN-based seg-

mentation method is shown to provide organ contour infor-

mation and improve the segmentation accuracy [23]. In [24],

lung segmentation is performed from CXRs using Generative

adversarial networks. However, this model is not generalizable

to new datasets. Two-stage deep learning techniques such as

patch classification and reconstruction of lung fields can be

used for lung segmentation from CXR images [25].

©2022 IEEE. This article has been accepted for publication in IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS. See
http://www.ieee.org/publications standards/publications/rights/index.html for copyright information.

B. Disease Classification from Chest Radiographs

1) Methods without Utilizing Segmentation Masks: Many

signal processing and deep learning approaches have been

proposed to classify thoracic diseases in recent years. Tang

et al. [10] identified the disease category and localized the

lesion areas through an attention-guided curriculum learning

method. In [26], multiple feature integration is presented using

shallow handcrafted techniques and a pre-trained deep CNN

model. DualCheXNet [27] is an approach that enables two

different feature fusion operations, such as feature-level fusion

and decision level fusion, which form the complementary

feature learning embedded in the network. LLAGnet [6] is

a novel lesion location attention guided network containing

two corresponding attention modules which focus on the

discriminative features from lesion locations for multi-label

thoracic disease classification in CXRs. Guan et al. [28] pro-

posed a category-wise residual attention learning framework

for multi-label thoracic disease classification. Rajpurkar et al.

[9] exploited a modified 121-layer DenseNet named CheXNet,

for diagnosis of all 14 pathologies in the ChestXray14 dataset,

especially for pneumonia. In [7], a triple learning approach

integrating a unified channel-wise, element-wise, and scale-

wise attention modules are used. They can simultaneously

learn disease-discriminative channels, locations, and scales for

http://www.ieee.org/publications_standards/publications/rights/index.html
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Fig. 2: Overview of the semi-supervised anatomy segmentation architecture.

effective diagnosis. Hou et al. [29] fused semantic features

from radiology reports along with encoded X-ray features to

feed into transformer encoder to utilize both CXR images

and metadata related to them. Zhang et al. [30] proposed a

medical concept graph, based on prior knowledge, to diagnose

CXR images. Seyyed-Kalantar et al. [31] examined the extent

to which state-of-the-art deep learning classifiers show true

positive rate disparity among different protected attributes.

Allaouzi et al. [32] explored binary relevance (BR), label

powerset, and classifier chain in terms of label dependencies.

Yan et al. [11] proposed a weakly supervised deep learn-

ing framework equipped with squeeze and excitation blocks,

multi-map transfer, and max-min pooling for classifying and

localizing suspicious lesion regions. Luo et al. [33] adopted

task-specific adversarial training and an uncertainty-aware

temporal ensemble of model predictions to address the domain

and label discrepancies across different datasets. To handle

label uncertainty on the CheXpert dataset, Irvin et al. [16]

trained a DenseNet-121 on CheXpert with various labeling

policies such as U-Ignore, U-Ones, and U-Zeros policies.

Pham et al. [34] exploited dependencies among abnormality

labels and utilized label smoothing technique for better han-

dling of uncertain samples in the CheXpert dataset. However,

a systematic exploration of the potential of integrating anatom-

ical prior to improve the classification performance was absent

in all the above mentioned methods.

2) Methods Utilizing Segmentation Masks: Xu et al. [12]

proposed a dual-stage approach (segmentation and classifica-

tion) to utilize mask-attention-mechanism as spatial attention

to adjust salient features of the CNN. Their attention mask

suppresses the receptive field of the CNN based on their

overlapping rates with the segmentation masks. Keidar et al.

[13] proposed a deep learning-based model, along with the

segmentation masks as additional input, for the detection

of COVID-19 from CXRs. Segmentation-based Deep Fusion

Network (SDFN) [14] is a method that leverages the domain

knowledge and the higher-resolution information of local lung

regions. The local lung regions are identified using Lung

Region Generator, and discriminative features are extracted

using two CNN models. Then these features are fused by the

feature fusion module for the disease classification process.

Arias-Garzón et al. [15] proposed a two-stage method where

the surrounding area around anatomy regions are removed

from the CXR image based on the segmentation masks to

remove any classification bias towards the extraneous (i.e.,

non-anatomy) regions of the image. Afterward, they fed the

CXR image constrained by the segmentation mask to a CNN

model. Overall, the methods described in [12]–[15] utilized

small-scale annotated datasets in a supervised training setting

to generate segmentation masks for large-scale datasets used

in their approaches. However, in these methods, the effect

of imperfect segmentation masks was not considered, which

naturally arises from supervised training of the segmentation

network using out-of-distribution data resources.

©2022 IEEE. This article has been accepted for publication in IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS. See
http://www.ieee.org/publications standards/publications/rights/index.html for copyright information.

III. METHODOLOGY

A. Semi-supervised Anatomy Segmentation Network

For semi-supervised segmentation of anatomy regions, we

adopted the method from [19] which is based on the popu-

lar CycleGAN architecture [35]. The CycleGAN architecture

comprises of four interconnected blocks, two conditional gen-

erators, and two discriminators as illustrated in Fig. 2. The first

generator (GCM ), corresponding to the segmentation network

that we want to obtain, learns a mapping from a CXR image

to its anatomy segmentation mask. The first discriminator

(DM ) takes either the generated mask from GCM or the

real segmentation mask as input, and learns to differentiate

one from another. Conversely, the second generator (GMC )

learns to map a segmentation mask back to its CXR image.

The second discriminator (DC) receives a CXR image as

input (either a real CXR image or a generated CXR from

GMC ) and predicts whether this image is real or generated. To

http://www.ieee.org/publications_standards/publications/rights/index.html
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enforce cycle consistency criterion, the segmentation network

is trained in a way so that feeding the segmentation mask

generated by GCM for a CXR image into GMC returns the

same CXR image. Similarly, passing back the CXR image

generated by GMC to GCM for a segmentation mask returns

the same mask.

1) Loss functions: The segmentation setting contains two

distinct subsets: subset L, containing annotated CXR images

ωL and their corresponding ground-truth masks θL, and subset

U , which contains unannotated CXR images ωU . We train

the generator module GCM to generate segmentation mask

by imposing the following loss function,

LM
gen(GCM ) = Eω,θ∈ωL,θL

[

H(θ, GCM (ω))
]

(1)

H(θ, θ̃) = −

N
∑

j=1

K
∑

k=1

θj,k log θ̃j,k (2)

Here, H is the pixel-wise cross-entropy, θj,k and θ̃j,k are the

annotated segmentation mask and predicted probabilities that

pixel j ∈ {1, ..., N} has label k ∈ {1, ...,K}. We employ

a pixel-wise L2 norm between an annotated CXR and the

CXR generated from its corresponding segmentation mask as

a supervised loss to train the CXR generator GMC :

LC
gen(GMC) = Eω,θ∈ωL,θL

[

‖GMC(θ)− ω‖
2

2

]

(3)

Two additional losses, adversarial and cycle consistency losses,

are incorporated to exploit unannotated CXR images. We use

the adversarial losses to train the generators and discriminators

in a competing fashion and help the generators produce realis-

tic CXR image and anatomy segmentation mask. Suppose that

DM (θ) is the predicted probability that segmentation mask θ

correspond to an annotated CXR’s segmentation mask. We

define the adversarial loss for DM as,

LM
disc(GCM , DM ) = Eθ∈θL

[

(DM (θ)− 1)2
]

+

E
ω

′
∈ωU

[

(DM (GCM (ω
′

)))2
]

(4)

Let DC(ω) be the predicted probability that a CXR ω is real.

We get the adversarial loss for the CXR discriminator by,

LC
disc(GMC , DC) = E

ω
′
∈ωU

[

(DC(ω
′

)− 1)2
]

+

Eθ∈θL

[

(DC(GMC(θ)))
2
]

(5)

The first cycle consistency loss measures the difference be-

tween an unannotated CXR and the regenerated CXR after

passing through generators GCM and GMC sequentially.

LC
cycle(GCM , GMC) = E

ω
′
∈ωU

[

‖GMC(GCM (ω
′

))− ω
′

‖1
]

(6)

We use cross-entropy to evaluate the difference between an

annotated and regenerated segmentation mask after passing

through generators GMC and GCM in sequence:

LM
cycle(GCM , GMC) = Eθ∈θL

[

H(θ, GCM (GMC(θ)))
]

(7)

Finally, the total loss is obtained by combining all loss terms:

Ltotal = LM
gen +LC

gen +LM
cycle +LC

cycle −LM
disc −LC

disc (8)

We perform the learning in an alternating fashion. The param-

eters of the generators are optimized while considering those

of the discriminators as fixed and vice versa.

B. Anatomy-XNet

The proposed Anatomy-XNet architecture is illustrated in

Fig. 3. We utilize transfer learning on DenseNet-121 [36]

architecture pre-trained on the ImageNet and use it as our

backbone model. The A3 modules operate on the high-level

feature space encoded by the dense blocks (DB) to enforce

attention supervision guided by the anatomy masks. We per-

form downsampling and upsampling on the anatomy masks

and feature space to an intermediate shape before passing them

to an A3 module. The different components of the proposed

Anatomy-XNet are described in the following sub-sections.

1) Probabilistic Weighted Average Pooling (PWAP) Mod-

ule: The traditional global average pooling or max-pooling

layer provides the same weight to all spatial regions of

the input. However, in many cases, the object of interest

may reside in a salient region that is more important than

others. Usually, thoracic diseases are often characterized by an

anatomy region and lesion areas that constitute much smaller

portions than the entire image. Thus, to further enhance the

attention mechanism, we use a PWAP module in conjunction

with the A3 block and a PWAP module within the A3 block.

This module explicitly leverages the probability attention map,

derived from the input feature activation space, to enhance the

most discriminative regions of the feature map before applying

the pooling operation. In this module, we learn the weight of

each spatial position to guide Anatomy-XNet towards lesion

localization during training through a 1×1 convolutional filter.

This 1×1 filter has been chosen as we aim to learn the weight at

a single spatial position; surrounding information is unwanted.

First, we get the probability map P ∈ R
H×W×1 from a input

feature map F
inp ∈ R

H×W×C by,

Pi,j,1 = S

(

C
∑

c=1

K1,1,c ∗ F
inp
i,j,c

)

(9)

Here, i ∈ {1, ..., H}, j ∈ {1....,W}, S(·) denotes the sigmoid

function, and K is the learnable convolutional filter. Afterward,

we elementwise multiply the probability map P with the input

feature map F
inp to obtain the weighted feature space X. Then

we normalize the feature space X and finally, obtain the pooled

feature vector V of size 1×1×C by,

Xi,j,c = F
inp
i,j,c ⊙Pi,j,c (10)

V1,1,c =

∑H

i=1

∑W

j=1
Xi,j,c

∑H

i=1

∑W

j=1
Pi,j,c

(11)

©2022 IEEE. This article has been accepted for publication in IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS. See
http://www.ieee.org/publications standards/publications/rights/index.html for copyright information.

2) Anatomy Aware Attention (A3) Module: The Anatomy-

XNet consists of two A3 modules. The first A3 module is

connected to the third dense block (DB-3), and the other

A3 module works with the fourth dense block (DB-4). Each

one of them takes the upsampled high-level feature map

F
US
DB ∈ R

H×W×C generated by their corresponding DB

block, and the downsampled anatomy segmentation masks

M ∈ R
H×W×2 as inputs. Using a PWAP module, the feature

map is pooled to a feature vector V ∈ R
1×1×C . This feature

vector V is then passed through three different Attention

Vector Encoder (AVE) modules to get the three feature vectors

A1, A2, A3 ∈ R
1×1×C . The detailed architecture of an AVE

http://www.ieee.org/publications_standards/publications/rights/index.html
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Fig. 3: The architecture of the proposed Anatomy-XNet. The anatomy-aware attention (A3) modules operate on the upsampled

feature spaces from dense block-3 and dense block-4 with the help of downsampled anatomy masks. These anatomy masks

are derived from the segmentation network in a semi-supervised manner. The feature spaces calibrated with the supervision

of anatomy knowledge from each of the A3 modules are pooled by the PWAP layers and concatenated. The classifier module

outputs pathology class scores by taking these concatenated pooled features as input.

module is described in Table I. The architecture is designed

to introduce the bottleneck mechanism in the AVE module,

which is inspired by the Squeeze-and-Excitation block [37].

To introduce bottleneck, feature vector V is first squeezed into

dimension 1× 1× (C/r) and later excited back to 1× 1×C.

The value of C is 512 and 1024 for A3 modules connected to

DB-3, and DB-4, respectively. In both cases, r is 0.5.

©2022 IEEE. This article has been accepted for publication in IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS. See
http://www.ieee.org/publications standards/publications/rights/index.html for copyright information.

We aim to give relevant importance to lung and heart

anatomy compared to background regions. One straightfor-

ward way is to apply softmax operation across all the attention

vectors to get that relevancy scores. But one drawback of this

approach is that it will make the attention scores for lung

and heart mask attention vectors dependent on each other.

However, pathologies related to the heart are independent

of whether the CXR contains lung pathologies or not. This

motivates us to design the softmax operations across the

attention vectors in such a way that the lung attention vector

and heart attention vector are independent of each other, but

the residual attention vector is jointly dependent on both of

them. First, we apply softmax function between A1 and A2:

σ(Ak)i =
exp (Ak)i

∑

2

j=1
exp (Aj)i

, i ∈ {1, ..., C}, k ∈ {1, 2} (12)

Here, σ(·) represents softmax operation, j and k represent

feature vector indices, and i represents the ith channel value of

a feature vector. Thus, we obtain two attention vectors where

each feature value across the channel dimension depends on

each other. We name these two attention vectors as the lung

and lung-complementary attention vectors denoted by AL and

AL, respectively. These quantities are related by,
(

AL

)

i
+
(

AL

)

i
= 1, i ∈ {1, ..., C} (13)

Similarly, we apply softmax on A2 and A3 by,

σ(Ak)i =
exp (Ak)i

∑

3

j=2
exp (Aj)i

, i ∈ {1, ..., C}, k ∈ {2, 3} (14)

Here, j and k represent feature vector indices, and i represents

the ith channel value of a feature vector. Similarly, we obtain

two attention vectors where each feature value across the

channel dimension depends on each other. We name these

two attention vectors as the heart-complementary and heart

attention vectors denoted by AH and AH , respectively. These

quantities are related by,
(

AH

)

i
+
(

AH

)

i
= 1, i ∈ {1, ..., C} (15)

The lung-complementary regions and heart-complementary

regions have considerable overlap between them. For this

TABLE I: ATTENTION VECTOR ENCODER STRUCTURE.

Layer (Type) Input Shape Output Shape

FC-1 (Fully Connected) (C) (C/r)
ReLU-1 (ReLU) (C/r) (C/r)

BN-1 (Batch Normalization) (C/r) (C/r)
FC-2 (Fully Connected) (C/r) (C)

ReLU-2 (ReLU) (C) (C)
BN-2 (Batch Normalization) (C) (C)

* C: Channel Dimension r: Reduction ratio

http://www.ieee.org/publications_standards/publications/rights/index.html
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reason, proper weighting between the lung-complementary and

heart-complementary attention vectors is needed. Finally, we

get the residual attention vector by,

AR = αAL + βAH (16)

Here, the value of hyperparameters are: α=0.5 and β=0.5,

which are inferred from a grid search with a cross-validation.

Next, we downsample and broadcast the lung and heart masks

to the dimension of H×W×C by repeating them in the chan-

nel (C) axis. We denote the downsampled and broadcasted

lung and heart masks, respectively, as ML ∈ R
H×W×C and

MH ∈ R
H×W×C . Afterward, we element-wise multiply the

attention vectors, AL with F
US
DB and ML, AH with F

US
DB and

MH , and AR with F
US
DB to get three feature spaces, RL, RH ,

and RR, respectively.

RL = AL ⊙ML ⊙ F
US
DB (17)

RH = AH ⊙MH ⊙ F
US
DB (18)

RR = AR ⊙ F
US
DB (19)

where ⊙ represents the element-wise multiplication opera-

tion. Thus, we obtain two anatomy attentive feature space

RL, RH ∈ R
H×W×C , and the residual attentive feature

space, RR ∈ R
H×W×C . For faster convergence and removal

of any internal covariate shift among RL, RH , and RR, batch

normalization operation is applied individually. Next, we sum

all of the three feature spaces and apply batch normalization

to obtain the final feature space R ∈ R
H×W×C by,

R = bn

(

bn(RL) + bn(RH) + bn(RR)

)

(20)

Here, bn(·) denotes the batch normalization operation. Since

AL is multiplied by ML and F
US
DB , AL provides attention

to the spatial regions responsible for respiratory diseases. To

verify this, let us define the loss function score L and take the

gradient of L with respect to the lung attention vector AL.

∂L

∂(AL)ki,j
=
∑

i

∑

j

∂L

∂(RL)ki,j
·
∂(RL)

k
i,j

∂(AL)ki,j
(21)

where, AL ∈ R
1×1×C , RL ∈ R

H×W×C , and i ∈
{1, 2, ...H}, j ∈ {1, 2, ...W}, k ∈ {1, 2, ...C}. From equation

(17) we get that, RL = AL ⊙ ML ⊙ F
US
DB , where ML ∈

R
H×W×C . Hence,

∂L

∂(AL)ki,j
=
∑

i

∑

j

∂L

∂(RL)ki,j
·
∂
(

(AL)
k
i,j ·(ML)

k
i,j ·(F

US
DB)

k
i,j

)

∂(AL)ki,j

=
∑

i

∑

j

(ML)
k
i,j ·

∂
(

(AL)
k
i,j ·(F

US
DB)

k
i,j

)

∂(AL)ki,j
·

∂L

∂(RL)ki,j

(22)

The value of (ML)
k
i,j is 1 at any spatial position if it is the lung

region, otherwise is 0. As a result, the gradient for the lung

attention vector (AL) is weighted according to the lung-mask

region. Similarly, the gradient for the heart attention vector

(AH ) is weighted according to the heart-mask region, making

AH to provide attention to the heart-related (cardiac) diseases.

The residual feature space (RR) contains feature activation

values responsible for the whole input feature map that in-

cludes predicted anatomy mask regions, as well as areas other

than predicted anatomy mask regions. The areas other than the

predicted anatomy mask regions include any left-out anatomy

regions from the predicted segmentation masks. The residual

attentive feature space (RR) is responsible for attention to

these regions, enabling the Anatomy-XNet a relaxed view

constraint on the imperfect segmentation masks and thus

making it less affected by the imperfect anatomy masks.

©2022 IEEE. This article has been accepted for publication in IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS. See
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3) Classifier: Let V1 ∈ R
1×1×C1 , V2 ∈ R

1×1×C2 be the

pooled feature vectors from the PWAP modules connected to

the A3 modules that work on the DB-3 and DB-4, respectively.

Here, C1 = 512 and C2 = 1024. We concatenate V1, V2

together and pass them through a fully connected (FC) layer.

The output f I
i from this FC layer is then passed through a

sigmoid layer and normalized by,

pIi =
1

1 + exp
(

−f I
i

) (23)

where I is a CXR image and pIi represents the probability

score of I belonging to the ith class, where i ∈ {1, 2, . . . , n}.

n represents the number of pathologies presented in each

dataset.

4) Loss functions: The pathological labels of each CXR

are expressed as an n-dimensional label vector, L =
[l1, . . . , li, . . . , ln], where li ∈ {0, 1}. li denotes whether there

is any pathology, i.e., 1 for presence and 0 for absence. We

employ binary cross-entropy loss for optimization, defined by:

Lcls = −
1

n

n
∑

i=1

[

li log
(

pIi
)

+ (1 − li) log
(

1− pIi
)

]

(24)

IV. TRAINING

A. Datasets

NIH: The NIH chest X-ray dataset [5] consists of 112,120

X-rays from 30,805 unique patients with 14 diseases. We

strictly follow the official split of NIH, 70% for training, 10%

for validation, and 20% for testing, for conducting experiments

and fair comparison with previous works.

CheXpert: The CheXpert dataset [16] consists of 224,316

X-rays of 65,240 patients. The official specific validation and

test datasets consist of 200, and 500 studies respectively.

MIMIC-CXR: The MIMIC-CXR dataset [17] contains

377,111 X-rays with 14 diseases. We combine all non-positive

labels (negative, not mentioned, and uncertain) into an aggre-

gate negative label [31] for experimenting on this dataset.

JSRT: We use the JSRT [18] as annotated dataset to train

the segmentation model. The segmentation annotations for

JSRT, including heart and lung, are obtained from [38].

B. Implementation Details

1) Training Scheme for Segmentation: We follow the pro-

cedure outlined in [19] for preprocessing, output binarization,

and hyper-parameter settings to utilize the semi-supervised

training pipeline. We utilize the large-scale datasets as the

http://www.ieee.org/publications_standards/publications/rights/index.html
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TABLE II: PATHOLOGY-WISE PERFORMANCE COMPARISON OF THE PROPOSED METHOD WITH STATE-OF-THE-ART

SYSTEMS ON THE NIH DATASET a. THE TWO BEST RESULTS ARE SHOWN IN RED AND BLUE.

Method Emph Fibr Hern Infi PT Mass Nodu Atel Card Cons Edem Effu Pne1 Pne2 Average

Methods without Utilizing Segmentation Masks

Ho et al. [26] 87.50 75.60 83.60 70.30 77.40 83.50 71.60 79.50 88.70 78.60 89.20 87.50 74.20 86.30 80.97
CRAL [28] 90.80 83.00 91.70 70.20 77.80 83.40 77.30 78.10 88.00 75.40 85.00 82.90 72.90 85.70 81.59

CheXNet [9] 92.49 82.19 93.23 68.94 79.25 83.07 78.14 77.95 88.16 75.42 84.96 82.68 73.54 85.13 81.80
DualCheXNet [27] 94.20 83.70 91.20 70.50 79.60 83.80 79.60 78.40 88.80 74.60 85.20 83.10 72.70 87.60 82.30

LLAGNet [6] 93.90 83.20 91.60 70.30 79.80 84.10 79.00 78.30 88.50 75.40 85.10 83.40 72.90 87.70 82.37
Wang et al. [7] 93.30 83.80 93.80 71.00 79.10 83.40 77.70 77.90 89.50 75.90 85.50 83.60 73.70 87.80 82.60
Yan et al. [11] 94.22 83.26 93.41 70.95 80.83 84.70 81.05 79.24 88.14 75.98 84.70 84.15 73.97 87.59 83.02
Luo et al. [33] 93.96 83.81 93.71 71.84 80.36 83.76 79.85 78.91 90.69 76.81 86.10 84.18 74.19 90.63 83.49

Methods Utilizing Segmentation Masks

Arias-Garzón et al. [15] 85.72 81.68 82.48 70.10 77.67 83.63 78.92 80.43 88.93 80.17 87.71 86.89 75.07 85.59 81.79
MANet [12] 85.23 82.82 92.10 70.04 76.82 83.36 77.76 81.43 89.35 80.23 88.56 86.30 75.29 85.46 82.48

Keidar et al. [13] 90.87 81.47 91.80 70.60 78.02 83.93 77.07 80.64 90.88 80.43 89.20 86.94 76.53 85.54 83.14
Anatomy-XNet (224) 92.85 84.42 96.36 71.71 79.79 86.04 80.37 83.06 91.37 80.91 89.90 88.58 77.09 88.21 85.05

Anatomy-XNet (512) 94.33 85.91 94.57 72.07 79.90 86.80 83.78 83.69 91.38 81.54 90.25 89.12 77.48 90.09 85.78

a The 14 findings for NIH datasets are Emphysema (Emph), Fibrosis (Fibr), Hernia (Hern), Infiltration (Infi), Pleural Thickening (PT), Mass, Nodule (Nodu), Atelectasis
(Atel), Cardiomegaly (Card), Consolidation (Cons), Edema (Edem), Effusion (Effu), Pneumonia (Pne1), and Pneumothorax (Pne2).

TABLE III: PATHOLOGY-WISE PERFORMANCE COMPARISON OF THE PROPOSED METHOD WITH STATE-OF-THE-ART

SYSTEMS ON THE CHEXPERT DATASET. THE TWO BEST RESULTS ARE SHOWN IN RED AND BLUE.

Method Atelectasis Cardiomegaly Edema Consolidation Pleural Effusion Average

Methods without Utilizing Segmentation Masks

Allaouzi et al. [32] BR 72.00 88.00 87.00 77.00 90.00 82.80
Irvin et al. [16] U-Ones 85.80 83.20 94.10 89.90 93.40 89.30

Pham et al. [34] U-Ones+CT+LSR 82.50 85.50 93.00 93.70 92.30 89.40

Methods Utilizing Segmentation Masks

MANet [12] 81.35 86.61 92.22 91.59 89.86 88.33
Arias-Garzón et al. [15] 81.74 84.24 94.06 90.74 94.31 89.02

Keidar et al. [13] 86.42 87.39 91.97 88.23 91.73 89.15
Anatomy-XNet (224) 86.55 87.86 95.28 93.13 94.66 91.50
Anatomy-XNet (512) 86.72 89.54 95.73 93.31 95.04 92.07

TABLE IV: PATHOLOGY-WISE PERFORMANCE COMPARISON OF THE PROPOSED METHOD WITH STATE-OF-THE-ART

SYSTEMS ON THE MIMIC-CXR DATASET b. THE TWO BEST RESULTS ARE SHOWN IN RED AND BLUE.

Method Atel Card Cons Edem E.C. Frac L.L. L.O. N.F. Effu P.O. Pne1 Pne2 S.D. Average

Methods without Utilizing Segmentation Masks

Densenet-KG [30] 69.40 74.60 64.00 79.00 65.10 60.50 57.40 60.90 77.80 80.90 65.00 57.20 68.90 78.10 68.50
VSE-GCN [29] 72.20 73.00 72.80 79.90 76.70 56.00 62.30 65.40 81.70 86.30 65.30 58.80 79.70 78.90 72.10

Chexclusion [31] c 83.70 82.80 84.40 90.40 75.70 71.80 77.20 78.20 86.80 93.30 84.80 74.80 90.30 92.70 83.40

Methods Utilizing Segmentation Masks

Arias-Garzón et al. [15] 82.61 81.57 83.16 90.01 73.71 65.36 74.57 77.40 85.83 91.50 81.96 72.79 87.47 90.64 81.33
MANet [12] 82.77 81.86 83.66 90.03 74.52 69.56 75.43 77.24 85.90 91.53 83.05 73.01 88.02 90.24 81.92

Keidar et al. [13] 83.24 82.59 84.19 90.40 74.71 71.33 76.66 77.67 86.39 92.93 84.18 74.51 89.70 92.05 82.90
Anatomy-XNet (224) 83.79 82.67 85.25 90.83 75.45 74.30 77.08 78.79 86.90 93.37 86.55 75.98 90.87 92.75 83.90

Anatomy-XNet (512) 83.93 82.59 84.84 90.76 75.12 74.95 78.78 78.90 86.97 93.43 86.21 75.81 91.20 93.12 84.04

b The 14 pathologies for the MIMIC-CXR datasets are Atelectasis (Atel), Cardiomegaly (Card), Consolidation (Cons), Edema (Edem), Enlarged Cardiomediastinum
(E.C.), Fracture (Frac), Lung Lesion (L.L.), Lung Opacity (L.O.), No Finding (N.F.), Pleural Effusion (Effu), Pleural Other (P.O.), Pneumonia (Pne1), Pneumothorax
(Pne2), Support Devices (S.D.).

c Indicates that the result is obtained by the ensemble of 5 checkpoints.

unannotated subset, i.e., for training the model on the NIH

dataset, the NIH dataset is used as an unannotated subset.

Thus, we get three separate segmentation models, where

NIH, CheXpert, and MIMIC-CXR datasets are used as an

unannotated subset, respectively. We use the JSRT dataset as

the annotated subset in all three cases. Calculating accuracy

in external datasets such as NIH, CheXpert, or MIMIC-CXR

is impossible due to the unavailability of the ground truths

for them. For this reason, the validation dataset for the semi-

supervised setting in all three cases is comprised of CXR

images from the JSRT dataset. We choose the checkpoint with

the highest dice score on this validation dataset as the final

model.

©2022 IEEE. This article has been accepted for publication in IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS. See
http://www.ieee.org/publications standards/publications/rights/index.html for copyright information.

2) Training Scheme for Classification: In terms of image

size, for a fair comparison with others, we follow [7], [9],

[12], [34] and resize the CXR images to 256×256, and then

randomly crop 224×224 patches as inputs [11]. However,

224×224 is too small to predict small and subtle diseases like

nodules, pneumonia in CXR. For that reason, we train our

model on a larger image size as well. To utilize the larger input

image dimension, we resize the CXR images to 586×586, and

then randomly crop 512×512 patches as inputs. We normalize

the input images with the mean and standard deviation of the

ImageNet training set. We follow [11] and take advantage of

flipping to increase the variation and the diversity of training

samples. For validation and inference, we use a centrally

http://www.ieee.org/publications_standards/publications/rights/index.html
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Fig. 4: Qualitative visualization of the Anatomy-XNet’s output on the NIH test dataset. The first and second rows depict the

CXR images and their corresponding anatomy masks predicted from the semi-supervised segmentation network, respectively.

The color red in the segmentation masks indicates the lung regions, while the color green indicates the heart regions. The

third row shows the Grad-CAMs of the Anatomy-XNet for the target classes. The color red in the Grad-CAMs means the

most indicative regions with abnormalities, while the color blue indicates regions without abnormalities. The contours of the

anatomy segmentation masks are marked with white color on top of the heatmaps. The final row shows top-6 predicted findings

and their corresponding prediction scores. The ground truth labels are highlighted in red color.

cropped sub-image of 512×512 for 586×586 and 224×224

for 256×256 dimensions as input. The anatomy masks from

the segmentation network are resized to 56×56 before passing

to the A3 modules. We use Adam optimizer with an initial

learning rate of 0.0001 and set the batch size to 120. Following

previous studies, [5], [33], we employ the percentage area

under the receiver operating characteristic curve (AUC) for

performance evaluation.

V. EXPERIMENTAL RESULTS AND ANALYSIS

A. Comparison With State-of-the-Arts

1) Performance on NIH-dataset: We compare our pro-

posed Anatomy-XNet with previously published state-of-

the-art methods including: Category-wise Residual Attention

Learning (CRAL) [28], CheXNet [9], DualCheXNet [27],

Lesion Location Attention Guided Network (LLAGNet) [6],

the methods of Ho et al. [26], Wan et al. [7], Yan et al. [11],

Luo et al. [33], Arias-Garzón et al. [15], Keidar et al. [13],

and MANet [12]. We have implemented the methods of Arias-

Garzón et al. [15], Keidar et al. [13], and MANet [12]. For

the methods of Ho et al. [26] and DualCheXNet [27], results

have been reported from their implementations. The results

for the rest of the methods are quoted from [33]. As shown

in Table II, the method proposed by Luo et al. [33] is the

previous state-of-the-art yielding an AUC of 83.49%, while

our proposed Anatomy-XNet exceeds all the compared models

and achieves a new state-of-the-art performance of 85.05%

AUC. With a higher input image dimension of 512×512, our

proposed framework boosts performance to an AUC score

of 85.78%. Specifically, our classification results outperform

others in 12 out of 14 categories.

2) Performance on CheXpert-dataset: The results on

CheXpert are compared in Table III. In this paper, we focus on

comparing the results achieved by a single model architecture.

We quote the single model performance for Pham et al. [34],

and Allaouzi et al. [32] from their implementations. We report

the ensemble result of Irvin et al. [16] as single checkpoint

performance is not given in their paper. To compare with

approaches that have utilized segmentation masks, we have

implemented the methods of Arias-Garzón et al. [15], Keidar

et al. [13], and MANet [12]. The results from Table III show

that our model achieves an AUC of 91.50% and 92.07% with

input image dimensions of 224×224 and 512×512, respec-

tively, surpassing the previous state-of-the-art results.

©2022 IEEE. This article has been accepted for publication in IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS. See
http://www.ieee.org/publications standards/publications/rights/index.html for copyright information.

3) Performance on MIMIC-CXR-dataset: We compare our

proposed Anatomy-XNet with previously published state-of-

the-art methods including: Densenet-KG [30], VSE-GCN [29],

CheXclusion [31], the methods of Keidar et al. [13], MANet

[12], and Arias-Garzón et al. [15]. We adopt the same data split

procedure outlined in [31]. The results of Densenet-KG [30],

VSE-GCN [29] have been quoted from the implementation

of VSE-GCN [29]. We report the result of CheXclusion [31]

from their implementation. We have implemented the methods

of Arias-Garzón et al. [15], Keidar et al. [13], and MANet

[12]. The results are shown in Table IV. Our proposed model

with both input image dimensions of 224×224 and 512×512

has achieved higher performance than the compared models.

http://www.ieee.org/publications_standards/publications/rights/index.html
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Fig. 5: Investigation of the performance of the segmentation-

mask-based classification methods, with masks generated with

the semi-supervised segmentation setting compared to masks

generated without the semi-supervised segmentation setting.

B. Impact of Semi-supervised Segmentation

The selected models for NIH, CheXpert, and MIMIC-CXR

datasets achieve validation dice scores of 0.7437, 0.7395,

and 0.7417, respectively. These models are used to generate

anatomy masks for their corresponding datasets. The visualiza-

tions of predicted segmentation results on the NIH test dataset

are given in the second row of Fig. 4. To verify the impact

of the quality of the semi-supervised segmentation masks

on the classification performance, we train the segmentation

network, only on the labeled dataset (JSRT), without the

semi-supervised setting. Next, we train the segmentation-based

methods [12], [13], [15], including Anatomy-XNet, on the

NIH dataset with masks generated from this segmentation net-

work (without the semi-supervised setting), and measure their

performance on the NIH test dataset. The results are reported

in Fig. 5, where we observe that the classification performance

of all the methods improves by utilizing masks generated from

the semi-supervised setting. In addition, we also observe that

the drop in performances of other methods [12], [13], [15]

is larger compared to Anatomy-XNet due to their lack of

robustness to counter imperfection in segmentation masks.

C. Qualitative Visualization and Analysis

We generate attention heatmaps using Gradient-weighted

Class Activation Mappings (Grad-CAMs) [39] to visualize

the most indicative pathology areas on CXRs from the

NIH test dataset to interpret the representational power of

Anatomy-XNet. These attention heatmaps, along with the

CXRs, anatomy masks predicted from the semi-supervised

segmentation network, and classification results, are shown

in Fig. 4. A visual evaluation of the Grad-CAMs confirms

the module’s anatomy awareness. Thus, similar to the pro-

cess followed by a radiologist, the A3 module integrates the

anatomy information responsible for a particular pathology

within the model. In cases of imperfect mask segmentation

(due to semi-supervised training setting), our proposed method

still manages to capture the pathology relevant areas and

give attention to them. Column (e) of Fig. 4 demonstrates

TABLE V: INVESTIGATION OF THE CLASSIFICATION PER-

FORMANCE IN THE NIH, MIMIC-CXR, AND CHEXPERT

DATASETS WITH DIFFERENT SETTINGS. THE BEST RESULT

IS SHOWN IN RED.

Part 1: Investigation of the effectiveness of A3 modules.

Dataset Baseline A3-L1 A3-L2 A3-L3

NIH 82.44 84.67 85.05 84.72
MIMIC-CXR 82.76 83.72 83.90 83.67

CheXpert 89.22 90.93 91.50 91.07

Part 2: Investigation of the effectiveness of PWAP modules.

Dataset PWAP Gem Average Max

NIH 85.05 84.85 84.45 84.30
MIMIC-CXR 83.90 83.68 83.46 83.32

CheXpert 91.50 91.18 91.03 90.42

Part 3: Investigation of different anatomy mask sizes.

Dataset 28×28 42×42 56×56 -

NIH 84.86 84.90 85.05 -
MIMIC-CXR 83.38 83.71 83.90 -

CheXpert 91.21 91.21 91.50 -

Part 4: Investigation of different input image sizes.

Dataset 224×224 384×384 512×512 -

NIH 85.05 85.44 85.78 -
MIMIC-CXR 83.90 83.97 84.04 -

CheXpert 91.50 91.70 92.07 -

an example where the lung mask fails to contain the mass

area. Nevertheless, our model localizes its attention in that

area, demonstrating the efficacy of the proposed architecture’s

resilience towards imperfect segmentation.

©2022 IEEE. This article has been accepted for publication in IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS. See
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D. Effectiveness of A3 Modules

For evaluating the impact of A3 modules on classification

performance, we cascade multiple A3 modules with different

dense blocks (DB). First, we use an A3 module with DB-

4. We denote this experiment by anatomy aware attention

level-1 (A3-L1). Afterward, we use A3 modules with DB-

3,4 and indicate this by anatomy aware attention level-2

(A3-L2). Finally, we apply the A3 modules with DB-2,3,4

and refer to it as anatomy aware attention level-3 (A3-L3).

The experimental results are provided in part-1 of Table V.

Our experiments find that classification performance improves

from the baseline when we cascade a A3 module with a

DB. The baseline denotes the backbone model, DenseNet-

121, without any integrated A3 modules. The results show that

performance improves when going from A3-L1 to A3-L2 but

decreases if A3-L3 is used. Because low-level spatial features

from DB-2 might have outlier information which deteriorates

the performance by causing the model to give attention to

noisy information. Again, applying A3 only on the highest

level of features, in our case DB-4, does not guarantee the

best performance. Because due to subsequent pooling in these

DBs, some salient information presented in the previous DBs,

may be lost in the later stages.

E. Effectiveness of PWAP Modules

To demonstrate the effectiveness of PWAP modules, we

replace all the PWAP layers in Anatomy-XNet with average

pooling, max pooling, and generalized mean pooling [40]

layers, respectively, and run the experiment while keeping all

http://www.ieee.org/publications_standards/publications/rights/index.html
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Fig. 6: Visualization of the impact of the PWAP module. The

first, second, and third row depict the Grad-CAMs of the input

feature spaces (Finp), probability attention maps (P), and

recalibrated feature spaces (X) of the PWAP module, which is

inside the A3 module connected with the fourth dense block.

the other hyperparameters the same. The results across all the

datasets, shown in part-2 of Table V, depict the effectiveness

of the proposed module. In Fig. 6, the Grad-CAMs of the

input feature spaces (Finp), probability attention maps (P),

and recalibrated feature spaces (X) of the PWAP module,

that is inside the A3 module connected with the fourth dense

block, are shown. The heatmaps are resized to the dimensions

of the CXR images and overlaid on the CXR images. A

visual examination of the probability attention maps and

the recalibrated feature space shows that the PWAP module

modulates the feature space to focus more prominently on the

lesion areas by removing unwanted attention.

F. Effect of Different Anatomy Mask Dimensions

To demonstrate the effect of the dimension of anatomy

masks, we vary the intermediate dimensions of the anatomy

masks, chosen from the set {28×28, 42×42, 56×56}, and eval-

uate the performances of Anatomy-XNet. Part-3 of Table V

presents performance numbers across all datasets. Here, we

observe that the performance of Anatomy-XNet improves as

we increase the dimension of the anatomy masks.

G. Effect of Different Input Image Sizes

We perform experiments to investigate the effect of varying

input image dimensions on classification performance. We

resize the CXR images into three different sizes: 256×256,

438×438, and 586×586 and crop patches of 224×224 for

256×256, 384×384 for 438×438, and 512×512 for 586×586

to use as input images. The classification performances on all

three datasets for different input sizes are given in the part-4

of Table V. The classification results show that enlarging the

input image size increases the average AUC.

©2022 IEEE. This article has been accepted for publication in IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS. See
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H. Investigation of the Impact of Imperfect Segmentation

To simulate the resilience of the proposed Anatomy-XNet

towards imperfect segmentation masks, we randomly apply

cutout operations [41] on the predicted anatomy segmentation

Fig. 7: (a) Visualization of cutout window of two different

sizes. (b) Simulation of classification performance drop against

increasing imperfection in segmentation masks.

regions with different window sizes and measure the AUC

score. The NIH, CheXpert, and MIMIC-CXR datasets do not

contain pixel-level ground truth annotations. Due to the lack

of pixel-level ground truth annotations and the sheer size of

the datasets, it is very challenging to ensure that the cutout

window will always be on the lesion area. Instead, we make

sure that the regions on which the cutout windows are applied

always overlap with the predicted anatomy masks. We perform

the cutout operation three times for each window size, measure

AUC each time, and take the average as the final AUC score

for that particular cutout window. Next, we apply the exact

same cutout operations at exactly the same locations of the

anatomy masks and use them to evaluate the AUC of segmen-

tation mask-based approaches [12], [13], [15] and compare

their drop in classification performance with our method. The

AUC scores against different cutout window sizes are shown

in Fig. 7. The proposed Anatomy-XNet shows only around

0.2% performance degradation against cutout operations and

maintains stable performance against increasing window sizes.

On the other hand, the methods of [12], [13], [15] show a

larger degradation in classification performance, around 2.41-

3.13%, against increasing cutout window size.

VI. CONCLUSION

In this paper, we propose Anatomy-XNet, an anatomy-

aware convolutional neural network for thoracic disease clas-

sification. Departing from the previous works that rely on

the chest X-ray image only or attention mechanisms guided

by the model prediction, the proposed network is guided

by prior anatomy segmentation information to act similar

to a radiologist by focusing on relevant anatomical regions

associated with the thoracic disease. Extensive experiments

demonstrate that combining our novel A3 and PWAP modules

within a backbone Densenet-121 model in a unified framework

yields state-of-the-art performance on the NIH chest X-ray,

Stanford CheXpert, and MIMIC-CXR datasets. The Anatomy-

XNet achieves an average AUC score of 85.78% on the

official NIH test set, 92.07% on the official validation split of

the Stanford CheXpert dataset, and 84.04% on the MIMIC-
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CXR dataset, surpassing the former best-performing methods

published on these datasets.

©2022 IEEE. This article has been accepted for publication in IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS. See
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