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Abstract—Recent years have seen growing interest in
leveraging deep learning models for monitoring epilepsy
patients based on electroencephalographic (EEG) signals.
However, these approaches often exhibit poor generaliza-
tion when applied outside of the setting in which train-
ing data was collected. Furthermore, manual labeling of
EEG signals is a time-consuming process requiring expert
analysis, making fine-tuning patient-specific models to new
settings a costly proposition. In this work, we propose
the Maximum-Mean-Discrepancy Decoder (M2D2) for au-
tomatic temporal localization and labeling of seizures in
long EEG recordings to assist medical experts. We show
that M2D2 achieves 76.0% and 70.4% of F1-score for tem-
poral localization when evaluated on EEG data gathered
in a different clinical setting than the training data. The
results demonstrate that M2D2 yields substantially higher
generalization performance than other state-of-the-art deep
learning-based approaches.

Index Terms—Maximum Mean Discrepancy, Temporal
Localization, Epileptic Seizure, Non-invasive EEG

[. INTRODUCTION

PILEPSY is a chronic neurological disorder characterized

by persistent seizures and affects over 70 million people
worldwide [1]. The root causes of epilepsy and broadly effec-
tive treatments remain the subject of ongoing investigations.
Gathering data on the frequency and duration of seizures is an
important component of this research and informs both clinical
diagnosis on an individual level and a broader understanding
of the condition as a whole. In particular, epileptic seizures
are known to be associated with particular patterns in an

Alireza Amirshahi and David Atienza are with the Embedded Systems
Laboratory (ESL), Institute of Electrical and Micro Engineering, Ecole
Polytechnique Fédérale de Lausanne (EPFL), Switzerland, (email:
{alireza.amirshahi, david.atienza}@epfl.ch). Anthony Thomas and Ta-
jana Rosing are with the Department of Computer Science and Engi-
neering, University of California, San Diego (UCSD), (email: {ahthomas,
tajana}@eng.ucsd.edu). Amir Aminifar is with the Department of Elec-
trical and Information Technology at Lund University, Sweden, (email:
amir.aminifar@eit.lth.se)

This work has been partially supported by the ML-Edge Swiss
National Science Foundation (NSF) Research project (GA No.
200020182009/1), the PEDESITE Swiss NSF Sinergia project (GA No.
SCRSII5 193813/1), the RESoRT Fondation Botnar project (REG-19-
019), the WASP Program of the Knut and Alice Wallenberg Foundation,
by CRISP, one of six centers in JUMP, an SRC program sponsored
by DARPA, and by NSF grants 2003279, 1911095, 1826967, 2100237,
2112167 and GRC TASK 3021.001, GRC TASK 2942.001.

© 2022 IEEE. Personal use is permitted, but re

blication/redistribution requires IEEE permission. See https://www.ieee.or:

electroencephalogram (EEG). Neurologists can inspect EEG
recordings to determine the timing and frequency of seizures
to develop a detailed understanding of this condition, in
line with the recent trends in precision medicine. However,
this process is time-consuming for medical professionals and
requires hospital stays by patients.

In recent years, deep learning (DL) models have emerged
as a state-of-the-art technique thanks to their ability to auto-
matically learn useful features for discriminating seizures from
regular brain activity. These models are typically trained on a
large database of EEG signals collected from epileptic patients
in a clinical setting, and hand-labeled by experts. One typically
wishes that such models are useful beyond the immediate
setting in which they were trained. That is, a model trained on
one set of patients should continue to deliver high accuracy
when applied to data gathered from a different set of patients
in a different setting.

The most basic approach to satisfy this goal is to use
deep learning methods in which one simply applies a pre-
trained model to a new patient [2], [3]. However, the precise
manifestation of seizures in EEG signals varies on a person-to-
person basis, and existing deep learning approaches generally
need to fine-tune models to target a new set of patients [4]-
[7]. Because these approaches assume access to at least some
labelled EEG data for each new patient, they can typically
achieve high-accuracy. However, this necessitates acquiring
new labeled data for every new patient, which, in turn, requires
a costly process of collecting and manually annotating a large
volume of EEG data.

Our goal in this work is to reduce the burden of this
process. We propose a new deep learning-based technique for
approximate temporal localization of seizures in long EEG
recordings. Our approach takes as input a long EEG signal,
and returns a time stamp ¢ such that a seizure occurred within
t+ A minutes. Thus, the expert only needs to search an interval
of 2A minutes, instead of the entire signal. The parameter
A controls the tradeoff between the volume of data to be
annotated, and the fraction of seizures which are identified.
Our primary contribution is to show that our approach is able
to localize seizures more precisely than existing work when
evaluated on a completely new data set.

Our approach is called the “Maximum-Mean-Discrepancy
Decoder” (M2D2). At a high level, one may think of a deep
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learning model as consisting of an encoder, which yields a
derived representation of an input signal, and a decoder, which
infers a class label from the derived representation. Intuitively,
the representations derived by the encoder should have high
intra-class similarity but low inter-class similarity. That is, the
regions of the signal corresponding to seizures should all map
to “similar” representations, and moreover, these representa-
tions should be “different” from those of non-seizure regions.
We observe that this intuition is made precise by the notion
of “maximum-mean-discrepancy” (MMD) from statistics. The
MMD defines a general notion of similarity between samples
from two probability distributions and, intuitively, works by
measuring the similarity of points within and between each
sample - just as we seek to do here.

Building on this observation, we train the decoder portion
of our network to localize seizures based only on the empirical
MMD between a candidate seizure region and the rest of the
signal. We hypothesize that, by only giving the decoder access
to the MMD, the encoder will produce representations that
tend to have high intra-class and low inter-class similarity, and
that, as a consequence, will exhibit better generalization than
conventional architectures in which the decoder can directly
access much more information about the input signals. To the
best of our knowledge, we are the first to consider the use
of MMD as a layer within a supervised deep neural network.
We show that M2D2 leads to improved generalization per-
formance, compared to the state-of-the-art techniques, when
evaluating our model on a dataset collected in an entirely
different clinical setting.

Furthermore, seizures vary widely in length from only a few
seconds to over several minutes [8]. Prior work has fixed the
length of the candidate seizure region at the average length of
a seizure [9]; however, this may miss short or long seizures.
In the proposed work, thanks to the M2D2 architecture, we
are able to use a range of possible values for the candidate
region length to address this issue.

The contributions of our work are summarized as follows:

o To the best of our knowledge, we are the first to evaluate

the temporal seizure localization on a dataset different
from the training dataset. This setting is more reflective
of the real-world scenario where the models are applied
beyond the immediate clinical setting in which they are
trained.

o We use MMD computation as a layer implemented within

a deep neural network. This layer enables the model to
learn features based on not only the current input but also
the distribution of the adjacent windows and the entire
signal.

« In this work, the candidate seizure region is not fixed at

a single length. Instead, a range of possible sizes for the
candidate region of seizure is considered, and the network
is trained to choose the best length.

The rest of this article is organized as follows. In Section II,
we review the background in EEG signal analysis, MMD and
Variational Information Bottleneck. Furthermore, the related
works in seizure temporal localization are investigated. In
Section III, we describe our proposed model, the M2D2 frame-
work and the details of the architecture. Also, the training and
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back-propagation process of M2D?2 is studied. In Section IV,
the experimental setup is discussed, and then, in Section V
the results are shown. Next, in Section VI, we discussed the
results in different points of view. Finally, in Section VIII, we
summarize the main conclusions of this work.

[I. BACKGROUND AND RELATED WORK

In the following section, we provide the necessary technical
background on EEG analysis and the statistical techniques
used in M2D2.

A. EEG Analysis

We here provide a brief overview of electroencephalography
as it pertains to our work [10]. EEG analysis records a
time-series of electrical impulses generated by the brain.
The particular spatiotemporal patterns of these impulses are
generally held to be related to brain activity at a particular
moment in time. For instance, specific waveforms in the EEG
can be associated with everyday activities like blinking or
chewing. Similarly, certain atypical neurological conditions,
e.g., the seizures associated with epilepsy, manifest in EEG
recordings making their analysis an important diagnostic tool.
The waveforms in an EEG are generated by measuring the
voltage difference between pairs of electrodes distributed over
the scalp. The readings produced by each such pair are called
a channel. Thus, an EEG contains a spatial and temporal
component, both of which are typically relevant for analysis.

EEG recordings typically contain a multitude of artifacts
which present a significant complication for analysis. Arti-
facts may arise from natural causes—common examples being
muscular activities like chewing or blinking and changes in
conductance from sweat—or non-natural causes—a common
example being jostled or disconnected electrodes. Artifact
removal is an essential component of EEG analysis and
is typically performed as a pre-processing step [11], [12].
Furthermore, while seizures (or ictal EEG) have some common
trends, their precise manifestation is different across patients
[13], making reliable decision-making in the presence of such
artifacts and heterogeneity challenges.

B. Maximum-Mean-Discrepancy

The maximum mean discrepancy is a metric on the space
of probability distributions [14]. Intuitively, the MMD works
by representing a pair of distribution as points in a high-
dimensional feature space and then measuring the distance be
the two representative points. More formally, let & : X x X' —
R be a real, continuous, positive-definite kernel function with
an associated reproducing kernel Hilbert space (RKHS) H. Let
p be a probability measure supported on X. For our purposes,
we may assume X is a Euclidean space. The kernel mean
embedding (KME) of p is defined as p, = [, k(-,z) dp(x)
[15]. Given a pair of measures p and g supported on X, the
MMD is simply the distance between their respective KMEs:

MMD?(p, q) = ||p — pqll3;-
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Given samples P = {z1,...,xz,} and @ = {y1, ..., Y } drawn
i.i.d. from p and ¢ respectively, the MMD can be estimated
empirically as [14]:

) 1 1
MMD (p,q) = 2 Z k(z,2') + 2

z,x' €P
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Intuitively, when the sampled points have a high intra-
distribution similarity (measured by the first two terms) and a
low inter-distribution similarity (measured by the third term),
the MMD will be large. Throughout the remainder of the work,
we will work with the squared-MMD, which suffices for our
purposes.

C. Variational Information Bottleneck

In principle, the MMD can be applied directly to the raw
signal values. However, in practice, performance is often
improved by obtaining a lower-dimensional representation of
the signal that compresses away uninformative short-term
fluctuations. To do so, we here leverage a technique from
Information Theory known as “Information Bottleneck” (IB).
Given a pair of correlated random variables X and Y, the IB
problem is to obtain a compressed representation Z of X that
contains the minimal amount of information needed to predict
Y [16]. Assuming X and Y are described by a distribution
p(X,Y), the IB problem can be formalized as solving:

p*(Z|X) = argmax [(Z;Y) s.t. I(Z; X) <,
p(Z]X)

where I(A; B) is the mutual information between a pair of
random variables A and B. Sampling from p*(Z|X) can be
seen as an encoding process which takes an input x € X and
maps it to a codeword z € Z. The objective I(Z;Y") ensures
the codewords are informative about the outcome of interest
Y, and the constraint I(Z; X') < ~ restricts the information the
codewords convey about the original signal. Given the encoder
p(Z|X), a corresponding “decoder” distribution p(Y'|Z), can
be computed analytically.

In practice, one typically has access to a set of samples
{(zi,y:)}P-; drawn iid. from p(X,Y) which is unknown.
The problem is intractable in this case, and so a common
approach is to instead assume a parametric form for the
encoder ¢,(Z|X), and decoder gg(Y'|Z), and to then minimize
a “variational” upper bound [17], [18]:

1 n
Lip(8,0) = - > E.[-logas(y; | )]
=1

+ BDkr(q4(Zz;) [| p(Z)),

where Dy (A|| B) is the KL-divergence between A and B.
In practice, the encoder and decoder distributions are typi-
cally parameterized using neural networks [18]-[20]. From a
practical perspective, the VIB is useful, because the learned
representations enjoy robustness to certain types of signal
artifacts [17], [20] which may improve the resilience of seizure
detection algorithms [21].
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D. Related Work

Algorithmic approaches for detecting and localizing
seizures in EEG recordings have been extensively studied in
the literature. Earlier work focused on methods for extracting
hand-crafted features from EEG signals which are then used
as input to learning algorithms like logistic regression models
and support-vector-machines [13], [22]-[26].

More recently, there has been an increasing trend toward
deep learning-based methods which obviate the need for
feature extraction and typically lead to higher accuracy using
convolutional neural networks (CNN), and EEG signals [27]-
[29]. In [30] Long Short-Term Memory (LSTM) modules are
used with the CNN to improve the seizure detection accuracy.
In [31] a self-learning method is used to pre-train a Graph
Neural Network (GNN) for the seizure detection and seizure
type classification task. It is shown that by using the pre-
training, the seizure detection performance can increase F1-
score by 4.3%. In [32], we use the knowledge distillation
technique to detect seizures using only ECG signals, while
the teacher model uses multi-modal ECG and EEG signals.
Using high-accurate individual ECG signal alleviate the signal
acquisition in real-life scenarios. Of particular note here is our
prior work in [21] used CNN with the VIB to detect seizures
from EEG recordings. However, they use a simple decoder
architecture that does not incorporate the MMD as we do here.

There has also been prior interest in using MMD or similar
techniques to localize seizures. The work in [9] uses a similar
approach that imputes the location of a seizure by finding
a window of samples that maximizes the sum-of-squared
Euclidean distances between samples in the window and the
remainder of the signal. This is similar to computing the MMD
with a linear kernel, and is subsumed by the more general
kernel based MMD. Our approach is loosely motivated by the
work in [33], [34]. This work assumes that a seizure represents
a change in the behavior of an unknown underlying (time-
dependent) density describing an EEG signal, and uses the
MMD to obtain the “change point” that partitions the signal
into two maximally different distributions. Unlike our ap-
proach, this work is entirely unsupervised and considers only
simple, hand-crafted features of the signal when computing the
MMD. Moreover, these works do not present any systematic
evaluation of their methods on a broad sample of EEG data.
An important contribution of our work is to undertake the first
extensive empirical evaluation of MMD in seizure temporal
localization problems.

I[1l. METHODOLOGY
A. Problem Formulation

Let {x1,...,x7} : x; € X C R™ be the raw samples from a
n-channel EEG recording, where ¢ € [T] indexes time. In our
setting, the total length of the recordings is around one hour
and the z; are sampled at a rate of 256Hz, although neither of
these parameters are of particular importance. We partition
the recording into a set of non-overlapping windows each
consisting of r samples, which we denote by {w1,...,wr} :
w; € X" We take r = 1024 corresponding to a length of 4
seconds. Let [w;, w;], where j > ¢, be the interval of windows
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corresponding to a seizure event. Our goal is to identify any
i* € [i, 7]

B. M2D2 Framework

The inputs to our model are the w; formed by grouping
together a set of r contiguous readings of the raw signal. These
inputs are then encoded to a lower-dimensional representation
z € RY(d < nr) using the VIB method described above.
We define ¢4 to be a multivariate Gaussian whose mean and
covariance matrix are parameterized using one-dimensional
convolutional neural networks. That is, g4(Z|X x)
N (u(z),X(x)), where p(z) and X(z) are computed using a
1D CNN. The output of our model is a scalar value ¢ € [0, 1]
which is the probability that a particular w contains a seizure.
The entire architecture is trained end to end to minimize
the binary cross-entropy between the fitted values ¢ and the
ground truth.

Our primary novelty comes in our definition of the decoder.
Let Z = {z,...,21} be the compressed representations for
each of the input windows in our training data. Our approach
groups together a set of m adjacent z; into a candidate ictal
(seizure) region, which we denote P. We then compute the
empirical maximum mean discrepancy between P and the
remainder of the signal Q. The resulting vector of distances
is used as a set of input features for the decoder. More

formally, let define &; = mZ(P,Q). The decoder can
then be described as a function fy(d1,ds,...,dy) that returns
a value § € [0,1] corresponding to the probability that w;
contains a seizure. Thus, the decoder has access only to the
MMD between each candidate region and the remainder of the
signal. Intuitively, the MMD output quantifies how different
the distribution of the samples in P is from the distribution
of the remaining samples. We describe the architecture of our
decoder in more detail in the following section.

C. M2D2 Architecture

The architecture of M2D2 is summarized in Figure 1. As
described above, we first encode w; to a codeword z; which
is generated by sampling from ¢4(Z|x). A complication arises
because computing d; requires knowledge of all the z;—some
of which occur in the future. To address this issue, we compute
0 using z; in two passes. In the first “forward” pass, we have
access to all zy for ' < t. In the second “backward” pass,
we have the analogous quantities for ¢ > ¢. Any particular
d; can then be easily obtained in a streaming fashion by
computing kernel evaluations between the z; and summing
up these values. Thereby we avoid the need to store all the
individual kernel evaluations.

Figure 1 presents the MMD cell. As an input, the cell takes
z; in each time step. The cell has also an state to remember
z values over time. The memory unit is updated in every
time step by inserting a copy of z; inside state to prepare
zpr<t (2pr>¢ during the backward pass) for the next time step.
Given these stored z; values, the MMD cell can compute any
particular ;.

As mentioned in Section I, seizures vary in length from only
a few seconds to over several minutes, meaning that there is
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not a single value of m (number of adjacent windows in the
candidate region) that is generally appropriate. In the M2D2
architecture, we are able to use a range of possible values
for m to address this issue. Technically, the MMD block
computes ¢;" for various lengths m and allows the decoder
to determine the best combination of these values. This non-
linear combination depends on not only the current z; but
also all the adjacent z¢/. Therefore, we use a GRU module
in the decoder to find the combination of ¢;" based on the
output of the MMD block in all time steps ¢’. We use a GRU
in preference to a simple RNN to avoid the vanishing and
exploding gradient problem [35]. We use a bi-directional GRU
because we need information from both ¢ > ¢ and ¢’ < ¢.
The output of the GRU layer goes to a simple fully-connected
(FC) layer, followed by a linear layer with a sigmoid activation
(logistic regression) to predict the output. We show the results
of an ablation study in Section VI-A to study the effect of
every component of M2D2 on the model’s performance.

D. Training

The proposed M2D2 framework can be trained end-to-
end via back-propagation using standard methods based on
stochastic gradient descent. To show how gradients are com-
puted for the MMD layer, let 6 be the parameters of the last
layer in the encoder. Then, the gradient of §; with respect to
6 is given by:

8525 86,5 8zt

ot _ Ut Tt 2

00 0z 00’ @
96, _ 2 R Ly
87215 = ﬁ i;l k (ZZ,Zt) + Wk‘ (Ztazt)

9 t+m—1 L (3)
= (D K(mm) + ) K (e2g))
i=t4+1 Jj=1

where k' is the derivative of the kernel function. A detailed
derivation can be found in the appendix.

As Equation (3) shows, the gradient is obtained without
multiplication through the time steps, which addresses the
problem of vanishing and exploding gradients. A minor issue
is that the gradient involves a sum over a large number of terms
in every time step. This may cause the gradient to become
large in absolute magnitude, which leads to large fluctuations
in the weights. To address this problem, we add a penalty,
defined as A(||z||]2 — 1) for A > 0 a tunable parameter, that
helps to control the magnitude of k.

IV. EXPERIMENTS
A. Datasets

In this work, we consider the setup of real-world and stigma-
free wearable monitoring devices [36]. In such settings, in
order to make monitoring devices energy efficient and visually
unobtrusive, one typically only has access to a reduced set
of electrodes. Thus, to be reflective of practically relevant
settings, in the datasets, we consider only the electrodes F7T3
and F8T4 in the standard 10-20 system, [37], which can be
easily hidden in glasses [13]. The datasets used in this work
are as follows:
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Fig. 1: Unrolled representation of the M2D2 architecture. The structure has a CNN as an encoder to extract codewords from the input
signal. The decoder consists of the MMD layer, GRU, and a fully connected layer to produce the output for every signal window.

1) Epilepsiae [38]: This dataset is one of the largest public
databases in the world for seizure disorder [39], [40]. It con-
tains totally 4747 EEG recordings from 30 different epilepsy
patients. From these recordings, 262 recordings contains at
least one epileptic seizure. The data is collected from child
and adolescent patients in hospitals across multiple countries.
The EEG data is divided into recording sessions of up to one
hour. The number of total recordings varies for each patient
between 96 and 281 sessions. The total length of seizures
in this database is 348 minutes. The average length of each
epileptic seizure is 76.5 & 76.8 seconds.

2) CHB-MIT [41]: This dataset consists of EEG recording
for originally-labeled 23 patients sampled at a frequency of
256 Hz. The data is collected from pediatric patients at the
Children’s Hospital of Boston (CHB) in the United States. The
recording length varies in different patients from one hour up
to four hours. In total, the dataset contains 664 EEG recordings
from which 129 recordings contain epileptic seizures with a
total of 182 seizures. Totally the dataset has 182.2 minutes of
seizure time out of 961 hours of signal. The length of seizure
attacks is 60.1 & 67.1 seconds, by average.

B. Baseline Methods

We compare our method against the following baselines,
which are modeled after methods previously proposed in the
literature.

1) Baseline VIB (B-VIB) [21]: Our work in [21] uses the
variational information bottleneck approach described in the
Background section. We consider the architecture proposed in
this work. The decoder is a standard fully-connected network
which consists of a single hidden layer followed by a linear
layer which outputs the probability that a given window—w,;—
contains a seizure. The imputed location of the seizure is taken
to be the window that maximizes this probability (e.g., has the
highest ).
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2) Baseline MMD (B-MMD): In this baseline, first, we train
a Variational Autoencoder (VAE) [42] whose encoder is iden-
tical to the B-VIB approach described above. Using the pre-
trained encoder in this VAE, we extract the codewords (z;).
After extracting the codewords for all w; in the session, we
apply MMD computation as described in equation (1). For
all ¢ in the signal, we compute a score J;, which is the
MMD between a candidate seizure region and the remainder
of the signal. Similar to our proposed method, this baseline
uses MMD to find the seizure temporal location. However,
instead of using the codeword vector as input to a decoder,
B-MMD imputes the location of the seizure as the window
that maximizes d;. Since MMD is computed separately from
the CNN encoder, the output cannot back-propagate to the
encoder to fine-tune the weights and parameters. Therefore, we
categorize this baseline as unsupervised learning with MMD.
This baseline is analogous to [34] except for the embedding
part, which in B-MMD, a deep learning method is used,
whereas [34] uses a pre-determined set of features.

3) Fully Convolutional Network (B-FCN) [40]: This approach
reshapes the signal into a 3D array, which can be loosely
interpreted as an “image,” and uses a convolutional neural
network to perform classification. This work applies 23-
channel EEG signals to the network. Therefore, to have a fair
comparison, we apply the same method to the two-channel
datasets used here and retrain the network accordingly. For
each window, the network returns a predicted probability that
the window contains a seizure. We localize the seizure as the
window maximizing this value.

4) Medically-Relevant Features (B-FET) [13]: This baseline
manually extracts medically-relevant time and frequency do-
main features from the EEG data, and trains a Random Forest
classifier on the feature space. The features consist of various
entropy measures and the spectral power of the EEG signal
in specific frequency bands. The entropy measures in this
baseline include suggested features in [43], [44], such as
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sample entropy, permutation entropy, and Renyi entropy. Also,
the feature vector has Shannon entropy and Tsallis entropy.
Furthermore, the absolute and relative band powers calculated
as features in B-FET are 6, 6, «, 3, and ~. These features are
commonly considered relevant by clinicians in the context of
epilepsy [45]. The predicted seizure location is the window
with the highest score returned by the random forest.

C. Evaluation Method

In this work, our goal is to find the location of a seizure
within a long EEG recording. We define the evaluation error
as the distance between the detected seizure location to the
nearest w;, which is a seizure signal in the ground truth. Thus,
if the detected point is inside the interval of seizures, the error
will be zero. We only consider sessions containing at least one
seizure. In a real-world case, we assume that the patient is able
to indicate that they experienced a seizure within one hour
(e.g., via interaction with a monitoring device). In general,
being able to localize seizures in long time periods is useful
since after a seizure attack, patients may be disoriented or
unconscious.

Following standard practice, we partition our data into train,
validation, and test sets. The training set is used to fit model
parameters, the validation set is used for hyperparameter tun-
ing and model selection, and the test set is used to obtain a final
estimate of the out-of-sample error for the model minimizing
the validation error. Our hyperparameter tuning methodology
is described in the Appendix. We use the following methods
for partitioning the data:

1) Leave-One-Out Cross Validation (LOOCV): : We here
partition the data into train, test, and validation sets using the
principle of “leave-one-out” cross-validation. In LOOCYV, one
cycles through each patient in the dataset, holding out their
data as a test set. The remaining patients are used for training
and validation.

2) New Unseen Test set: : To evaluate the performance of
our method on a completely different dataset from which it
was trained, we perform another set of experiments in which
we train and validate on one dataset, but test on the other
(e.g., train on CHB-MIT, test on Epilepsiae). This setting is
potentially more challenging since the test set is derived from
a different clinical setting. However, it is more reflective of
the actual performance our model would achieve if it were
applied beyond the immediate clinical setting in which it was
trained. To the best of our knowledge, we are the first work
to perform this type of evaluation in the context of evaluating
seizure detection procedures.

D. Implementation Details

We here describe key details of M2D2 implementation. A
more detailed description can be found in the Appendix.

1) Hyper-parameters Tuning: In the LOOCYV evaluation, for
every patient, we train a separate model. The EEG recordings
associated with the held out patient form the test set while
the other 22 patients are in the training and validation set.
In the unseen new dataset evaluation, the test set is from
the Epilepsiae (CHB-MIT) dataset; thus, we choose all the

© 2022 IEEE. Personal use is permitted, but re
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hyper-parameters, based on the validation set in the CHB-
MIT (Epilepsiae) dataset.

The latent space length d is the most important hyper-
parameter, which is chosen based on grid search. The pos-
sible values are 2, 4, 8, 16, and 32. We select the value
leading to the lowest cross-validation error. Regarding the
kernel selection, when computing the MMD, we choose k
using cross-validation between polynomial kernels: k(x, z) =
(1 4+ (x,2))", n € {1,2,3,4,5}, and radial basis func-
tions (RBF) kernels: k(z, 2) exp(—7llz — z||?), v €
{0.01,0.1,1,10,100}. However, we show in Section VI-E that
our method is generic to any particular choice of kernel. We
train the models for 100 epochs or until the validation loss
fails to decrease for ten consecutive epochs.

2) MMD Simplification: Given m samples from P (the
candidate ictal region), and n samples from Q, the exact
computation of the MMD is O((m + n)?). However, in our
case, P is very small compared to Z (the entire recording),
and so the second term in Equation 1 changes very little as
‘P is varied. Accordingly, to simplify implementation, we set
Q = Z in which case the second term of Equation 1 is a
constant. This approximate MMD reduces the computation
significantly to O(m(m + n)) (recall that m is small) and
consequently reduces training and inference time.

To understand the implications of using the simplified form
of MMD, we perform the following experiment. After training
the proposed model, we freeze the weights of the encoder.
Then, we extract the latent representation of all input signals
using the “LOOCV” method in CHB-MIT. Next, we calculate
both the exact and simplified MMD for different window
sizes, and compute the correlation between the exact and
simplified values. The average of correlation coefficient for
different window length m is obtained as 0.95 + 0.01. On
the other hand, the amount of computation saved using the
simplified MMD is between 98.1% to 99.4% for different m
values. Consequently, simplified values are tightly correlated
with the exact ones while dramatically reducing computational
overhead. In Section VI-F, we discuss, visualize, and compare
exact and simplified MMD in more detail.

3) Pre-processing and Implementation: The EEG signal is
pre-processed using a Butterworth 50Hz low-pass filter and
by standardizing each 4-second window to have zero mean
and unit-variance input signals.

We train and test our models on a platform with an 8-core
Intel i17-9700K CPU and a single NVIDIA RTX 2080 GPU
with 2944 CUDA cores.

V. RESULTS
A. Temporal Localization Error Distribution

Figure 2 summarizes the results. The boxplots show the
distribution of the errors in seizure temporal localization. The
red line indicates the median error in each box, and the upper
and lower limits of the colored box indicate the 75" and
25" percentile, respectively. The upper and lower whiskers
indicate the 95" and 5! percentiles, respectively, and the
black dots indicate outliers. To keep plots readable, we do
not show outliers with over one hour of error. We emphasize
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Fig. 2: Distribution of errors in temporal localization under different evaluations when models are trained on one dataset and
tested on the same dataset (LOOCV) or on a new unseen test set (—)

that this is just for display purposes, and reported numeric
results are inclusive of all data.

As shown in Figure 2b and 2d, we find that our approach
yields superior performance when evaluated on a different
dataset than was used for training. In other words, when
training on CHB-MIT and evaluating on Epilepsiae (shown in
Figure 2b) or vice-versa (shown in Figure 2d), our approach
is able to localize seizures with lower error than any of
the baselines. These results are consistent with our goal of
developing techniques for temporally localizing seizures that
offer better generalization in new data settings.

In Figure 2a and 2c, the same dataset is considered for
training and testing. As shown, our approach delivers compet-
itive performance in the leave-one-out evaluation. For instance,
in these figures, our proposed method has a median of zero,
meaning that the imputed temporal location of a seizure falls
within an actual seizure in over half of the cases.

By comparing the results of our proposed model with the
baselines, we see that B-MMD has a wider distribution with
a substantially higher median error. While at first glance
the B-MMD and M2D2 methods appear similar, they are
trained quite differently. In M2D2 the encoder is trained end-
to-end in a supervised fashion and, thus, can fine-tune the
extracted features for the MMD computation. By contrast,
in B-MMD, the encoder cannot be fine-tuned, and thus the
features are extracted by optimizing an unsupervised cost
function. Moreover, the B-MMD is only able to consider
a fixed length candidate region for seizures, whereas our
approach can consider multiple possible window lengths. This
underscores the value of using a neural network to learn good
signal features in our approach. On the other hand, we can
see that B-FET offers the best performance when evaluated
using leave-one-out. However, as can be seen in Figure 2d,
this model has the largest median error when evaluated on
CHB-MIT as an unseen test set. This emphasizes the need to
develop models which can maintain performance when applied
outside of the data environment from which they were trained.
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B. Quantitative Results

The proposed M2D2 model and the decoders in B-VIB, B-
FCN, and B-FET return a value §; € [0,1] for every input
w; corresponding to the probability that w; is a seizure. We
define a threshold 7 with the condition that if 3; < 7, then the
signal in ¢ is detected as a non-seizure. Also, if §; >= 7, a
seizure point is detected by the model. This definition is used
in the temporal localization task, and new metrics are defined
inspired by [46]. For a one-hour EEG recording that contains
seizures, if all the outputs y; for the whole signal are less than
T, then we categorize the signal as a False Negative (FN). True
Positive (TP) is defined as the points ¢* where y;+ > 7 and
1* is in the ground truth. Likewise, False Positive (FP) points
are the points ¢* where y;~ > 7 but they are not in the ground
truth.

The metrics precision, recall, and Fl-score are defined as
follows for all the models. The threshold 7 is chosen for every
single model to optimize the Fl-score in the validation set.

Precision = i Recall = L
TP+ FP’ TP+ FN’
2 % (Recall * Precision)
Fl-score =

Recall + Precision

The results are represented in Table I. As seen in this table,
in the new unseen test set evaluation, the proposed model
has an F1-score significantly better than the baseline methods.
To understand the reason for this gap between the proposed
results with the baseline methods, one can note that M2D2 is
trained to predict the seizure probability of each point using
the comparison between two distributions. On the other hand,
the baseline methods predict seizures only based on the input
window w; regardless of the rest of the signal. Therefore,
the M2D2 model has a limited number of points with high
probability in the output, while the baseline methods can have
high probable seizure points as many as all the inputs. As
a consequence, the FP points increase in the baselines, and
the precision metric decrease. Note that the baseline models
still provide the maximum probability for a point close to
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This article has been accepted for publication in IEEE Journal of Biomedical and Health Informatics. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2022.3208780

SUBMITTED TO IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS

Method Recall(%)  Precision (%) Fl-score (%)

CHB-MIT, LOOCV

Proposed 65.6 62.4 60.3
B-VIB 70.7 58.7 61.2
B-FCN 722 55.0 58.4
B-FET 79.9 65.4 66.2
CHB-MIT — Epilepsiae

Proposed 63.9 78.2 70.4
B-VIB 52.6 14.6 22.8
B-FCN 46.6 51.9 49.2
B-FET 3.0 99.9 5.8

Epilepsiae, LOOCV

Proposed 63.7 63.5 61.4
B-VIB 63.5 54.1 55.1
B-FCN 75.4 479 55
B-FET 56.3 74.8 60.1

Epilepsiae — CHB-MIT

Proposed 92.7 64.4 76.0
B-VIB 99.9 6.1 11.5
B-FCN 99.9 7.6 14.1
B-FET 99.7 8.7 16.0

TABLE I: Precision, recall, and F1-score under different evaluations.
For the LOOCYV evaluations, the results are represented as the average
of each metric for every patients.

the ground truth; thus, they perform well in the temporal
localization discussed in Section V-A. However, using the
quantitative results provided in this section, we show the better
performance of M2D2 if the model is applied beyond the
immediate clinical setting in which it was trained.

The B-MMD baseline is excluded from the experiment
because its MMD output is not a probability limited between
zero and one, and the definition of 7 is not as same as the
other baselines.

C. Temporal Localization with Acceptable Errors

In Table II, we show the number of EEG sessions in which
at least one seizure is correctly localized in time. A seizure is
correctly localized with an acceptable temporal error of A if],
the time distance between the predicted seizure point and the
nearest ground truth (GT) seizure is less than A. Therefore,
each model chooses a single point ¢*, and if there is a point g
in GT where (|i* — g| < A), it is a hit, otherwise, it is a miss.
The total number of hits are represented in the Table 1 as Top-
1 results. Similarly, for the top-3 result in this table, the model
chooses three different points I* = {47, 45,45}, and if there is
a point g in GT where for any i*, we obtain (|i* — g| < A),
it is a hit.

All the projected numbers in this table are obtained by
running every experiment three times and reporting their
median number. As can be seen, these results provide corrob-
oration that our method is able to localize seizures with higher
precision than the baselines when evaluated on the unseen test
set.

VI. DISCUSSION OF RESULTS

We here offer additional discussion of results as well as
some additional analysis of our approach that aims to provide
insight into why it exhibits better generalization than the
baselines.
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Fig. 3: Ablation study for the M2D2 decoder and comparison
with models without MMD block, GRU layer or both. As seen,
the least error is when the complete M2D?2 is used.

A. Ablation Study

The M2D2 decoder contains MMD, GRU, and fully-
connected (FC) layers. To evaluate the contribution of these
layers, we performed the ablation study and trained four dif-
ferent models with identical encoders and different decoders.
The decoders are (1) a complete M2D2 module, (2) an MMD
block followed by an FC layer, (3) a GRU followed by an
FC layer, and (4) a single FC layer. The results of the unseen
evaluation are shown in Figure 3.

We observe that removing any component of the M2D2
decoder causes an error increase. Therefore, the results under-
score that each element is necessary for the model to perform
as desired. In particular, the decoder with GRU and FC layers
is an RNN where it is impossible to define a candidate seizure
region. The GRU layer only compares the current feature
vectors with a non-linear combination of the remainder of the
signal.

B. Class Separability Measures

We hypothesize that the MMD layer in our approach may
lead to better separation between the ictal (seizure) and non-
ictal representations (z). Since the decoder only has access
to these z-space features, discriminating the two classes will
be easier if the MMD between the z-corresponding to each
class is large. We compare the separability of the z produced
by our method and the baselines using the J-score. Intuitively,
the J-score compares the distances between samples “within” a
class, and “between” samples in different classes. If the within-
class distance is small relative to the between-class distance,
then the J-score is large, indicating better separability. The J-
score is computed from the within and between-class scatter
matrices [47] as follows:

Sw =3zt - m)(zh —m*)T
+Z(ZZ*m )(z; —m™)"
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7 Sec. Top-1|79 67 71 72 39(115 41 93 85 32 |138 116 121 147 68 | 72 69 76 54 56

Top-3| 83 70 77 84 44(133 73 126 118 42 |145 142 160 170 88 | 82 82 87 74 61

18 Sec Top-1{ 83 68 71 76 46(130 54 98 93 41 |144 123 124 152 74 | 82 71 78 56 61

* Top-3|8 75 77 89 59|168 105 148 132 79 [169 167 172 185 11392 85 91 78 66

30 Sec Top-1{ 8 68 72 78 51132 60 106 98 50 (153 131 132 160 76 | 82 72 79 57 62

© Top-3192 76 79 92 68|172 115 164 146 102|184 174 183 195 137| 93 86 92 82 69

60 Scc. Top-1| 8 70 74 81 54(147 63 114 106 57 |158 131 141 168 80 | 84 75 79 59 64

Top-3| 93 78 82 95 73(179 126 178 160 138|194 178 193 202 159| 95 88 92 85 73

150 Sec Top-1{ 90 76 77 85 59155 84 132 117 77 |165 143 153 177 100 90 79 84 65 70

© Top-3|104 90 91 102 86202 165 201 178 171|204 200 211 217 188| 99 94 101 92 85

300 Sec Top-1] 93 81 84 90 64163 99 142 135 93 176 156 167 189 11795 86 91 73 75

© Top-3|107 95 104 111 97 |230 209 224 215 213|211 231 234 240 220|115 109 108 105 102

TABLE [l: Number of correctly localized seizures under different evaluations for various duration of the target window. The
numbers are out of the total number of seizure sessions in the test set, i.e., 262 sessions in Epilepsiae and 129 sessions in
CHB-MIT. The proposed method outperforms the baselines in the temporal localization for the new unseen test set evaluation.

S, =nt + _ - - _ 1
p=n"(m m) +n”(m m) Baseline L LLMM»W
where n and n~ denote the number of samples in the seizure :
and non-seizure classes, respectively. Similarly, z] and z; Proposed i
denote the i-th sample in the seizure class and the i-th sample
in the non-seizure class, respectively. m™ and m™~ denote the Fr17 bt AN st
mean vectors of the samples in seizure and non-seizure classes. FB-T8 b oo R BEE: Vs

Finally, m denotes the mean vector of all samples. The class
separability measure is defined as J = trace(S5)/irace(Sw ), Where
a small within-class scatter and large between-class scatter
cause a large separability.

Table III compares J-scores of our approach and the base-
lines for the unseen evaluation methods. As we see in the table,
the J-score for the proposed method is much larger than the
baseline methods indicating that the derived representations of
seizure and non-seizure points are better separated than in the
baseline methods. Note that the B-FET and B-FCN baselines
do not have an analogous derived representation and so are
not included here.

0:00 5:00 10:00 1500 2000  25:00

Time (minutes)

3000 3500  40:00  45:00  50:00 5500 6000

Fig. 4: Two-channel EEG signal for one hour recording and
the output of B-VIB and the proposed models

As shown in the figure, the proposed model can make the
artifact ineffective while the baseline model can predict the
artifact as a seizure window. This is because the MMD layer
compares the distribution of codewords inside and outside a
short window. The seizure lengths (1:09 for this case) are usu-
ally shorter than these artifacts (the artifact duration is 10:32).
Therefore, our proposed model can realize the similarity of

Evaluation proposed B-VIB [21] | B-MMD [34] B 3 " > .
CHB-MIT 029401 | 0084003 | 0.01-0.002 samples .from 1ns@e and ou't51de the candidate 'wmdow (with
—;E E_Ilmlel?me the nominal duration of seizures for each patient) and then
pilepsiae .
— CHB-MIT | 0-27£0.11 | 0.02+£0.02 | 0.01£0.001 detect them as non-seizure segments.

TABLE IlI: Class separability of codewords z for the proposed
method and the baselines with the same encoder structure.

C. Atrtifact Study

Figure 4 shows a one-hour session of EEG signal extracted
from the CHB-MIT dataset with two different channels, F7-
T7 and F8-T8. The annotation of this signal indicates that
the seizure occurs from time 7°:12 until 8:21%. This seizure
time is shown in Figure 4 with a red rectangle span on the
background. Other parts of the signal are normal EEG, but as
we can see in the figure, from 23°:18 until 33°:50%, there is
an artifact.

© 2022 IEEE. Personal use is
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D. Window Length in M2D2

As mentioned in Section III, seizures vary fairly widely in
length, and in M2D2, we use a variety of window lengths m
to cover different seizure lengths. In this section, we describe
some usual problems in EEG signals, and we show and discuss
how various window lengths in M2D2 help to address the
problems.

1) Spikes and sharp waves: In Section VI-C, we discussed
the artifacts in EEG signals and how M2D2 improves robust-
ness to them. “Spikes” and “Sharp waves” are other abnormal
waveforms which may appear in EEG signals. A spike is a
sharp-pointed peak clearly distinguished from the background
and typically lasts between 20 to 70 milliseconds. If the
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duration is between 70 to 200 milliseconds, the wave becomes
a sharp wave [45]. Since we assume the segment length as
4 seconds, and the segments are longer than the duration of
spikes and sharp waves, they are usually addressed by the
convolution layers in the encoder. However, in some cases,
we can see the effect of spikes in the output.

Figure 5 shows a one-hour EEG signal and the output
prediction of the proposed method. The seizure is shown
with a red rectangle span in the background. A spike occurs
one minute after the seizure and lasts 50 ms, and it notable
perturbs the corresponding z;. As shown in this figure, for
short window lengths (e.g. 20 seconds), the spike meaningfully
changes the output of the MMD layer. On the other hand, for
the long window length, which is 68 seconds, the spike is
nearly eliminated from the output of the MMD layer. Note
that the model output in the figure is the output of the model
after the GRU and fully connected layers.

Long window

?»

R

Short window |

[
L,‘

Model output J

F7-T7 ot i |
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|
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Fig. 5: The effect of a spike on the output of the MMD with
short and long candidate region of seizure

2) Multiple seizures in one session: The frequency of
seizures varies from patient to patient. Some patients suffer
from more frequent seizures and may have multiple seizures in
an hour—the typical length of recordings in our data. Figure 6
shows a session with two different seizures. The first seizure
happened from 27°:44% until 28°:45, and the second one from
56°:54* until 57°:26%. As we see in the figure, the output of
the MMD layer using a short window length (20 seconds) is
largest in the second seizure, i.e., the shorter one, which lasts
32 seconds. The first seizure is better detected by the longer
window length, underscoring that different window lengths
are appropriate for different seizures and that using a static
window length as in [9] is not optimal.

Long window

Short window

Model output
F7-T7
F8-T8

wwwwwww
| L

o 1 2 3 0 50 60
Time (minutes)

Fig. 6: The effect of multiple seizures on the MMD with short
and long candidate region of seizure

3) Different seizure length: In general, short seizures are
detected by shorter window lengths and longer seizures by

© 2022 IEEE. Personal use is permitted, but re
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longer window lengths. Therefore, in the dataset, there are
some cases in which the short and long windows detect
different localization. Figure 7 shows two different sessions
with seizures of 64 seconds and 164 seconds, respectively.
The MMD Ilayer works differently for these seizures, and
interestingly, the output is correct for both cases, which shows
the rest of the layers in M2D2, i.e., GRU and fully-connected
layers, work properly to choose the best value of window
length.

Long window
Short window
Model output }\
F7-17 e s -
F8-T8 -

0 10 20 30405060
Time (minutes)

(a) The shorter m works more accurately in a short seizure.

Long window
Short window 1

Model output |
F7-T7
F8-T8

TR

Time (minutes)

(b) The longer m works more accurately in a long seizure

Fig. 7: The effect of m on temporal localization in recordings
with different seizure length

E. Kernel Robustness

In this section, we show the robustness of M2C2 in choosing
the kernel function. In this experiment, we train several models
with an identical pre-trained encoder with different M2D2
decoders, which vary in the kernel functions. The kernels are
chosen between linear, polynomial kernel with orders of 2, 3,
4, and 5, and RBF kernels with ~ in range of 0.01, 0.1, 1,
10, and 100. The error time in the unseen test set evaluation
of CHB-MIT — Epilepsiae is shown in Figure 8. As we see
in this figure, all of the chosen kernels except the RBF kernel
with v = 100 temporally localize the seizures almost in the
same way.

F. Simplified MMD Visualization

As mentioned in Section IV-D.2, we use a simplified MMD
because the exact MMD is compute-intensive. To discuss
the differences between the “simplified MMD” and “Exact
MMD”, we performed a new experiment. We visualize the
MMD for every EEG recording in CHB-MIT containing
seizure. We used the leave-one-out cross-validation, and thus,
the models are trained and tested on CHB-MIT. The following
figures show how much the simplified and exact MMD are
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Fig. 8: The robustness of M2D?2 to the chosen kernels

different. In Figure 9a, we choose the EEG recording, which
has the highest correlation between the simplified and exact
MMD. The seizure time is shown in a red rectangle span
in the background. As we can see in this figure, the trend
of the MMD is similar; however, the MMD values shown
in the y-axis are different by two orders of magnitude. The
absolute values of the MMD has no effect on our work because
of the following reason. In this paper, the goal is temporal
localization of the seizures in the EEG recording, i.e., to find
t in which §; has the highest value. Therefore, the absolute
value of d; is not essential.

Figure 9b corresponds to the EEG recording with a corre-
lation that has the median value among all correlations. The
correlation value is between the simplified and exact MMD.
Finally, Figure 9c shows the MMDs for an EEG recording with
the lowest correlation value. The figure shows that the model
cannot detect the seizure location because the maximum of the
MMD is not inside the red rectangle. However, the simplified
MMD and exact MMD have almost the same trends in their
values.

VII. LIMITATIONS AND FUTURE WORK

We see two notable limitations of our work. First, our work
is in furtherance of developing models for seizure localization
that can be deployed on lightweight wearable devices. While
we address one important limitation of prior work by develop-
ing an empirical approach that offers substantially improved
generalization, our model is still heavy-weight (in terms of
latency and energy-use) compared to the types of approaches
that can be deployed in real world devices. While we exper-
iment with modified versions of the MMD computation that
can improve total computation, and hence energy efficiency
and latency, an important component of future work will be
to develop light-weight realizations of our techniques which
can be deployed on practical, wearable devices. In addition,
we have evaluated our model on two large publicly available
EEG datasets with long relevant EEG recordings; however,
this is likely not reflective of the full diversity of patients with
epilepsy, due to the limited amount of data available in the
context of epilepsy.

VIII. CONCLUSION

In this work, we have considered the problem of automat-
ically localizing epileptic seizures from EEG recordings. Ex-
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isting deep learning-based methods for this problem typically
need to be fine-tuned to be applied beyond the immediate
data environment in which they were trained. However, this
process requires acquiring new labeled training data which is
costly to obtain. In this work, we have taken a step towards
resolving this issue by introducing the M2D2 neural network
architecture for automatic temporal localization of epileptic
brain activities in long EEG recordings. Our approach groups
together a set of low-dimensional codewords corresponding
to a candidate seizure region and introduces a novel decoder
architecture which computes a set of features based on the
maximum-mean-discrepancy between each candidate region
and the remainder of the signal. These features are used by a
recurrent decoder to impute the location of a seizure. Using
an extensive empirical evaluation, we have shown that this
approach leads to substantially better generalization than prior
approaches when tested in a completely new data environment
without any fine-tuning. From a methodological perspective,
our work has introduced a new technique for detecting phe-
nomena of interest in time-series. From a practical perspective,
our work has improved existing techniques by reducing the
need for fine-tuning and specialization of models for seizure
detection to new data environments.
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