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Abstract—As two important textual modalities in electronic 
health records (EHR), both structured data (clinical codes) 
and unstructured data (clinical narratives) have recently 
been increasingly applied to the healthcare domain. Most 
existing EHR-oriented studies, however, either focus on a 
particular modality or integrate data from different modali-
ties in a straightforward manner, which usually treats struc-
tured and unstructured data as two independent sources of 
information about patient admission and ignore the intrin-
sic interactions between them. In fact, the two modalities 
are documented during the same encounter where struc-
tured data inform the documentation of unstructured data 
and vice versa. In this paper, we proposed a Medical Multi-
modal Pre-trained Language Model, named MedM-PLM, to 
learn enhanced EHR representations over structured and 
unstructured data and explore the interaction of two modal-
ities. In MedM-PLM, two Transformer-based neural network 
components are firstly adopted to learn representative 
characteristics from each modality. A cross-modal module 
is then introduced to model their interactions. We pre-
trained MedM-PLM on the MIMIC-III dataset and verified the 
effectiveness of the model on three downstream clinical 
tasks, i.e., medication recommendation, 30-day readmis-
sion prediction and ICD coding. Extensive experiments 
demonstrate the power of MedM-PLM compared with state-
of-the-art methods. Further analyses and visualizations 
show the robustness of our model, which could potentially 
provide more comprehensive interpretations for clinical de-
cision-making. 
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I. INTRODUCTION 
HE growing availability of large-scale electronic health rec-
ords (EHR) plays an essential and determinant role in data-

driven clinical decision support systems [1]–[3], providing 
more opportunities to improve healthcare by using artificial in-
telligence methods [4]–[9]. There have been an extensive array 
of successes achieved using a nascent technique, named deep 
learning, in optimizing healthcare [10]–[15], triggering more 
in-depth analyses on the nature of EHRs to develop effective 
models [16]–[21]. With the advances of pre-trained language 
models (PLM) for deep learning, more impressive performance 
on downstream tasks have been obtained [22]–[27]. 

The data from EHR can be generally categorized into well-
organized structured data (e.g., clinical codes) and free-style 
unstructured data (e.g., clinical narratives). They carry infor-
mation on patients' health status and different stages of medical 
care [28]–[30], providing the basis for physicians’ decision-
making [31], [32]. On the one hand, although relevant codes are 
usually manually assigned by clinical practitioners, e.g., for 
billing use, they may suffer from the incompleteness problem 
when considering more comprehensive purposes. For example, 
for diabetes mellitus (DM) patients, the type 2 diabetes mellitus 
(T2DM) could be contaminated with type 1 diabetes mellitus 
(T1DM) subjects because many patients are assigned the code 
for diabetes mellitus, unspecified type [33]. Further, although 
the administrative coding systems translate healthcare diagno-
ses and medication records into universal codes, they cannot 
provide a granular view of a patient’s presentation, disease se-
verity and clinical sequence during an episode of medical care 
[34]. Free text may be chosen when no code precisely describes 
clinical findings or when there is a need to give supporting ev-
idence for a diagnosis or suspicion [35]. On the other hand, 
multi-source structured data contain more health conditions of 
patients, including medication information from the clinical 
prescription records, that may not be included in the clinical 
notes. Hence, physician usually need to combine clinical notes 
and codes to improve the phenotyping ability of EHRs. In this 
paper, we name these structured and unstructured data as mul-
timodal data, following the definitions in previous work [36].  
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Fig.1. An example of paired multimodal data in a visit record of a patient. 
Structured data included codes that were collected and summarized ac-
cording to practitioners based on the patient's clinical status. The un-
structured data recorded more narrative information, such as the dura-
tion of a particular disease, the primary reason for hospitalization, and 
the dosage of a prescription from clinicians. The green boxes show the 
complementation of the unstructured and structured data. U: unstruc-
tured data, S: structured data. 

 
The data from each modality not only convey informative mes-
sages of patients alone but also can be comprehensively over-
lapped and correlated [37]–[39]. Figure 1 shows an example of 
the interactive relationships in a paired piece of multimodal 
EHR. We can observe that there exist different types of interac-
tions between the two modalities (shown in the green rectangles 
in Figure 1), which demonstrate the complementarity between 
data from different modalities.  

However, most existing studies in informatics only focus on 
one modality [40]–[52] or use straightforward strategies (e.g., 
concatenation) to combine different modalities [53]–[58]. In 
general, most of them have limitations in modeling the interac-
tions in multimodal data, either ignoring their complementary 
relationship or insufficient in modeling the complex interaction 
between multimodal EHR data. Taking the record in Figure 1 
as an example, if a model only learns from the structured data, 
the fact that the disease gastroparesis has been lasted for 5 
years would never be captured, the details of which are rec-
orded in the unstructured part. Furthermore, the medication 
code N02A (natural opium alkaloids) in the unstructured part 
can include several types of alkaloids, while the narratives clar-
ify this is morphine 4mg. 

In this paper, we hypothesize that the inherent connection be-
tween the two modalities are critical and could be captured by 
modeling the multimodal interactions. We proposed a Medical 
Multimodal Pre-trained Language Model (MedM-PLM) to 
build the connections between multimodal EHRs. In detail, two 
Transformer-based neural network components are firstly 

 
 

adopted to learn representative characteristics from each mo-
dality, which could inherit the advantages of unimodal PLMs 
that were well pre-trained to sustain their modal-specific prop-
erties. The unimodal module is simple and flexible that any 
structured code- and unstructured text-based PLMs can be 
plugged in. A cross-modal module is further developed to 
model the interaction relationships between modalities. In the 
cross-modal module, we designed two pre-training tasks, i.e., 
Text-to-Code and Code-to-Code, to pre-train MedM-PLM, so 
that downstream clinical tasks could benefit from the learned 
representations.  

We evaluated the MedM-PLM model on three medical pre-
diction tasks: medication recommendation, 30-day readmission 
prediction, and ICD (International Classification of Diseases) 
coding, which are popular multimodal tasks over EHRs. Differ-
ent benchmark and state-of-the-art methods were compared 
through extensive experiments, and the results demonstrate the 
effectiveness of the proposed MedM-PLM. Experiments on 
few-shot learning scenarios further show the scalability of the 
pre-trained model, indicating the potential of MedM-PLM in 
applying to new or rare diseases. 

Our primary contributions are summarized as follows: 
(1). We proposed a novel multimodal PLM for jointly mod-

eling unstructured data and structured data in EHRs, 
which can learn cross-modal interactions while retain-
ing unimodal representation capacities; 

(2). We conducted fine-tuning experiments on three medi-
cal prediction tasks to evaluate the performance of our 
proposed model. The results demonstrate the power of 
MedM-PLM in utilizing multimodal EHRs; 

(3). Experiments with different training proportions show 
that our model performs consistently better than the 
baselines, even on small training sets; 

(4). We have made our codes and pre-trained model pub-
licly available to enhance reproducibility, which could 
be beneficial for a broader range of researchers. 

II. METHODS 
A. Data Preparation 

We used a large and publicly available database, the Medical 
Information Mart for Intensive Care III (MIMIC-III) dataset1, 
in our experiments. The dataset contains EHR data associated 
with 53,423 distinct hospital admissions by 35,164 adult pa-
tients (age 16 years or above) between 2001 and 2012. The data 
include vital signs, medications, procedure codes, diagnostic 
codes, and clinical narratives from physicians and practitioners 
during patients’ hospitalization. We selected patients associated 
with both unstructured and structured data to ensure the com-
pleteness of multimodal data and for fair comparison. The de-
scription of the MIMIC-III dataset is summarized in Table I. 
In the pre-training phase, we used 80% of the single visit rec-
ords (extracted from both single-visit patients and multi-visit 
patients in selected patients) as the training set. In detail, we 
used the discharge summary record corresponding to the pa-
tient’s structured data as the unstructured counterpart. We fol-
lowed ClinicalBERT [22] to preprocess the unstructured data, 

1 https://mimic.mit.edu/ 

U records the venue
where a recorded drug 
in S was prescribed.

code TITLE/NAME

250.63 Diabetes	with	neurological	
manifestations,	type	I	[juvenile	type],	
uncontrolled

536.3 Gastroparesis

V13.51 Personal	history	of	pathologic	
fracture

458.0 Orthostatic	hypotension

V58.67 Long-term	(current)	use	of	insulin

A10A Insulin

C07F Metoprolol	Tartrate

N02A Natural	opium	alkaloids

Unstructured	data

Structured	data

U introduces the dose
of a drug recorded in 
S.

U records the disease 
is the reason of 
hospitalization.

U elaborates the 
duration of a chronic 
disease described in S.

U and S record 
complementary
information in drug 
prescriptions.

…35F	w/	poorly	controlled	Type	1	diabetes	
mellitis w/	neuropathy,	nephropathy,	and	
retinopathy	- 2	episodes	of	DKA	in	[**6-12**]	and	
[**7-12**]	HTN	- 5	years	gastroparesis	- 1.5	years	
CKD	- stage	III,	baseline	Cr	2.4-2.5, proteinuria	L1	
vertebral	fracture	- [**2117-7-17**]	Systolic	
ejection	murmur…
…recently	hospitalized	for	orthostatic		
hypotension	[**2-3**]	autonomic	neuropathy	
[**Date	range	(1)	25088**];	…She	is	on	her	3rd	L	
NS.	Insulin	srip at	5	units/hr…BPs	have	been	high.	
Given	30	metroprolol tartrate	in	ED…Also	aspirin	
325mg	PO	and	Morphine	4mg	IVx1	for	pain.	CXr
was	clear.		EKG	NAD.	.	Review	of	systems:	
otherwise negative.



 

in which words were converted to lowercase, and line breaks 
and carriage returns were removed.  
 

TABLE I 
STATISTICS OF THE MIMIC-III DATASET 
Characteristic Number 

Total patients 35,164 

Single-visit patients 29,734 

Multi-visit patients 5,159 

Selected patients 33,413 

Total diagnoses 6,646 

Avg # of diagnoses 11.11 

Total medications 155 

Avg # of medication 9.23 

 
We followed the configuration of G-BERT [25] for the med-

ication recommendation task in the fine-tuning phase, in which 
all the multi-visit sequences were selected to form the total da-
taset, and divided the dataset of the selected multi-visit patients 
with the ratio of 8:1:1. For the 30-day readmission prediction 
task, we made statistics on the readmission label of each visit 
and set those samples where the patient’s next visit time is 
within 30 days as positive whereas the others as negative sam-
ples. The positive and negative samples were sub-sampled with 
a 1:1 ratio from the total visit records, resulting in 4,660 records 
for training, 532 for validation, and 534 for testing. For the ICD 
coding task, we used the dataset analogous to the prior work 
CAML [59] with simple adaptations. Specifically, we selected 
the unstructured data following CAML [59] and searched the 
corresponding structured data in the MIMIC-III dataset to ob-
tain the structured and unstructured data pairs. To align with the 
input format for pre-training, we set the max token sequence 
length as 512. The details of the datasets for pre-training and 
fine-tuning are summarized in Table II. 
 

TABLE II 
NUMBER OF SAMPLES FOR PRE-TRAINING AND FINE-TUNING 

Task Training 
set 

Validation 
set 

Testing 
set 

Pre-training 39,550 - - 
Medication recom-

mendation 4,344 543 543 

30-day readmission 4,660 532 534 
ICD coding 8,066 1,573 1,729 

 

B. Model Overview 
MedM-PLM handles the inputs from structured and unstruc-

tured EHRs and enhances the EHR representing ability by mod-
eling the interactions between two modalities. Figure 2 shows 
the architecture of MedM-PLM. Based on the input unstruc-
tured text sequence and structured code sequence, we firstly de-
signed a unimodal module to learn data representations from 
each modality to preserve the modal-specific characteristics. 

 
 
 
 

More specifically, a BERT-like component and a G-BERT-like 
component are leveraged to encode the unstructured and struc-
tured inputs respectively. After obtaining the unimodal repre-
sentation, a cross-modal module is then introduced to integrate 
the multimodal representations that learn the interaction infor-
mation between structured and unstructured data. Furthermore, 
two specific pre-training tasks are designed in the cross-modal 
module to capture complementary information and model inter-
actions between different modalities, i.e., the Text-to-Code pre-
diction and Code-to-Code prediction tasks. 

C. Notions and Definitions 
In EHRs, a patient’s record can be represented as a paired 

unstructured sequence and structured sequence, denoted as 𝑋 =
[(𝑊! , 𝐶!)], where 𝑡 ∈ (1,2, … , 𝒯), and 𝒯 is the number of visits. 
𝑊! = (𝑤!", 𝑤!#, ⋯ ,𝑤!$)  is the word sequence of an unstruc-
tured record within a visit, and 𝐶! = (𝑐!", 𝑐!#, ⋯ , 𝑐!%) is the cor-
responding structured part. Here, we use 𝑐 ∈ 𝐶  to represent 
each code, which can be either a diagnosis or a medication code. 
We used a special symbol [CLS] as the first token of each se-
quence. The final hidden state corresponds to the special sym-
bol [CLS] is summarized from the sequence representation, 
which is used as the aggregated information of visit-level [22], 
[26], [60]. We remove the subscript 𝑡 from 𝑊! and 𝐶! for sim-
plicity.  

D. Unimodal Module 
The unimodal module was designed to make full use of the 

modality-specific semantics, including two unimodal compo-
nents. In each component, the corresponding input can be flex-
ibly encoded by any deep learning layers. In this study, we uti-
lized two Transformer-based components for encoding, each of 
which contains an embedding block followed by multiple 
Transformer blocks. Specifically, for the structured data com-
ponent, in the embedding layer, inspired by G-BERT [25], we 
used two hierarchical ontologies to categorize the medication 
and diagnosis codes. i.e., Anatomical Therapeutic Chemical, 
Third Level (ATC-3) 2, and the International Classification of 
Diseases, Ninth Version (ICD-9) 3. Both are hierarchical with 
tree structures, and each medical code is firstly represented as a 
leaf node in each ontology tree. Graph Attention Networks 
(GAT) [61] is then applied to aggregate the representations of 
each node and its direct children nodes to obtain the enhanced 
node representation 𝑒& for each non-leaf node. Further, the em-
bedding of each leaf node 𝑒' is updated by fusing the message 
passed from the ancestor nodes, implying a broader range of 
medical code information. 

𝑒() = 𝐺𝐴𝑇(𝐴() , 𝑀)		 																													(1)	

𝑒' = 𝐺𝐴𝑇(𝐴) , 𝑒())		 	 																												(2)	

where 𝐴() is the adjacent matrix (directed graph) of the non-
leaf nodes, 𝑀 is the initial embedding matrix of nodes, and 𝐴) 
is the adjacent matrix of the leaf nodes. 

For the unstructured data component, in the embedding block,  

2 https://www.whocc.no/atc/structure_and_principles/ 
3 https://www.cdc.gov/nchs/icd/icd9.htm 



 

 

 
Fig. 2. The model architecture of MedM-PLM. It includes a unimodal module that contains the unstructured text component and the structured code 
component (the upper part), and a cross-modal module (the bottom part).   

 
the representation of each visit sequence is generated by sum-
ming up the token embeddings, segment embeddings, and po-
sition embeddings for each token, which is similar to BERT 
[60].  

𝑒* = 𝑆𝑈𝑀(𝑒*!"#$% , 𝑒*&$'($%! , 𝑒*)"&*!*"%)							(3)	

Through the embedding block of each other, we obtained the 
unstructured text sequence representation 𝑒*  and structured 
code sequence representation 𝑒' for each visit. The multilayer 
Transformer [62] architecture was further employed as the visit 
encoder for each modality.  

𝑍+ = 𝐸𝑛𝑐𝑜𝑑𝑒𝑟(𝑒* , 𝜃*)	 																											(4)	

𝑍, = 𝐸𝑛𝑐𝑜𝑑𝑒𝑟(𝑒' , 𝜃')	 																																(5)	

where 𝜃*  and 𝜃'  are learnable parameters. Through the uni-
modal module, we obtained both the visit-level and token-level 
representations of each modality.  
E. Cross-modal Module 

After obtaining the modal-specific representation, we de-
signed a cross-attention mechanism to integrate the information 
from multi-modalities and a residual operator to augment 
model-specific and cross-modal information. The cross-atten-
tion mechanism is used to learn the intrinsic interaction between 
structured and unstructured data. The attention mechanism au-
tomatically captures the relative semantic information of each 
modality and assigns higher weights to correlated segments. 
Specifically, we used the visit-level representation from the 
structured data as a query to collect the relevant information 
from the unstructured data. Meanwhile, we performed the same 
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Fig.3. Graphical illustration of the pre-training tasks. 

 

attention-based query from the unstructured data to collect the 
structured data information from the structured data. The cross-
attention and residual operations are defined as:  

𝑅,-./ = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 J0
1+0,T

2..,
K𝑍+ + 𝑍M, 	 													(6)	

𝑅3/4! = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 J0
1,0+T

2..+
K𝑍, + 𝑍M+	 													(7)	

where 𝑍M,  and 𝑍M+  are the visit-level embeddings, 𝑍,  and 𝑍+ 
are the embeddings of each code and word. Our cross-modal 
module finally generates the augmented visit-level code repre-
sentation 𝑅,-./	and text representation 𝑅3/4!.  
F. Pre-training  

Inspired by ALBEF [63], we modified the pre-training task 
Masked Language Model (MLM) into a multimodal version. In 
particular, we defined two pre-training tasks, i.e., Text-to-Code 
and Code-to-Code (Figure 3), meaning to re-construct each 
code using the paired free text and re-construct each code using 
the surrounding codes. These modified pre-training tasks aim 
to learn the visit-level context-aware semantics of structured 
data from structured and unstructured sequences. The pre-train-
ing objectives are: 

ℒ3#, = − 𝑙𝑜𝑔T𝐶[6&7$]U𝑅3/4!V	 																				(8)	

ℒ,#, = −𝑙𝑜𝑔	T𝐶[6&7$]U𝑅,-./V	 																				(9)	

where 𝐶[6&7$] is the masked token from the inputs. 𝐿3#,  and 
𝐿,#, are cross-entropy losses. 

The final objective function is the sum of the above two 
losses: 

ℒ = ℒ3#, + ℒ,#, 	 	 																											(10)	

In the unimodal module, for the pre-training of unstructured 
data, we initialized the model with pre-trained parameters from 
ClinicalBERT [22]. For the structured data, the parameters 
were randomly initialized due to different vocabularies from G-
BERT [25]. For the masking strategy of the two pre-training 

tasks, we followed the masking strategy of BERT [60], which 
randomly selected 15% tokens from the structured code se-
quence to mask and used an 80% rate to replace the selected 
code by [MASK], a 10% rate to keep the code not changing, 
and a 10% rate to change to a random code.  

G. Evaluation  
After obtaining the pre-trained multimodal representations, 

MedM-PLM can be applied to downstream tasks through fine-
tuning to improve the performance of these tasks. By adding 
task-adaptive classification layers, the downstream tasks could 
be binary classification (e.g., 30-day readmission prediction), 
multi-label classification (e.g., medication recommendation), 
and else. We conducted experiments on three fine-tuning clini-
cal prediction tasks, and the datasets were also extracted from 
MIMIC-III.  

1) Finetuning Task 1: Medication recommendation  
Medication recommendation is an important application in 

healthcare, which aims to automatically recommend medica-
tions (drugs) that are suited for a patient’s health condition [16], 
[64]. This task is defined as a multi-label prediction task that 
utilizes the historical data records to predict the drug sequence 
of the next visit. Similar to G-BERT, we utilized the diagnosis 
codes and medication codes from the historical visit records. 
Further, we concatenated the mean of augmented visit-level 
representations of diagnoses and medications in the historical 
records (0 to 𝑡 − 1th visits) and the augmented representation 
of diagnoses for the 𝑡-th visit. For the text, we concatenated the 
mean of augmented visit-level text representations of historical 
records (0 to 𝑡 − 1th visits) to predict the drug of the 𝑡-th visit. 

We built a multi-label Multi-Layer Perceptron (MLP) as the 
predication layer: 

𝑦9!
d = 𝐸\𝑅3/4!;|𝑖 < 𝑡` ∥ 𝐸\𝑅,-./;|𝑖 < 𝑡` ∥ 𝐸[𝑅,/|j = t]		(11)	

𝑦!d = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 d𝑀𝐿𝑃T𝑦9!
dVf																						(12)	

where 𝐸 is the expectation function, “∥” is the concatenation 
operator, and 𝐶. is the diagnosis sequence. Given the ground 
truth labels 𝑦g!d of each timestamp, the loss function is: 

ℒ. = − "
3<"

∑ (𝑦g!d logT𝑦!dV + (1 − 𝑦g!d)log	(1 − 𝑦!d)3
!=# 			(13)	

[MASK][MASK]

… HCV Cirrhosis (…with no response) Portal … Esophageal varices HTN…

531.00 285.1 … 456.21… 537.89 401.9 B05C… … A02B…

Text to Code prediction

Code to Code prediction
ICD code ACT code masked code



 

2) Fine-tuning Task 2: 30-day readmission prediction 
The prediction of 30-day readmission is meaningful in prac-

tice in improving patients’ life quality and lowering down the 
financial cost. The task considers a patient encounters readmis-
sion if the admission date of the patient was within 30 days after 
the discharge date of the previous hospitalization, and thus is a 
binary classification task. For each visit, we concatenated the 
pre-trained enhanced unstructured text feature 𝑅3/4! and struc-
tured code feature 𝑅,-./	, and then used a MLP to generate the 
final output of the current visit: 

𝑦> = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑀𝐿𝑃(𝑅3/4! ∥ 𝑅,-./))										(14)	

ℒ> = −∑ 𝑦g>𝑙𝑜𝑔(𝑦>) + (1 − 𝑦g>)log	(1 − 𝑦>)?
@=" 				(15)	

where 𝑦g> is the label of readmission. 

3) Finetuning Task 3: ICD coding  
 ICD coding for large-scale clinical notes is labor-intensive 

and error-prone, while machine learning methods could help 
automatically reduce time and laborious cost [65]. ICD coding 
usually is treated as a multi-label classification problem, in 
which relevant ICD codes to the patient records are assigned 
automatically. For the multimodal EHR input, we also used the 
medication information in the corresponding visit as a comple-
ment to ICD coding. After the pre-training phase, we concate-
nated the outputs from the cross-modal module, which repre-
sents the visit-level unstructured text and structured code repre-
sentations of the current record. Then an MLP classification 
layer is added to generate the ICD codes: 

𝑦A = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑀𝐿𝑃T𝑅3/4!||𝑅,(V)	 	 								(16)	

where 𝐶6 is the medication sequence. 
The training objective is to minimize the binary cross-en-

tropy loss between the prediction 𝑦A and the target 𝑦gA: 

ℒA =	−∑ 𝑦gA𝑙𝑜𝑔(𝑦A) + (1 − 𝑦gA)log	(1 − 𝑦A)
B
C=" 						(17)	

III. EXPERIMENTS 
A. Baselines 

We compared MedM-PLM with the following baselines. All 
deep learning methods are implemented in PyTorch [66]. 

LR: Logistic Regression is a conventional machine learning 
method [67]. Compared in the medication recommendation task 
by building binary one-versus-rest classifiers, LR uses the bi-
nary relevance method to perform multi-label classification. 
This method involves training one binary classifier inde-
pendently for each label4. LR was also compared in the 30-day 
readmission task by building a binary classifier. 

RNN: Recurrent Neural Network [68] uses a patient record 
sequence as input to learn the hidden representation of the pa-
tient and performs the binary classification based on the hidden 
states. 

CNN: The one-dimensional Convolutional Neural Network 
[69] was employed to learn text representation for the 30-day 

 
4 https://scikitlearn.org 

readmission prediction and ICD coding tasks, while the 30-day 
readmission prediction was treated as a binary classification 
and the ICD coding task was treated as a multi-label classifica-
tion task. 

G-BERT: G-BERT combines GNNs and BERT for medical 
code representation, in which GNNs are used to represent the 
hierarchical structures of medical codes. The GNN representa-
tions are further integrated into a Transformer-based pre-trained 
model [25].  

Med-BERT: Med-BERT adapts the BERT framework for 
the natural language processing domain to structured EHRs, 
which defines serialization embeddings to denote the relative 
order of each code [27].  

ClinicalBERT: ClinicalBERT was pre-trained BERT [60] 
using clinical notes and fine-tuned for the task of hospital read-
mission prediction [22]. 

G-BERT+ClinicalBERT: We directly concatenated the 
structured code representation of G-BERT and the unstructured 
data representation of ClinicalBERT. This method was used to 
verify the different combination ways for multimodal data. 

Med-BERT+ClinicalBERT: Similar to G-BERT +Clinical-
BERT, Med-BERT+ClinicalBERT concatenated the pre-
trained representations of Med-BERT and ClinicalBERT.  

B. Implementation Details 
In the unimodal module, for the unstructured data component, 

we used 12 transformer blocks, 12 attention heads, and a hidden 
dimension of 768(𝐿 = 12,𝐻 = 768, 𝐴 = 12). For the struc-
tured data component, we used 2 encoder layers, 2 attention 
heads, and a hidden size of 300. The ontology embedding size 
is 75, and the number of heads for ontology aggregation atten-
tion is 4. In detail, we set the maximum sequence length of un-
structured data as 512. Since we did not use the Text-to-Text 
MLM, we froze the previous ten layers of the encoder and the 
embedding layer of ClinicalBERT and only optimized the pa-
rameters of the last two encoder layers to better inherit the pre-
trained parameters from ClinicalBERT and align with the struc-
tured data component. The maximum sequence length for the 
structured data was set as 61, which is the maximum number of 
codes in a single visit. We masked the structured data using a 
15% rate similar to the original BERT [60]. We used the learn-
ing rate of 5𝑒 − 4  and dropout rate of 0.1,  and the training 
batch size of 32. Pre-training was done using the Adam [70] 
optimizer. The model was pre-trained on the corresponding da-
taset with a maximum of 200 epochs. Two GeForce RTX 3090 
GPUs were leveraged to pre-train the MedM-PLM model, and 
the early-stopping method was utilized. In the fine-tuning phase, 
we set different learning rates for the tasks, i.e., 5𝑒 − 5  for 
medication recommendation, 2𝑒 − 5  for 30-day readmission 
prediction, 1𝑒 − 5 for ICD coding, and 3𝑒 − 5 for NER (de-
tails in V. DISCUSSION). All evaluations were duplicated five 
times with different random seeds to reduce overfitting, and the 
average values and standard deviations of the evaluation met-
rics were reported. 

 



 

TABLE III 
SUMMARY OF PERFORMANCE ON THREE DOWNSTREAM TASKS ON F1, ACCURACY, AND AUC. THE STANDARD DEVIATIONS ARE LISTED IN 

BRACKETS 
Task Model F1% Accuracy% AUC% 

Medication recom-
mendation 

LR(Code) 61.49(0) 89.07(0) 77.43(0) 
RNN [68] (Code)  58.48(0.03) 90.55(0.01) 91.98(0.02) 

G-BERT [25] (Code) 65.38(0.09) 91.69(0.04) 94.38(0.02) 
Med-BERT [27] (Code) 61.47(0.41) 91.02(0.01) 93.04(0.14) 

Med-BERT+ClinicalBERT 61.41(0.03) 90.93(0.05) 92.97(0.04) 
G-BERT+ClinicalBERT 65.37(1.48) 91.53(0.31) 94.39(0.33) 

MedM-PLM-cross_modal  66.17(0.10) 92.03(0.01) 94.42(0.04) 
MedM-PLM  70.21(0.08) 92.93(0.03) 95.57(0.01) 

30-day readmission 
prediction 

CNN [69] (Text) 57.84(1.70) 62.55(1.37) 66.74(1.02) 
ClinicalBERT [22] (Text) 63.86(1.41) 64.19(1.40) 69.37(1.43) 

LR(Code) 63.17(0) 65.73(0) 65.73(0) 
G-BERT [25] (Code) 64.82(1.02) 65.42(0.64) 69.57(0.43) 

Med-BERT [27] (Code) 64.52(0.78) 64.22(0.97) 69.06(1.61) 
ClinicalBERT+G-BERT 65.63(1.12) 65.67(1.11) 70.79(0.33) 

ClinicalBERT+Med-BERT 64.35(0.85) 64.48(0.92) 69.38(1.26) 
MedM-PLM-cross_modal 61.54(1.57) 66.54(0.87) 71.23(0.83) 

MedM-PLM 68.61(0.83) 68.77(069) 74.70(0.50) 

ICD coding 

CNN [69] (Text) 49.08(0.73) 32.53(0.64) 84.06(0.68) 
ClinicalBERT [22] (Text) 49.72(1.80) 33.10(1.59) 84.11(0.44) 

ClinicalBERT+G-BERT(Drug) 50.14(0.55) 33.46(0.49) 85.86(0.21) 
MedM-PLM-cross_modal 51.51(0.47) 34.07(0.03) 86.70(0.04) 

MedM-PLM  52.09(0.65) 35.22(0.60) 87.46(0.05) 
*MedM-PLM-cross_modal means removing the multimodal module from our model. The parentheses (Code) means 

using the structured data as input, and (Text) means using the unstructured data as input, and (Drug) means only using 
the drug code as the input of the structured component. 

 

IV. RESULT 
Table III presents the results on the three downstream tasks 

with the best value of each column boldfaced. The primary 
evaluation metric of the three tasks is Area Under the Receiver 
Operating Characteristic (AUC). We also listed the accuracies 
and F1s. From Table III, we can generally draw the following 
conclusions: 1) The deep learning-based methods perform 
much better than conventional machine learning-based methods; 
2) Methods with the addition of PLMs have better performances 
than those without; 3) Combining structured and unstructured 
data do not always obtain better results than using only a uni-
modal input; 4) Using the cross-modal module in MedM-PLM 
is superior to that does not use; 5) Using MedM-PLM obtains 
the best result in all tasks. 

For example, in the medication recommendation task, G-
BERT and Med-BERT outperform LR and RNN when only 
code is taken as the input. When combining structured code and 
unstructured text, however, the direct concatenation methods, 
i.e., Med-BERT+ClinicalBERT and G-BERT+ClinicalBERT, 
perform worse than G-BERT. In comparison, our model with-
out modeling multimodal interactions (MedM-PLM-
cross_modal) performs comparably with G-BERT. And when 
adding the cross-modal module, MedM-PLM improves G-
BERT by 1.15%. In readmission prediction, using structured 
code only or unstructured text only can both achieve an AUC 
over 0.69, and ClinicalBERT+G-BERT with multimodal input 
slightly outperforms them. MedM-PLM-based models further 
improve the AUCs, and MedM-PLM even improves Clinical-
BERT+G-BERT by 3.91%. Similar trends can also be observed 
in the task of ICD coding. Besides, in the three tasks, the per-
formance of MedM-PLM-cross_modal is far worse than the 
MedM-PLM, which also illustrates the effectiveness of the 

cross-modal module. 
Further, in order to verify if MedM-PLM can be beneficial in 

different cases, especially in scenarios with smaller training 
data, we fine-tuned the model over various training proportions 
by setting different training ratios. In Figure 4, the broken line 
charts show that MedM-PLM consistently outperforms other 
baselines. Even in the extreme circumstance where only 10% 
of the training set is available to train the downstream model, 
MedM-PLM still shows its superiority in contributing to all pre-
diction tasks. In the ICD coding task in Figure 4(c), the pre-
training model ClinicalBERT improves CNN by almost 5% 
when training on 10% of the training data, and MedM-PLM fur-
ther improves ClinicalBERT by about 3%. We can also observe 
from Figure 4(a) and 4(c) that models without PLMs (e.g., RNN, 
CNN) have poor performances when the training size is ex-
tremely small (e.g., 10%). 

V. DISCUSSION 
Upon analyzing the results in Table III, we can conclude that 

the PLM-based methods obtain much better results than con-
ventional machine learning and deep learning methods, e.g., LR 
and RNN, in general, and the results also verify that the model-
ing of multimodal data using our proposed MedM-PLM is ef-
fective across different tasks. Further experiments also demon-
strate its stability on different sizes of the training set in the fine-
tuning phase. The success of MedM-PLM can be attributed to 
that the pre-training phase well captures the complex and inter-
active semantics of multimodal EHRs through two unsuper-
vised pre-training tasks, i.e., Text-to-Code and Code-to-Code 
prediction. Using Text-to-Code, the context of each code can be 
expanded by more detailed descriptions of the code or other c 
orrelated codes. For example, in Figure 1, the clinical narratives 
in the purple box Morphine 4mg can be modeled as a piece of 



 

 

 
Fig.4. Comparisons of different models by using different training ratios. 

 
 
evidence for the coding of N02C (Migraine medication). Using 
Code-to-Code5 , the dependencies between different medical 
codes can be further enforced, e.g., drugs and diagnoses. We 
did not use Text-to-Text prediction since this process has al-
ready been well exploited in the pre-trained ClinicalBERT, and 
we did not observe any improvements during our preliminary 
attempts. The unsupervised pre-training tasks aim to re-con-
struct the masked tokens using information from different mo-
dalities, thus can help the model collect intrinsic relationships 
among multimodal data, which is more powerful than direct 
concatenation, e.g., G-BERT+Clinical-BERT.  

As mentioned above, using multimodal data does not always 
outperform unimodal methods. For example, in the medication 
recommendation task, the AUCs of G-BERT+ClinicalBERT, 
Med-BERT+ClinicalBERT, and MedM-PLM-cross_modal are 
lower or only comparable with the unimodal pre-trained model 
G-BERT. We believe this is partly determined by the character-
istics of different scenarios. For example, in medication recom-
mendation, the basic predictions are inferred from the historical 
structured data, in which the diagnosis codes and historical 
medication codes reflect the health situation. However, the un-
structured data contain not only related symptoms but also some 
extra information, e.g., the family history and social history of 
a patient, which might add noise to the prediction if an effective 
information refinement is not involved. 

We can infer from Table III that there are several possible 
reasons why MedM-PLM can outperform the other methods: 1) 
By comparing conventional machine learning-based methods 
with our proposed MedM-PLM, we deem that the prior 
knowledge learned from the pre-training phase could have been 
effectively inherited. 2) By comparing unimodal PLMs with our 
proposed MedM-PLM, the multimodal information has been 
added to the patient representation to enhance the model’s rep-
resentation capacity. Further, MedM-PLM uses well-designed 
pre-training tasks to model the multimodal interactions, which 
fills the gap between multimodal PLMs. 3) By comparing G-
BERT and MedM-PLM in the medication recommendation task, 

 
5 We added Code-to-Code prediction since the vocabulary of G-BERT is dif-
ferent from ours and we need  to pre-train the parameters of the G-BERT 
component from scratch. 

we notice that the length of the predicted drug sequence gener-
ated by MedM-PLM is closer to the ground truth, and the recall 
is higher than that using the unimodal input. This phenomenon 
shows adding the expanded information from unstructured data 
may have added constraints in helping generate the drug se-
quence. 4) By comparing the straightforward concatenation of 
two PLM representations with our proposed MedM-PLM, we 
find that the cross-modal module is helpful in capturing the in-
herence correlation automatically. Thus, our proposed MedM-
PLM is able to learn more effective and robuster representations. 

To more intuitively understand that MedM-PLM is con-
cerned with the most informative multimodal information, we 
selected a case and visualized the model’s attention weights us-
ing a heat map, which shows the focus of the model through 
highlighting the most informative words. According to Figure 
5, MedM-PLM can automatically assign variant weights to 
words in the unstructured data and codes in the structured data 
that have different importances in determination. These words 
and codes might be either corresponding, e.g., edema with 
348.5 and parasagittal meningioma with 225.2, or complemen-
tary, e.g., Ativan IV with N05A (antipsychotics) and Fospheny-
toin with N03A (antiepileptics). It is more like mimicking the 
clinicians who can recognize the critical factors underlying ac-
cording to the EHR of a patient during the decision-making pro-
cess. Following this information, the EHR of a patient can be 
automatically tagged with important cross-modal signals iden-
tified, and better visualizations and interpretations can be pro-
vided. 

In summary, MedM-PLM can effectively model the interac-
tion between structured data and unstructured data while pre-
serving the modal-specific representation capacity of the uni-
modal data. The most informative segments were concentrated 
in MedM-PLM through the cross-modal module. Furthermore, 
the pre-trained model has shown its robustness and potential 
value in clinical decision-making, where solid performances on 
a variety of downstream tasks have been achieved. 

Furthermore, Biomedical Named Entity Recognition (NER)  

 
 



 

 

 
Fig. 5. Visualization of attention for the text fragment and the code sequences. The gradient of the color indicates the degree of importance. 

 
 
was taken as an auxiliary task to validate if the multimodal pre-
trained model could also perform well on a unimodal task. We 
adopted the concept extraction task of the 2010 i2b2/VA Work-
shop on Natural Language Processing Challenges for Clinical 
Records [71]. The details of the dataset are shown in Table IV. 

 
TABLE IV 

DETAILS OF 2010 I2B2 NER DATASET 
NER (2010-i2b2) 

Dataset Training set Validating set Testing set 

#Sentence 14,803 1,512 27,625 

 
The NER task focuses on extracting medical concepts from 

patients’ reports, which is purely based on unstructured data. 
We performed the NER task based on the BiLSTM-CRF [72] 
framework and replaced the embedding layer with the output of 
the unstructured data component of MedM-PLM. The primary 
evaluation metric is strict F1 score. 

 
TABLE V 

PERFORMANCE OF NER TASK 
Task Model F1% 

NER 
biLSTM_CRF [72] 83.81 

biLSTM_CRF+ClinicalBert 85.77 
biLSTM_CRF+MedM-PLM 86.29 

 
As shown in Table V, comparing the results of biLSTM 

_CRF+UMM-PLM and biLSTM_CRF+ClinicalBERT, 
MedM-PLM still maintains a good representation capacity.  

 
TABLE VI 

PERFORMANCE OF MEDICATION RECOMMENDATION TASK OF AB-
LATION EXPERIMENT 

Task Model F1% Accuracy% AUC% 

Medication 
recommen-

dation 

G-
BERT[25]  65.75(0.33) 91.74(0.07) 94.40(0.06) 

G-
BERT(Me
dM-PLM) 

67.84(0.12) 92.23(0.04) 95.15(0.02) 

 
We also replaced the model parameters of G-BERT with pre-

trained parameters of the MedM-PLM structured data modality 
component to verify whether the special pre-training task was 
beneficial to the structured data. The results are shown in Table 
VI.From Table VI, we can find that the performances of G-
BERT are improved by using the pre-trained parameters from 
MedM-PLM. And these results demonstrate the effectiveness 
of MedM-PLM. 

There are also several limitations of the current study. Firstly, 
we only selected medications and diagnoses for the structured 
data part and ignored others such as vital signs, laboratory 
measures, and procedure codes, which are also informative but 
might need more expertise to preprocess. Secondly, the MedM-
PLM model only uses the single-visit record in the pre-training 
phase. This will cause the missing of the time-series infor-
mation and the continuity of EHRs, which is also partly due to 
the nature of the MIMIC-III data. Thirdly, we truncated the 
length of each unstructured data sequence into a fixed number, 
which limited the content of the unstructured text information. 
Furthermore, the clinical text may include irrelevant infor-
mation, misspellings and unstandardized abbreviations, which 
may mislead the learning process. We will probe more data de-
noise strategies in our future work. Lastly, the notes of the 
MIMIC-III dataset are mainly from the intensive care unit, 
which might not be quite scalable to other clinical records. The 
efficacy of MedM-PLM that is evaluated on tasks generated 
from the particular dataset also limits the generalizability of the 
model. In future studies, we will explore the addition of more 
clinical variables and temporal patterns to our pre-trained 
model to improve the scalability and generalizability. 

VI. CONCLUSION 
We propose a unified medical multimodal pre-training model 

named MedM-PLM in this work. The model was pre-trained to 
capture both unimodal representation abilities and cross-model 
interactions from EHRs and was evaluated on three down-
stream tasks. Experiments demonstrate the superiority and sta-
bility of the model. We also tested the performance of MedM-
PLM on smaller training sets, which further verified the capa-
bility of the model in few-shot learning cases. We expect our 
model could assist in more application scenarios where both 

……. Major Surgical or Invasive Procedure : Left craniotomy for mass resection 
History of Present Illness: Mr. is a yo RHM with CAD s/p CABG, AS, HTN, 

Hyperlipidemia now here for resection of parasagittal meningioma……However 

last night he was moving furniture, and upon moving a bureau back into his home 

he developed a sensation of numbness at his foot that travelled to his upper thigh 

over the course of only a few seconds. He then noted rhythmic low amplitude 
shaking of the limb that was not suppressable. His right arm then extended 

outwards beyond his volitional control. His wife took him to where he was given 

ativan IV, loaded with Fosphenytoin ,mg IV. ……. Past Medical History: PMHx: 

CAD- CABG x () here at HTN AS- no syncopal symptoms. Hypercholesterolemia. 

Past Surgical Hx: Appendectomy Bilateral Inguinal hernia repair Anal fissure
repair Cholecystectomy tonsillectomy and adenoidectomy…… Currently smokes

pipe tobacco x last yrs…..IMPRESSION: Dural-based enhancing lesion arising 

from the left parafalcine region with minimal mass effect and small amount of 

surrounding edema. This likely represents a meningioma. ……
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structured and unstructured EHRs are available. 
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