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Abstract— Bruch’s membrane (BM) segmentation on op-
tical coherence tomography (OCT) is a pivotal step for the
diagnosis and follow-up of age-related macular degenera-
tion (AMD), one of the leading causes of blindness in the
developed world. Automated BM segmentation methods
exist, but they usually do not account for the anatomical
coherence of the results, neither provide feedback on the
confidence of the prediction. These factors limit the applica-
bility of these systems in real-world scenarios. With this in
mind, we propose an end-to-end deep learning method for
automated BM segmentation in AMD patients. An Attention
U-Net is trained to output a probability density function
of the BM position, while taking into account the natural
curvature of the surface. Besides the surface position, the
method also estimates an A-scan wise uncertainty measure
of the segmentation output. Subsequently, the A-scans with
high uncertainty are interpolated using thin plate splines
(TPS). We tested our method with ablation studies on an
internal dataset with 138 patients covering all three AMD
stages, and achieved a mean absolute localization error of
4.10 µm. In addition, the proposed segmentation method
was compared against the state-of-the-art methods and
showed a superior performance on an external publicly
available dataset from a different patient cohort and OCT
device, demonstrating strong generalization ability.

I. INTRODUCTION

Age-related Macular Degeneration (AMD) is the leading
cause of blindness and irreversible loss of central vision in the
developed countries for people over age sixty [1]. The disease
stages are divided into early/intermediate (iAMD) and two late
ones. Early/intermediate stage AMD cases are characterized
by the deposition of metabolic products (drusen) in the macula
between the retinal pigment epithelium (RPE) and the Bruch’s
Membrane (BM). Late AMD appears as geographic atrophy
(GA or dry AMD) or neovascular AMD (nAMD or wet AMD),
although a mixture of both can occur in the same eye [2].
GA is characterized by the progressive loss of photoreceptors
and RPE in the macular region, resulting in the permanent
loss of the sharp vision. Neovascular AMD manifests in
the formation of abnormal blood vessels, typically in the
choroidal plexus below the RPE, leading to pigment epithelial
detachment (PED), and exudation into the retina. Thus, early
diagnosis and regular monitoring is crucial for the effective

treatment of the patients. Although AMD is usually detected
first by funduscopic examinations, other imaging modalities are
required to understand the full extent of the degeneration under
the macula [2]. The current state-of-the-art modality for AMD
monitoring and treatment is Optical Coherence Tomography.

Optical Coherence Tomography (OCT) is a non-invasive
3D imaging technique that can acquire high-resolution cross-
sectional images of human tissues, particularly suitable for the
retina [3], [4]. It is widely used in the diagnosis and monitoring
of patients with a large variety of retinal diseases, such as
diabetic retinopathy (DR) [5], retinal vein occlusion (RVO)
[6], glaucoma [7] and AMD [8], [9]. The segmentation of the
retinal layers in OCT scans is a crucial step in order to monitor
and quantify the progression of a disease. However, manual
layer annotation or correction is very time-consuming and
subjective, which has motivated the development of automated
accurate and objective methods [10]--[13].

Bruch’s Membrane is an elastic smooth and thin structure,
strategically located between the retina and the general cir-
culation, having a crucial role in retinal function, aging and
disease [14]. Automated segmentation of the BM is particularly
important in the context of AMD as, unlike other common
retinal diseases such as DR, RVO, or glaucoma, the BM
is distinguishable from the outer RPE boundary. In specific,
drusen in iAMD and PEDs in nAMD separate the RPE from
BM, requiring the segmentation of the region in-between them.
In addition, in case of GA, the RPE is completely lost in some
locations, exposing only the BM, thus imposing additional
difficulties for algorithms and calculations that depend on the
RPE position. Achieving correct automated identification of
the BM is challenging in many cases, mainly due to the small
thickness of this layer, the high reflectivity of the RPE that
shadows parts of the BM, and the noise being present in the
scans, which is often indistinguishable from the content of
drusen and PEDs (Fig. 1). Due to these difficulties, currently
many automated solutions either do not provide a segmentation
of the BM or its segmentation is often inaccurate in retinal
OCT with AMD, leaving this clinically relevant segmentation
task unaddressed or under-explored.

The state-of-the-art segmentation algorithms are based on
Deep Learning (DL), which depends on a large amount of
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(a) iAMD (b) nAMD (c) GA

Fig. 1: The three stages of AMD, where the Bruch’s Membrane
is marked with a green line. As a reference, retina from the
Internal Limiting Membrane to the outer boundary of the RPE
is denoted with cyan lines.

annotated training data that is often difficult and expensive
to obtain. In addition, these models, when based only on
textural features of the OCT images, may fail where the
images contain artifacts due to the limitations in the scanning
process, e.g., shadowing, eye-movement or low-resolution
acquisition [15]. The introduction of prior knowledge about
the target domain imposes constraints on the possible solutions,
thus reducing the search space [16]. Such knowledge can
take several forms, including topology specification, distances
between regions [17], or shape models [16]. Utilizing prior
anatomical information for medical image segmentation has
already been proven useful in order to obtain more accurate
and plausible results, and with smaller training sets. They have
been successfully applied among others to improve cardiac
image segmentations [15], liver segmentation [18] and retinal
layer segmentation [17], [19], [20].

Quantifying uncertainty of DL models is crucial for clinical
applications in order to build trust in systems’ prediction
and at the same time for reducing the associated risks of
downstream tasks relying on uncertain or incorrect results. This
is particularly pertinent for image segmentation, where there is
an inherent ambiguity in the reference, due to the limitations
in the image acquisition processes and the subjectivity and
complexity of the annotation task, resulting in variations
between the manual annotations. However, DL segmentation
methods tend to provide unrealistic overconfident predictions
on these complex tasks, especially when they are applied on a
different patient cohort or pathologies not observed during the
training.

Having the above considerations in mind, in this paper,
we propose a new deep learning method for automated
segmentation of the BM. By using a probability distribution
function to infer its spatial coordinates, together with a loss
term incorporating anatomical priors which promotes smooth
predictions, the method accounts for local morphological
changes resulting from pathologies or acquisition artifacts,
and is capable of identifying regions of potential segmentation
failure. The acquired local uncertainty information is utilized
in a post-processing step to further improve the segmentation
in the areas of potentially erroneous segmentations. Large-
scale multi-dataset experiments show the robustness of the
developed model, which furthermore achieves the state-of-the-
art performance on an external public dataset.

A. Related works

The goal of layer segmentation is to obtain anatomically
coherent, smooth, and continuous retinal layer boundary
surfaces. The first widely-used approach was to extract image
features from the B-scans, which are then used by graph-based
methods to estimate the surface positions. For instance, the
IOWA Reference Algorithms [19], [21] represented the OCT
as a graph and the surface positioning was solved with dynamic
programming algorithms, while guaranteeing the correct topo-
logical ordering, satisfying prior layer thickness constraints,
and smoothing the results. The graph-based methods were later
further improved in several works [22]--[24]. Rathke et al. [25]
proposed a method using a probabilistic graphical model, which
incorporated anatomical shape priors for OCT segmentation,
including a post-processing fix for the BM. A drawback of
these methods is that they rely on hand-crafted image features
as the backbone for the graph construction and may perform
poor in the presence of noise or other imaging artifacts, as well
as severe pathologies. Several approaches attempted to improve
on this by incorporating machine learning-based methods to
estimate the cost function for the nodes of the graph [9], [26]-
-[28]. For these types of approaches, the performance of the
graph-search method is still tied to the quality of the initial
probability map, and subject to predefined hard morphological
constraints on layer thickness and smoothness variability.

With the advent of deep learning, U-Net [29] and its variants
became a dominant approach for medical image segmentation,
including retinal layer segmentation. In particular, ReLayNet
proposed in Roy et al. [11] presented a network architecture
similar to U-Net, which represented nine retinal layers and
possible fluid-filled pockets as distinct classes and predicted
their pixel-wise locations. A deficiency of this algorithm is
that it is not guaranteed to predict a single unique BM position
in an A-scan. Sousa et al. [13] uses a U-Net to create an initial
segmentation followed by a CNN based edge detection network
to further refine the results, while predicting one single location
per A-scan.

A major weakness of these two deep learning methods is that
they do not account for the natural ordering of the layers, and
consequently do not guarantee anatomically plausible results.
The framework presented by He et al. [10] improves on this by
predicting the surface positions using column-wise soft-argmax,
thus ensuring that only one position is inferred per A-scan. Also,
proper layer ordering is guaranteed with a topological module.
They further improved their method in [20] by removing the
fully-connected layers and hence requiring fewer parameters
than in their previous work, while also evaluating the model
performance on a BM segmentation task. Besides showing
improvement against the state of the art they also showed that
the surface connectivity is well constrained. However, they
did not include uncertainty estimation in their work and the
method was not validated on AMD patients.

An alternative, not machine learning based approach was
presented in Lou et al. [30], which uses a mathematical model
of the potential fluid energy in fluid mechanics. This method
inherently guarantees the correct topological ordering and the
smoothness of the predicted layers, however its performance
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is significantly lower than of the CNN based method, possibly
because of the hard requirement of the algorithm, where the
gray values on both side of the boundaries must be different.

Other researchers have focused on including uncertainty
estimations coupled with the layer segmentation. The approach
proposed by Orlando et al. [31] predicts the photoreceptor
layer, and they perform Bayesian inference through Monte
Carlo sampling using the dropout in a modified U-Net architec-
ture. They investigated the correlation between the measured
uncertainty and the segmentation performance, although only
on a B-scan and volume level. In addition to using the same
approach to quantify uncertainty, the framework proposed by
Sedai et al. [32] uses a fully convolutional network that learns
to output the aleatoric uncertainty which it was observing.
The network performed comparably to the state of the art,
but the relation between the uncertainty and the segmentation
displacement, essential for the clinical applicability, was not
covered in the work.

A problem common to all the aforementioned methods is
that they lack one or more critical components for successful
clinical translation in AMD. Either they are not able to robustly
predict the BM, or they were not validated on all stages
of the AMD, with different acquisition settings, or they do
not provide an uncertainty estimation required for achieving
reliable, trustworthy segmentation methods.

B. Summary of contributions
In this paper, we propose a novel deep learning method

for segmentation of the BM layer from retinal OCT scans of
patients with AMD. The main contributions of this work are
the following:
• A new curvature loss term to encode a shape anatomic

prior of the BM. This improves the model’s robustness
and the ability to detect the BM in low-contrast areas,
resulting in anatomically more plausible solutions.

• Uncertainty quantification on A-scan, B-scan and OCT
volume level to detect possible mis-segmentations, which
can then be automatically corrected in a post-processing
step.

• Large-scale evaluation of the proposed method, across all
three AMD stages and on images acquired with different
OCT devices from various patient cohorts reflecting a
real-world clinical setting, as well as on an external public
test set, proving the strong generalization capability of
the solution.

II. METHODS

The proposed deep learning method is designed to provide an
anatomically coherent segmentation of the BM. The input to the
network is a pre-processed B-scan and the single channel output
contains column-wise (A-scan-wise) a probability distribution
of the BM position. The BM positions are then regressed from
the expected values of the distributions. During the training,
curvature constraints are imposed to provide an inductive bias
on the correct shape of the surface even in the areas, where
it is hardly visible. During inference, volumetric predictions
are obtained by combining the B-scan-wise segmentations and
afterwards replacing uncertain regions with interpolated values.

A. Regressing BM position with anatomy-aware
probability distributions

All of the B-scans were resized regardless of the initial
resolution to 512× 512 pixels using bilinear interpolation. The
backbone image segmentation network is an Attention U-Net
[33] with five downsampling and upsampling layers with 32,
64, 128, 256 and 512 channels, respectively. The input is a
512 × 512 × 1 image and and the output layer has a single
channel of the same size as the input. Every convolutional layer
is followed by a dropout layer with 0.2 drop probability. We
used LeakyReLU as activation function in the hidden layers.
The output of the network is a column-wise probability map,
in which each column represents a probability distribution,
where the value of each row corresponds to the probability of
the BM at this position. The target distribution is modeled to
be a Gaussian distribution to better accommodate for possible
pixel-wise imprecisions of the annotations. This allows the
network to identify several adjacent positions within a columns
as possible candidates.

We used a loss function consisting of three terms, each
focusing on a different aspect of the segmentation task: (i) a
term for regressing correct position of the BM, (ii) a term
providing a pixel-wise supervision per image columns to
weakly enforce a Gaussian distribution of the probability mass
function, used later for the uncertainty estimation, and (iii) a
curvature term which introduces the anatomical shape prior in
the training itself, and regularizes the curvature of the predicted
BM as well as enforcing its continuity.

1) Surface position regression with a probability mass function:
To regress the coordinates of the BM, the column-wise expected
value of the probability map is calculated, similarly to the
models proposed by He et al. [10], [20].

Let Y be a random variable corresponding to the y-
coordinate (position) of the BM, and X is the position of
an A-scan. We aim to assess the expected BM position given
the A-scan x:

µ̂Y |x =
∑
y

y · P (Y = y | X = x) (1)

The probability mass function (PMF) P (Y | X) is estimated
with the neural network. To ensure that P (Y | X) is a proper
PMF, we perform a column-wise softmax activation over the
network outputs.

The PMF, thus BM position, is learned with the help of
mean squared error (MSE) loss between the predicted BM
location µ̂ and the reference standard µ:

L1 =
∑
x

P (x)
(
µ̂Y |x − µY |x

)2
(2)

We assume that all A-scans are equally important and
X ∼ U [1, N ], where N is a number of A-scans in a single
B-scan.

2) Regularization of the distribution: As proposed in Ni-
bali et al. [34], we introduce a regularization term to guide
the model to match the output distribution to a target Gaussian
probability mass function for each column and thus introducing
a pixel-level supervision. We opted to use Kullback-Leibler
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Fig. 2: An overview of the proposed method. The input is a single B-scan, which is pre-processed. The Att. U-Net predicts a
probability map of equal size as the input. Each column contains a probability distribution of the possible BM location. The
actual BM position is calculated from the expected value. Besides matching the correct position, a curvature constraint is
imposed to learn the expected shape of the layer. During inference, the calculated probability maps from a volumetric scan are
aggregated, aligned, and using random control points with low uncertainty a Thin Plate Spline surface is calculated to replace
the highly uncertain values.

divergence (DKL) [35] instead of Jensen-Shannon divergence
as used in [34] as it resulted in similar performance with lower
computational cost.

Thus, we introduced the second loss term:

L2 = DKL
(
P(Y | X) ‖ T(Y | X)

)
=
∑
x

∑
y

P (y, x) ln
P
(
y | x

)
T
(
y | x

) , (3)

where P is the probability map from the network output
and T(Y | x) ∼ N(µY |x, σ) is the target probability map,
containing a Gaussian distribution for each column x with
the mean µY |x being the reference standard location, and
having standard deviation σ. This loss term penalizes output
distributions different from the target Gaussian distribution.

3) Curvature preserving loss function: We further improve
the quality of the segmentation by incorporating anatomical
prior on the smoothness of BM with an extra term in the loss
function. This allows reducing segmentation errors created by
pathologies and scanning artifacts that reduce the visibility of
the BM. Specifically, we introduce a novel term that leads
the network to match the slope of the predicted surface to
that of the manually annotated reference. Additionally, while
the surface position regression and DKL is applied column-
wise, this term introduces an explicit connection between the
neighboring columns.

The absolute curvature κ of a function f(x) is defined as
follows [36]:

κ(x) =
|f ′′(x)|(

1 + f ′(x)
2
) 3

2

(4)

Since we predict the y-coordinate of the BM only at discrete
A-scan positions, where f(x) = µY |x, we approximate the
first and the second derivatives with finite differences:

f ′(x) ≈ f
(
x+

⌊
1
2h
⌋)
− f

(
x−

⌊
1
2h
⌋)

(5)

f ′′(x) ≈ −f
(
x+

⌊
1
2h
⌋)

+ 2f (x)− f
(
x−

⌊
1
2h
⌋)
, (6)

where h is the window-width and x is the index of the xth
A-scan. The first and the second derivative can be calculated
using a 1D-Convolution with the kernels of length h: [ 1 ··· −1 ]
and [−1 ··· 2 ··· −1 ], respectively, with the omitted values being
0.

We define the loss as the mean absolute error (MAE)
between the point-wise curvature in the manual reference µ
and the predicted position µ̂:

L3 =MAE
(
κh (µ) , κh (µ̂)

)
(7)

The window size h has a considerable effect on the weight
of L3 term in the complete loss. A very large h allows to
capture low and high curvatures on curved sections of different
lengths while being robust to noise. However, the estimation
of the curvature is only possible on columns at least 1

2h away
from the left/right image borders, and thus large windows may
reduce the influence of L3 during training. On the other hand,
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a small h only allows to penalize short sections with high
curvature, failing to capture longer low curvature curves.

The complete loss term is thus:

L = αL1 + βL2 + γL3 (8)

where alpha, β and γ are weighting hyper-parameters.

B. Uncertainty estimation
Due to the deficiencies in the image acquisition process and

the complex anatomical deformations caused by retinal diseases,
the segmentation method is not always able to correctly identify
the BM position. Thus, it is important to have the ability to
quantify the uncertainty observed during inference time. As the
output of the network is a probability map, if the network is
certain at the location of the BM, it assigns higher probabilities
only to the positions lying very close to the expected value. In
contrast, if it is uncertain, it assigns lower probabilities over
many positions lying further apart from each other.

In order to quantity this uncertainty, we calculate the standard
deviation σ̂Y |x for every A-scan x, analog to the calculation
of the expected value in (1):

σ̂Y |x =

√∑
y

(
y − µ̂Y |x

)2
· P
(
y | x

)
(9)

C. Post-processing with thin plate splines
We use a thin plate spline (TPS) [37] interpolation on the

volumetric 3D OCT scan to estimate a viable position of the
BM in the uncertain areas. The TPS finds an interpolating
surface with a set of control points to assure minimum bending
of the BM. With TPS, we replace the uncertain BM positions
with their interpolated values.

a) B-scan alignment: TPS interpolation across B-scans
assumes a topographically smooth surface under the condition
that the neighboring B-scans are aligned along the axial
direction, which is not always assured due to eye motion
artifacts. While Spectralis devices contain a built-in alignment
method, Cirrus scans are prone to this effect. With this in
mind To align the B-scans prior to the TPS interpolation, we
calculate a displacement vector δj for each B-scan j in a scan,
that corresponds to the difference between the mean position
of the BM in j and a prespecified reference position R.

δj =
1

N

N∑
x=1

µ̂Y |x,j −R, (10)

where N is the number of A-scans in a B-scan j. We used
R = 1

2H , where H is the height of the B-scans.
b) TPS interpolation: The TPS is then calculated on the

centered BM layer after which the BM is realigned to the
original average positions:

µ̂′ = TPS (µ̃− δ) + δ. (11)

The number of control points and the selection of the rigidity
parameter of TPS have a considerable effect on the smoothness
and the resulting accuracy of the interpolated surface. Using
more control points results in a larger computational cost,

(a) Before TPS (b) After TPS

Fig. 3: The left image shows the surface consisting of low
uncertainty predictions, and the randomly selected control
points for the TPS with red. The surface containing the
interpolated parts is depicted on the right.

and makes the result more prone to erroneous control point
positions and B-scan misalignment artifacts. A larger rigidity
allows the interpolation to deviate more from the control points.
The rigidity parameter and the number of control points were
determined via cross-validation on the validation set and were
defined to 0.05 and 1024, respectively.

III. EXPERIMENTAL SETUP

In this section we give an overview of the datasets we used
to train, validate and test our method. We also describe the
pre-processing and data augmentation steps, the training setup,
and the evaluation metrics considered. Finally, a description
of the performed experiments is provided.

A. Datasets

The proposed method was trained and evaluated on an
internal dataset consisting of 1,449 volumetric OCT scans
of 478 eyes from 386 patients, covering all three stages of
AMD: iAMD, nAMD and GA. The analysis adhered to the
tenets of the Declaration of Helsinki, and the approval was
obtained by the Ethics Committee of the Medical University
of Vienna (Nr 1246/2016). 71% of the scans were acquired
with Spectralis devices (Heidelberg Engineering, Heidelberg,
Germany) consisting of (512−1024)× (23−97)×496 voxels
with a size of (5.74− 11.46)× (60.90− 232.48)× 3.87 µm3

comprising a volume of (5.6− 8.6)× (4.1− 7.4)× 1.9 mm3.
The remaining 29% was acquired with Cirrus devices (Carl
Zeiss Meditec, Dublin, CA, USA) consisting of (200− 512)×
(128−200)×1024 voxels with a size of (11.7−30.1)×(30.1−
47.2)× 1.95 µm3 comprising a volume of 6× 6× 2.0 mm3.
The BM reference standard locations were created by the
IOWA Reference Algorithm [19], [21] which were manually
corrected by retinal experts afterwards. The dataset was split
up on a patient-level in 80% for training, and 10%-10% for
validation and test. In order to keep the size of the training set
manageable, 10 B-scans were initially randomly selected from
each OCT volume and this reduced training set was used for
our experiments. The validation and test sets contained all of
the B-scans available. Table I gives an overview of the dataset
and the split across the three sets.
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Disease
Vendor Cirrus Spectralis Total

iAMD N/A 507 / 63 / 65 507 / 63 / 65
nAMD 158 / 19 / 19 82 / 11 / 10 240 / 30 / 29
GA 173 / 21 / 25 248 / 28 / 20 421 / 49 / 45
Total 331 / 40 / 44 837 / 102 / 94 1168 / 142 / 139

TABLE I: Number of volumetric scans (train/validation/test)
per vendor and disease of the internal dataset.

B. Generalization to an external test test and domain shift
To additionally evaluate the generalizability of our trained

network, we carried out an evaluation on a public external test
set, allowing to also compare the results with the reported state
of the art. For this purpose, we used the openly available Duke
SD-OCT dataset [38], the world’s largest online annotated
SD-OCT dataset, containing 38,400 annotated B-scans of
259 iAMD patients and 115 healthy subjects, coming from
four external clinical centers of the Age-Related Eye Disease
Study 2 (AREDS2) Ancillary SD-OCT Study. The scans
were acquired with a Bioptigen SD-OCT device (Research
Triangle Park, NC) consisting of 1000 × 100 × 512 voxels
with a size of 6.7× 67.0× 3.24 µm3 comprising a volume of
6.7× 6.7× 1.7 mm3. Our method was never trained on these
scans, allowing to assess the model’s generalization under an
image domain shift.

C. Experimental settings
1) Pre-processing: The input volumes were normalized B-

scan-wise to zero mean and unit standard deviation. Due to
the movement of the patient and other scanning artifacts, not
all the A-scans have a BM defined. If in a B-scan the BM
was undefined in more than 20% of the A-scans, the B-scan
was removed from the training set. For the validation and test
sets, B-scans that contained no definition of the BM were not
considered.

2) Implementation and training details: The B-scans during
the training were augmented with random horizontal flipping,
rotated by a random angle between −20◦ and 20◦, distorted
along a random sinusoidal wave to represent scanning artifacts,
and randomly shifted vertically. Each augmentation was applied
with a probability of 0.3.

In preliminary experiments on the validation set, we tested
different window sizes h (Eq. 5 and 6) We tested the values
3, 5, 7, 11, 21, 31, 51, and found that h = 21, approximately
4% of the image width, leads to the best performance among
these values. Likewise, we tested different σ (Eq. 3) values
of the target Gaussian distribution between 0.5 and 2.0, and
found no significant difference in the performance, thus using
σ = 1.0 for the sake of simplicity. In our experiments, similarly
to [10], [20], we set α = β = 1.0 in Eq. 8. For γ (Eq. 8) we
tried the values 0.5, 1, 2, 5, 10, 20, and we found no statistically
significant difference in the performance of the fully trained
models, but higher values have led to faster initial convergence.
In our main experiments we used γ = 1.0.

Our method and the baseline were trained with a batch size
of 10 using the Adam optimizer [39], with an initial learning
rate of 0.05, which was then lowered in the 3rd, 7th, 10th, 30th

and then every further 20 epochs by 30%. We trained the
network for 200 epochs and we selected the model with the
lowest RMSE on the validation set. The dropout probability
was 0.2.

The training was performed in a mixed-precision setting on
an Nvidia GeForce RTX 2080 Ti GPU, with an Intel Xeon
Silver 4114 CPU with 16 cores, under CentOS 7, using Python
3.8.8 and PyTorch 1.8.0. On such a setup, the training lasted
approximately 32 hours. The testing was done on the same
setup as the training. The inference of the B-scans and the
TPS post-processing lasts about 6 seconds from the input of
the OCT volume to the output of the predicted 3D surface.

3) Evaluation metrics: The proposed method is evaluated
in terms of the A-scan-wise distance between the automated
segmentation and the manual reference using the common
metrics, mean absolute error (MAE), and the root mean
squared error (RMSE) that penalizes more strongly the large
segmentation errors. Furthermore, there is also particular
interest in examining the smoothness and continuity of the
resulting segmentation. Discontinuities of the BM may result
from wrong segmentations due to some pathologies or bad
quality scans and they represent anatomically implausible
results and could bias downstream measured clinically relevant
parameters. To evaluate the smoothness of the segmented BM,
we plotted a histogram, containing the distance of adjacent
columns µ(x+ 1)− µ(x), where µ(x) is the position of the
BM at an A-scan x.

D. Experiments

1) Comparison with baseline and ablation studies: We com-
pared the performance of our model with adaptions of state-of-
the-art retinal OCT layer segmentation methods, DexiNed [13],
ReLayNet [11] and Bayesian Fully Connected Dense Network
(BFC-DN) [32]. DexiNed is an edge detection network that
produces pixel-wise edge maps. As a consequence, it does
not directly predict a boundary coordinate per A-scan. To
obtain the final coordinates we generated predictions using
both column-wise argmax and the expected value as in Eq. 1.
We found that the latter solution performed better and we used
those results to compare with our method.

ReLayNet [11] is a pixel-wise retinal OCT layer segmenta-
tion network. The final layer consists of two channels for the
two output classes corresponding to the areas below and above
the BM. Softmax is used to estimate the probability of a pixel
belonging to either of the two classes. We adapted ReLayNet
by using Attention U-Net as opposed to standard U-net, which
we empirically found to perform better for the task in study.
At each pixel, the class with higher priority was selected. As a
post-processing step, in each class only the largest connected
component was kept to remove possible wrong classifications.
The position of the BM is the border of the two classes.

Bayesian Fully Connected Dense Network (BFC-DN) [32] is
also an U-net-like method that performs pixel-wise retinal OCT
segmentation while accounting for the prediction uncertainty.
Similarly to ReLayNet, the network is trained to segment the
regions above and below the BM. We used the same post-
processing step as with [11] to improve the results.
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In addition, an ablation study was conducted in order to
assess the effectiveness of the curvature term in the loss, and the
TPS in contrast to the basic version of our method, consisting
of only the first two loss terms L1 and L2. This is similar to
the regression model proposed in He et al. [20]. We compared
our proposed algorithm with the baseline methods in terms
of MAE, RMSE and smoothness histogram. We used the
Wilcoxon signed-rank test to test whether the proposed method
and its components represent a significant improvement.

2) Performance across AMD stages and OCT devices: To
assess the viability of the method in a real-world clinical setting,
model evaluation was performed for the ablation study models
across the three major disease stages and scans acquired with
different OCT devices.

3) Validation on an external test set under domain shift: To
compare our method with the current state-of-the-art solutions
and to further test the generalization ability of the network
we evaluated the trained model on the external public dataset
from Duke. For comparison with the existing literature, results
are reported using the MAE and the standard deviation.

4) Uncertainty estimation: To assess the correlation between
the observed uncertainty and the displacements of the predicted
BM positions from the reference standard, we report the
Spearman correlation coefficient (SCC) on A-scan, B-scan and
volume level. We also inspected the 2D histogram between the
displacements per A-scan against the standard deviation per
A-scan in order to evaluate how well the uncertainty measure
can be used to predict the quality of the segmentation.

IV. RESULTS

A. Comparison with baseline and ablation studies

The performance of our approach in comparison with other
state-of-the-art and baseline methods is shown quantitatively
and qualitatively in Table II and Fig. 4, respectively. In terms
of baseline performance, Table II shows that Proposed w/o
L3, w/o TPS is superior to the 2D surface prediction methods
ReLayNet [11] and BFC-DN [32], and to the multi-step edge-
detection method DexiNed [13]. For DexiNed [13] in particular,
there are cases where the segmentation fails to provide any
positions at certain A-scans (Fig. 4 third and fourth row). With
this in mind, for quantitative evaluation, these A-scans were
ignored exclusively for DexiNed and thus the reported values
for this model are to be understood as a lower boundary of
the segmentation error.

While similar to ReLayNet [11], being a pixel-wise segmen-
tation method as well, the BFC-DN [32] model resulted in a
much more robust segmentation, although it still did not always
produce smooth surfaces, especially in noisy scans (Figure 4,
second row).

The ablation study (Table II) indicates a significant improve-
ment in all of the evaluation metrics (Wilcoxon p < 0.01)
when using the curvature term L3 in addition to L1 + L2.
The larger reduction in RMSE shows that the proposed loss
term is successful in dampening the large outliers. The post-
processing step with TPS further reduces the error compared
to the reference standard (Wilcoxon p < 0.05). Due to the
introduction of the curvature-based loss term the number of

Model MAE [µm] RMSE [µm]
ReLayNet ˜ [11] 5.73± 1.66 11.40± 10.11
DexiNed ˜ [13] 5.04∗ ± 1.63 7.53∗ ± 13.20
BFC-DN [32] 4.63∗ ± 1.62 6.58∗ ± 5.57
Proposed w/o L3, w/o TPS ˜ [20] 4.29∗ ± 1.73 6.34∗ ± 7.00
Proposed w/o TPS 4.11∗ ± 1.64 5.94∗ ± 5.36
Proposed 4.10± 1.63 5.88∗ ± 5.13

TABLE II: Performance of the baseline methods (DexiNed,
ReLayNet, BFC-DN) and influence of the curvature preserving
loss term L3 and thin plane splines post-processing (TPS) in the
proposed architecture. MAE: mean absolute error; RMSE: root
mean square error. Asterisk indicates Wilcoxon signed-rank
test p-value < 0.05 compared to the model in the previous row.
Note, that the missing values in the DexiNed segmentations
were left out from the calculation.

A-scans having a distance larger than 15µm was reduced to 0
and in general a smoother surface can be observed (Figure 5).
Ultimately, our method produces a more accurate segmentation
than other state-of-the-art methods.

A representative example of the influence of the curvature
term L3 is shown in Fig. 6. The proposed method with the
help of the curvature term correctly finds the BM as opposed
to Proposed w/o L3 w/o TPS. The associated uncertainty is
also adequately higher, signaling the lower confidence of the
BM position estimate in this region. In contrast, the absence
of L3 leads to a poor uncertainty estimation in some incorrect
segmentation regions.

B. Performance across AMD stages and OCT devices
The models’ performance for a particular AMD stage and

OCT vendor combination is detailed in Table III. In general, the
introduction of the curvature term improves on the segmentation
results across the disease stages and device vendors. The
proposed model was able to correctly handle more complicated
cases, including clefts [40] (Fig. 7), which were not identified
by Proposed w/o L3 w/o TPS. We hypothesise that the reason
for this is that the unusual curvature of the BM under a
cleft leads to a higher L3 value during the training and thus
the model is able to learn these cases, despite their relative
scarcity. The TPS-based post-processing further improves the
position regression. However, it resulted in a slight performance
drop in nAMD Cirrus scans, which was largely due to some
severely misplaced B-scans with bad image quality, showing
the limitations of the current heuristic to align the scans for the
3D interpolation. In general, the model performed 9% better
on Spectralis scans than on Cirrus scans. Possible contributing
factors were the skew in the training set, since it contained
more than twice as many Spectralis scans as Cirrus scans, and
the initial resizing of the input images, which yielded a better
effective digital axial resolution of 3.75 µm in Spectralis scans
while 3.91 µm in Cirrus scans.

C. Validation on an external test set under domain shift
Table IV shows a comparison of our method with state-of-

the-art methods reported on the public Duke dataset. The errors
are reported in pixel units, to match what has been published

~
~
~
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(a) ReLayNet (a) DexiNed (b) BFC-DN (c) Proposed

Fig. 4: Sample segmentation results (yellow) from ReLayNet (a), DexiNed (b), BFC-DN (c), and our method (d), with the
corresponding ground truth (green). Note that for DexiNed the segmentation result is not always present.

Stage/Vendor
Method Proposed w/o L3, w/o TPS ˜ [20] Proposed w/o TPS Proposed

iAMD Cirrus N/A N/A N/A
Spectralis 5.70± 4.75 5.38± 3.30 5.34± 3.38

nAMD Cirrus 7.50± 7.34 7.02± 6.65 7.14± 6.69
Spectralis 6.11± 5.18 5.94± 4.73 5.86± 4.49

GA Cirrus 6.11± 6.43 5.57± 5.48 5.39± 5.02
Spectralis 7.93± 9.87 6.86± 6.49 6.53± 5.34

All Cirrus 6.74± 6.90 6.24± 6.12 6.21± 6.02
Spectralis 6.28± 7.08 5.79± 4.83 5.67± 4.25

TABLE III: The RMSE (mean ± std) of the ablation studies in µm across different device vendors and AMD stages.

previously, but note that the values can be transformed into
µm unit by multiplying with 3.24, the digital axial resolution
of a Bioptigen OCT device [38].

On this dataset our method yields a better or equal MAE as
the current state-of-art result of Sousa et al. [13] (DexiNed),
albeit, with a larger standard deviation. It should be noted that
the results are not directly comparable: We tested our method
on the entire Duke dataset, in contrast to a reduced subset
used in [13], as 1) we did not train with any Duke data and
2) the test splits of Sousa et al. [13] and Sedai et al. [32]
were not publicly available. Our method was also trained on a
larger training set, but with scans from a distinct population
and different OCT devices. The results clearly show that our
method generalizes well to an external dataset and under an
image domain shift caused by a different OCT vendor.

Of note, we identified a few wrong reference annotations
in the dataset, with selected B-scans illustrated in Fig. 10.
This lowers the upper limit on the achievable segmentation
performance, as well as it influences the uncertainty estimation
evaluation. However, since they were found only in small
subset of the whole dataset, a comparison between the different

Method MAE Std

AMD DexiNed [13] 0.70 0.13
Proposed 0.70 0.24

Control DexiNed [13] 0.59 0.08
Proposed 0.47 0.11

All

RNN-GS [26] 2.07 4.31
CNN-GS [26] 2.31 4.60
FCN-GS [26] 1.53 3.50
CapsNet [28] 1.09 2.49

DeepForest [27] 1.24 0.52
WAVE [30] 1.90 3.01

BFC-DN [32] 0.97 0.86
DexiNed [13] 0.66 0.12

Proposed 0.63 0.23

TABLE IV: Comparison with related works on the Duke dataset
with respect to MAE and its standard deviation (Std.)

methods on this dataset is still meaningful.

D. Uncertainty estimation

The mean standard deviation (corresponding to the uncer-
tainty) at a volume level was found to be positively correlated

~


9

15 10 5 0 5 10 15
100

101

102

103

104

105

106

107

(a)

15 10 5 0 5 10 15
100

101

102

103

104

105

106

107

(b)

Fig. 5: Histogram of the distances between the BM positions
in adjacent columns for the reference standard (green line),
(a) ReLayNet (orange bars), Proposed w/o L3, w/o TPS (blue
bars) and Proposed w/o TPS (red bars), (b) DexiNed (purple
bars) and BFC-DN (light green bars) in our internal dataset.
The units are in px, where 1px ≈ 3.9 µm.

with the MAE (SCC = 0.74, p < 0.001). On the B-scan
level this correlation was observed to be weaker (SCC =
0.51, p < 0.001) and even more so on A-scan level (SCC
= 0.22, p < 0.001). The low correlation coefficient on A-scan
level results from the conservative nature of the uncertainty
estimation, as in a number of times the model is able to find the
correct BM position, however, with a high uncertainty (Fig. 8).
Although the correlation between the A-scan displacement and
the uncertainty measure is not high, the improvement resulting
from the TPS interpolation shows that even the A-scan-level
uncertainties can be used for correcting the possibly wrong
position regressions.

Fig. 8 provides an overview of the distribution of segmenta-
tion errors by the standard deviation quintiles, showing a strong
relation between the uncertainty measure and the displacement
error. The lower the estimated uncertainty is, the lower is the
share of A-scans with a displacement below 15µm, and A-scans
with higher uncertainties tend to have larger displacements.

The clear relationship could be found between the average
A-scan-wise displacement and the standard deviation values in
our internal dataset and on Duke (Fig. 9). For A-scans with
small uncertainty values, where the majority of them lies, the
uncertainty value was well-calibrated with the displacement.
However, for larger uncertainty values, the connection was less

10

20

30

Fig. 6: Representative example of the influence of the curvature
preserving loss term on segmentation performance for a region
of a B-scan. (Top) The relevant crop of the B-scan, with
the reference standard (green), the prediction without the
curvature term (blue), and the prediction with the curvature
term (red). In addition, a visualization of the associated A-scan
output mass function of the segmentation without (Middle-Top)
and with (Middle-Bottom) the curvature term. The calculated
corresponding uncertainties are also shown. (Bottom)

clear partly due to large confidence intervals as only 0.01%
of the A-scans had a standard deviation above 5.0µm.

We visually inspected the B-scans containing A-scans with
segmentation errors larger than 15µm and low uncertainty (σ <
1.0). The majority of such large error margins were caused
by misplacements in the reference standards, as exemplified
in Fig. 10. However, we also found one B-scan in the Duke
dataset, in which our method resulted in wrong BM positions
with a low uncertainty (Fig. 11).

V. DISCUSSION

The paper proposed a deep learning method that provides an
anatomically coherent segmentation of the BM in an accurate,
reliable and robust manner, regardless of the different retinal
morphologies and acquisition settings. In particular, we showed
that using a curvature preservation term in the loss function

Fig. 7: An example from our internal dataset where a cleft
was correctly captured by our method with L3 (red), while not
without L3 (blue).
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Fig. 8: The distribution of the displacement of the predicted
BM positions against the quintiles of the predicted uncertainty.
The lower is the uncertainty, the more accurate is the prediction.

allowed obtaining smoother segmentation and improved its
overall accuracy over the current methods. At the same time, it
helped to overcome the most common problem with the state-
of-the-art automated segmentation models, the discontinuous
or anatomically implausible surface position regressions. The
new term encodes a domain knowledge-based inductive bias
that BM is a smooth surface, allowing more data-efficient
learning and better generalization. Importantly, the method also
measures the confidence of its output, which allows identifying
and correcting the sections where the segmentation likely failed.
Lastly, to the best of our knowledge, this is the first work
where the proposed method underwent large-scale validation
on scans covering all three stages of AMD, with different
acquisition settings on both an internal dataset and well as
on an external test set, thus more accurately representing its
performance in a typical real-world clinical setting.

Management of AMD, the leading cause of blindness in
the developed world, would strongly benefit from AI-based
clinical decision support systems. Currently, the management is
largely based on a qualitative analysis of the retinal condition
as captured by the OCT. Due to an increasingly ageing global
population leading to an overwhelming amount of AMD
patients, a higher-level of precision and automation will be
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Fig. 9: The relation between the mean displacement and the
standard deviation rounded to one decimal place. The shaded
areas represent the 95% confidence interval of the mean.

Fig. 10: Sample B-scans from the Duke dataset with wrong
BM reference standard (green), but correct segmentation (red).

required as well as a shift toward quantitative OCT biomarkers.
Such hallmark biomarkers in AMD are drusen volume (iAMD
stage), PED volume (nAMD stage), and RPE thinning (GA
stage), and they all rely on the ability to delineate BM in an
automated, objective and repeatable manner. On the other hand,
overreliance on automation carries inherent risks, as AI systems
tend to provide overconfident predictions on both correct and
incorrect results. Providing well-calibrated confidence scores
gives an additional context for the interpretation of the results,
and thus increases the trust in these systems and helps the
clinical adoption of AI-based automated segmentation systems.

The proposed method has a few limitations. First, the current
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Fig. 11: The segmentation result from a B-scan from the single
scan in the Duke database, in which the proposed method
produced a wrong estimate (red) with low uncertainty. The
reference standard is shown as green.

surface prediction is largely based on A-scan properties and
a limited neighboring context is being exploited. In fact, we
conjecture that part of the performance improvement due to
the curvature loss-term comes from allowing the network to
utilize the global coherence of the segmentation, and to rely
on neighboring regions to improve the quality of the result in
the sections obscured by imaging artifacts or large anatomical
abnormalities. Further improvement could be a reliance on a
3D U-Net [41] to incorporate information from the adjacent
B-scans. Second, a limited number of B-scans still showed low
uncertainty, while segmenting the layer at the wrong position
(Fig. 11). Uncertainty calibration of segmentation methods is
an important and still open research question [42]. Third, our
pre-processing and post-processing steps are susceptible to eye
motion artifacts. We could envision, as part of future work,
that motion correction and segmentation can be trained to be
performed simultaneously.

In summary, the proposed work advances the state of the
art in achieving a robust and reliable layer segmentation
with powerful generalization in the context of retinal OCT
imaging. Its capability in providing anatomically coherent
results, confidence estimates, as well as large-scale and out-
of-sample validation, constitute important components of
trustworthy AI systems, a necessity for integration of AI into
clinical workflows [43]. Thus, we believe this work presents
an important step toward the development of trustworthy AI
tools for the management of patients with AMD.

SOURCE CODE

The source code of the proposed method will be made
publicly available upon acceptance at https://github.
com/ABotond/BM-Curvature.
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