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Abstract— Multi-phase CT is widely adopted for the di-
agnosis of kidney cancer due to the complementary in-
formation among phases. However, the complete set of
multi-phase CT is often not available in practical clinical
applications. In recent years, there have been some studies
to generate the missing modality image from the available
data. Nevertheless, the generated images are not guaran-
teed to be effective for the diagnosis task. In this paper, we
propose a unified framework for kidney cancer diagnosis
with incomplete multi-phase CT, which simultaneously re-
covers missing CT images and classifies cancer subtypes
using the completed set of images. The advantage of our
framework is that it encourages a synthesis model to ex-
plicitly learn to generate missing CT phases that are helpful
for classifying cancer subtypes. We further incorporate
lesion segmentation network into our framework to exploit
lesion-level features for effective cancer classification in
the whole CT volumes. The proposed framework is based
on fully 3D convolutional neural networks to jointly optimize
both synthesis and classification of 3D CT volumes. Exten-
sive experiments on both in-house and external datasets
demonstrate the effectiveness of our framework for the
diagnosis with incomplete data compared with state-of-the-
art baselines. In particular, cancer subtype classification
using the completed CT data by our method achieves
higher performance than the classification using the given
incomplete data.

Index Terms— Computed tomography, incomplete data,
kidney cancer, medical image synthesis, subtype classifi-
cation.

I. INTRODUCTION

Cancer subtype classification is a crucial step in patient
management, as treatment planning and prognosis prediction
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are dependent on pathological subtype of tumors [1]. For kid-
ney cancer, there are five major subtypes of renal tumors: clear
cell renal cell carcinoma (ccRCC), papillary renal cell carci-
noma (pRCC), chromophobe renal cell carcinoma (chRCC),
angiomyolipoma (AML), and oncocytoma. Medical imaging
is widely used for the non-invasive diagnosis of cancer, which
can prevent unnecessary biopsy or surgery [2], [3]. Typi-
cally, multi-modal medical images are required to accurately
diagnose patients since they provide complementary visual
information about lesions. For example, four-phase dynamic
contrast-enhanced computed tomography (CT), which captures
a series of CT volumes before and after contrast injection
at different time points, is used for differential diagnosis
of kidney cancer [4]. Multi-parametric magnetic resonance
imaging (MRI) is used for brain disease diagnosis [5].

However, the complete set with all modalities is often not
available in clinical practice due to different imaging protocols
among medical institutions, acquisition cost, image corruption,
and patient characteristics [6]. In addition, motion artifacts
caused by breathing, allergic reactions to the contrast material,
and systematic error in scanners also lead to phase missing [7].
Specifically, kidney cancer is usually asymptomatic and found
incidentally during screening for unrelated indications [8],
which may require less than four CT phases. It is very
common to perform two-phase or three-phase CT examination
for routine assessment in clinical practice. As repetition of CT
examination to acquire the four-phase CT for kidney cancer
diagnosis is undesirable due to the additional cost and radiation
exposure [9], [10], radiologists often diagnose lesions with
the available CT [4]. However, as differential diagnosis of
kidney cancer is challenging due to subtle differences in image
features of renal tumors, more CT phases can benefit the
diagnosis. Therefore, it would be useful to generate missing
CT phase without repetition of CT imaging for more accurate
preoperative diagnosis.

The incomplete data cannot be directly applied to multi-
modal analysis algorithms, which require the complete dataset
as an input. Some valuable information in the collected dataset
cannot be used if a diagnosis model can be trained using
only the available complete data. To deal with this issue, one
can extract features from each modality and then aggregate
features from multiple modalities to predict class labels [11].
Yuan et al. [12] proposes a multi-source feature learning for
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Fig. 1. Illustration of the proposed joint CT synthesis and cancer
subtype classification pipeline. The missing phase is synthesized to
accurately diagnose cancer using the completed multi-phase CT. The
diagnosed subtype label is highlighted in red.

brain disease classification with incomplete multiple heteroge-
neous neuroimaging data. Zhou et al. [13] proposes a latent
representation learning method utilizing the inter-modality
associations for alzheimer’s disease diagnosis with incomplete
multi-modality data [13]. On the other hand, imputation of
missing modality can be an effective strategy to better utilize
all available data for developing an effective multi-modal
diagnosis system [14].

Recently, generative adversarial networks (GANs) have
shown promising results on various image synthesis tasks
including medical image synthesis, aiming at producing im-
ages that are indistinguishable from real images [14]–[19].
There have been many studies in the literature to translate
images from one domain to another [15], [17], [19]. These
methods, however, do not take into account the input images
from multiple domains. As a more advanced model, Colla-
GAN [14] is designed for missing MRI contrast synthesis
in which the missing image is generated from all available
images using the multiple cycle consistency loss, achieving
a higher visual quality than other approaches. Zhang et al.
[20] employ a shape consistency loss, which is supervised by
segmentation networks, to maintain anatomical structures in
synthesized medical images, leading to improved segmentation
performance. Although existing methods successfully learn
to generate plausible images, there is no guarantee that the
generated images contain diagnostically meaningful visual
information, especially for cancer subtype classification. This
limits the practical applicability of the existing synthesis
models to the clinical diagnosis with incomplete data.

In this paper, we propose a GAN-based framework for diag-
nostically informative image synthesis, called DiagnosisGAN,
which jointly learns missing CT phase synthesis and cancer
subtype classification in a unified framework, as illustrated in
Fig. 1. Our key idea is to learn how to generate missing CT
images such that they are effective for classifying pathological
subtypes of tumor, while learning cancer subtype classification
from completed multi-phase CT with synthesized images.
Specifically, the training of the missing phase generator is
explicitly supervised by cancer subtype classification to en-
courage the generator to be aware of meaningful features for
differentiating cancer subtypes in CT images while learning

to synthesize images. DiagnosisGAN is designed based on
3D convolutional neural networks (CNNs) to synthesize and
classify 3D CT volumes. In addition, since the classification
of cancer subtypes directly from the whole CT volume is
difficult due to the small tumors, we extract the lesion-level
features using a pretrained 3D lesion segmentation network for
the subtype classification. In our framework, CT phase syn-
thesis and cancer subtype classification are jointly optimized
to further improve the diagnostic performance. We observe
that the performance of cancer subtype classification with
the completed multi-phase CT by the proposed model can
achieve higher performance than the classification with the
given incomplete CT in our experiments.

Our main contributions are summarized as follows.
• To the best of our knowledge, this is the first work to

generate missing CT phases to be helpful for diagnosis,
especially for cancer subtype classification.

• We propose a unified framework for multi-phase CT
synthesis and cancer subtype classification, namely Di-
agnosisGAN, where both tasks are jointly optimized.

• We design DiagnosisGAN using fully 3D CNNs for effec-
tive volumetric CT image synthesis, lesion segmentation,
and classification.

• Extensive experiments on in-house and external multi-
phase CT scans of kidney cancer patients demonstrate the
effectiveness of DiagnosisGAN on both CT synthesis and
subtype classification, compared to the baselines derived
from state-of-the-art approaches.

II. RELATED WORK

Generative Adversarial Network. GANs [16] have been
widely used in many image-to-image translation tasks and
shown great success in generating images that are indistin-
guishable from real images [14], [15], [17], [19], [21]–[24].
Pix2Pix [17] presented a general solution of image-to-image
translation using conditional GANs. CycleGAN [19] intro-
duced a cycle consistency loss to learn the mapping between
two different domains. StarGAN [15] and RadialGAN [25]
performed image translation across multiple domains using
a single generator with domain information. These methods
focused on translating images from one domain to another
without considering the images in the other existing domains.
Recently, CollaGAN [14] was proposed to utilize a multiple
set of input images to impute the missing domain image by
using the multiple cycle consistency loss, while retaining the
single generator.
Medical Image Synthesis. With the advancement of GANs,
medical image synthesis has been extensively studied for the
data augmentation [26]–[28], generation of missing MRI [14],
[29]–[32] or CT [18], [33], and for translation between MRI
and CT [20], [34]–[36]. In [26]–[28], synthetic CT images
are generated to augment training data for classification task,
but these methods do not address the problem of missing
data reconstruction from incomplete multi-modal data. Seo et
al. [18] and Liu et al. [33] applied a GAN for synthesizing
contrast-enhanced CT images from given non-contrast CT
images. CollaGAN [14] generated one missing MRI image
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Fig. 2. Overall framework of our DiagnosisGAN. The generator takes an incomplete multi-phase CT data as input and produces the synthesized
volume for the missing phase, whereas the discriminator tries to differentiate the real and synthesized phases. For each volume in the completed
CT, the feature map and the tumor segmentation map are extracted, and the lesion-level feature is obtained via masked average pooling. Finally,
the classifier takes the concatenated lesion-level features as input and outputs the cancer subtype prediction.

using the other three contrast images. Zhang et al. [20] and
Huo et al. [34] proposed an end-to-end synthesis and seg-
mentation network to ensure consistent anatomical structures
in synthesized volumes. ReMIC [32] utilizes representational
disentanglement strategy which decomposes images into a
shared content structure and separate styles across modalities.
Although these methods achieved impressive results in syn-
thesizing visually plausible images, they are not guaranteed
to produce diagnostically informative images, especially for
differential diagnosis of tumors.

Cancer Subtype Classification. Classifying cancer subtypes
is an important task since treatment planning and prognosis
prediction depend on the pathological subtype of tumor [4].
Multi-phase dynamic contrast-enhanced CT is often used for
non-invasive diagnosis of cancer due to complementary visual
features across phases [4], [37]–[39]. Recently, CNN-based
cancer subtype classification on multi-phase CT has been ac-
tively explored for liver lesions [40]–[43] and renal masses [3],
[44]–[47]. Huo et al. [41] proposed an automated detection and
classification framework to differentiate four major liver lesion
types using four-phase CT. Oberai et al. [45] investigated
the ability of CNNs to classify renal masses into benign
and malignant while also using four-phase CT. In the work
of [47], the performance of CNNs in classifying five major
subtypes of renal tumors is investigated and compared with
six radiologists to explore the clinical applicability. However,
previous approaches operate only on the complete four-phase
CT data [40], [41], [45] or the pre-defined combination of
three phases [3], [42], [43], hindering their use in the clinical
environment. Moreover, most of the existing methods are

based on 2D CNNs which cannot fully take advantage of
3D information of CT volumes. We aim at improving the
diagnostic performance when incomplete data is given, by
diagnostically helpful image synthesis.

III. METHOD

For brevity, we explain our method for the case where there
is one missing phase in the multi-phase CT scan, but our
method is not restricted to this case and can be extended to
the cases with two or more missing phases. Our goal is then
to generate the missing phase CT image Îm from the given
incomplete image set Im = {Ii}Ni=1,i̸=m , where 1 ≤ m ≤ N
and N is the number of possible phases, such that we can
accurately predict the patient’s cancer subtype p̂ using the
completed image set I+m = Im ∪ {Îm}, where p̂ denotes
the predicted probability distribution over subtype classes.
To achieve this, we jointly learn a missing phase generator
G : Im 7→ Îm and a cancer subtype classifier C : I+m 7→ p̂
in a unified framework. That is, DiagnosisGAN optimizes the
generator G to minimize the error of the classifier C. The
overall framework of the proposed method is illustrated in
Fig. 2. The details of our framework and loss functions are
described in the following.

A. Framework
Multi-phase CT synthesis. The generator G synthesizes the
missing image Îm by taking the incomplete image set Im
as input. We adopt the 3D U-Net architecture [48] which
consists of 3 × 3 × 3 convolutional layers, strided convolu-
tions, trilinear up-sampling layers, and skip connections, as
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Fig. 3. The architecture of the segmentation network S. The feature
map from the first two convolutional layers is used to extract the lesion-
level feature. MAP represents the masked average pooling.

the generator G to synthesize the whole 3D CT volume.
We use the trilinear interpolation for up-sampling instead of
transposed convolutions since they tend to produce checkboard
artifacts [49] in synthesized volumes. The target phase label
m is fed to the generator G with the input data Im in the
form of an N -channel binary mask m whose values are all
ones for the missing phase and all zeros otherwise, which
was introduced in CollaGAN [14]. To be more specific, we
concatenate images along channel dimension while the entry
of missing phase is filled with zeros, which can be expressed
as Ĩ = [I1, I2,0, . . . , IN ], where 0 is a zero tensor with the
shape of Ii ̸=m and [·, ·] denotes concatenation along channel
dimension. The concatenated images Ĩ are then combined with
the mask m, represented as

[
Ĩ,m

]
, and fed to the generator

G. By explicitly represents the index of missing phase in
the form of mask vector can help the network more easily
understand which phase is missing. We use a discriminator D
to distinguish the generated image Îm = G (Im) from the real
image Im. An extended 3D version of PatchGAN [17], which
uses strided 3D convolutions, is utilized for the discriminator
D to determine whether a local 3D patch is real or synthesized,
where D(I) represents the probability of input image I being
a real image.
Cancer subtype classification. Given the completed multi-
phase CT image set I+m, the classifier C predicts the cancer
subtype p̂. For accurate cancer subtype classification, lesion
features from four CT phases should be jointly considered.
Since classifying cancer subtypes directly from the whole CT
volumes is challenging due to the small tumor size, we extract
lesion-level features using a 3D tumor segmentation network
S, which is also based on 3D U-Net but with transposed
convolutions for up-sampling, as shown in Fig. 3. Given an
image I ∈ I+m, the segmentation network S outputs the
segmentation map ŝ = S (I), where the segmentation map ŝ
represents the predicted probability of each voxel belonging to
a tumor area, and the low-level feature map F is extracted by
the first two convolutional layers of the segmentation network
S. We then compute the lesion-level feature f by applying the
masked average pooling [50], [51] to the feature map F with
the segmentation map ŝ as follows:

fk =

∑
x∈X F k

x ŝx∑
x∈X ŝx

, (1)

where X is the set of all 3D spatial locations and k ∈

Algorithm 1 Training algorithm of DiagnosisGAN
Input: Training image sets with labels {I, s, p} and the

number of iterations of initial training T1 and joint fine-
tuning T2.

Output: Generator G, discriminator D, segmentor S, and
classifier C parameterized by θG, θD, θS , and θC , re-
spectively.

1: Initialize θG, θD, θS , and θC randomly.
2: Train S by minimizing Lseg using CT images in I and

segmentation masks in s. (θS is updated and fixed)
3: Pre-train C using CT image sets I ∈ I, trained S, and

cancer labels p ∈ p:

θC ← argminθCEI,p [− logC (I; p)]

4: Generate incomplete image sets Im from the complete
image sets I ∈ I by randomly dropping phases.

5: for t← 1 to T1 do
Compute discriminator loss LD

adv and update θD
Compute full objective L and update θG

6: end for
7: for t← 1 to T2 do

Compute discriminator loss LD
adv and update θD

Compute classification loss Lcls and update θC
Compute full objective L and update θG

8: end for

{1, 2, . . . ,K}, where K is the dimension of the feature
map F . We adopt the low-level features instead of higher-
level ones since local textures are more helpful than global
volume statistics for characterizing lesions. After obtaining
the lesion-level features for all I ∈ I+m, we concatenate
them together to form an NK-dimensional feature vector
F = [f1, f2, . . . , fN ], where fi is the obtained lesion-level
feature for the ith image in I+m. We use it to produce the final
cancer subtype prediction p̂ = C(F) through several fully
connected layers in the classifier C. We simply rewrite this
formulation as p̂ = C(I+m), since the segmentation network S
is fixed during the training of DiagnosisGAN. Our approach
enables the cancer subtype classifier C to focus on lesion-
related features of the image set I+m.

B. Loss functions
Adversarial loss. Given an incomplete image set Im, while
I ∈ I is the complete image set from the training image
dataset I, the generator G learns to synthesize the missing
phase image Îm = G (Im) that is indistinguishable by the
discriminator D, while the discriminator D learns to differen-
tiate between the generated image G (Im) and the real image
Im. This min-max problem is solved by using the least-square
adversarial loss [52], which showed better training stability
than the original GAN loss, defined as

LG
adv = EIm

[(D (G (Im))− 1)
2
], (2)

LD
adv = EIm [(D (Im)− 1)

2
] + EIm

[(D (G (Im)))
2
]. (3)

The generator G and the discriminator D aim to minimize
LG
adv and LD

adv , respectively.
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Reconstruction loss. A classical reconstruction loss is used
to guide the generator G, which is the voxel-wise L1 distance
between the generated image G (Im) and the target image Im,
represented as

Lrec = EIm,Im [∥Im −G(Im)∥1]. (4)

Training the generator G with only the reconstruction loss
Lrec leads to blurry results.
Segmentation loss. We use a segmentation loss to constrain
the generated image G (Im) to have a well-defined tumor
structure. Since structures of tumor in CT images contain
diagnostic information, preserving them while synthesizing
missing phase is helpful for the subsequent tumor analysis
task. Dice loss [53] is adopted instead of a cross-entropy
loss used in [20], [34], which quantifies the volume overlap
between the predicted segmentation map ŝ = S (G (Im)) and
the ground-truth segmentation map s ∈ s, where s is a set of
annotated segmentation masks for training images, defined as

Lseg = Eŝ,s

[
1−

2
∑

x∈X sxŝx∑
x∈X s2x +

∑
x∈X ŝ2x

]
. (5)

Cancer subtype classification loss. Given the completed
image set I+m, the classifier C learns to predict the cancer
subtype p̂ = C (I+m). We use the cross-entropy loss for the
training of the classifier C, which is defined as

Lcls = EI+
m,p

[
− logC

(
I+m; p

)]
, (6)

where p ∈ p is the true subtype class, p is a set of cancer
subtype labels for training cases, and C (I+m; p) represents the
predicted probability for the target class p.
Full objective. The goal of DiagnosisGAN is to generate
diagnostically informative images that are helpful for cancer
subtype classification. Toward this goal, we jointly learn the
generator G and the classifier C such that the generator G
tries to minimize the error of the cancer subtype classifier C.
Thus, our full objective can be formulated as

L = LG
adv + λrecLrec + λsegLseg + λclsLcls, (7)

where λrec, λseg , and λcls are the weights to balance different
loss terms. The generator G is trained to minimize this full
objective L, while the classifier C tries to minimize Lcls. This
joint optimization encourages the generator G to produce the
missing phase images that can lead to accurate predictions
of cancer subtypes by the classifier C. The overall training
procedure is summarized in Alg. 1, and more details are
described in Section IV-B.

IV. EXPERIMENTS AND DISCUSSION

A. Dataset
In-house dataset. We collect 249 multi-phase dynamic
contrast-enhanced CT scans of kidney cancer patients who
underwent nephrectomy for renal tumors in Seoul St. Mary’s
Hospital. This study was approved by the Seoul St. Mary’s
Hospital Institutional Review Board. The patients who un-
derwent abdominal CT scans within three months before
surgery are included. Among the 249 patients, 183 patients

TABLE I
PATIENT DEMOGRAPHICS, PHASE NUMBER, SUBTYPE AND TUMOR SIZE

DISTRIBUTIONS FOR TRAINING/TESTING DATASET.

Patients (n)
In-house dataset TCIATotal Training Testing

249 146 103 139
Age (years)
–40 33 19 14 13
40–50 58 39 19 26
50–60 70 36 34 41
60–70 57 33 24 30
70– 31 19 12 29
Gender
Female 113 63 50 37
Male 136 83 53 102
Phase number
Four-phase 183 146 37 -
Three-phase 66 - 66 139
Subtype
ccRCC 64 50 14 119
pRCC 53 26 27 14
chRCC 55 29 26 6
AML 48 25 23 -
Oncocytoma 29 16 13 -
Tumor Size (cm)
1–2 64 34 30

-

2–3 67 46 21
3–4 40 27 13
4–5 29 17 12
5–6 27 14 13
6–7 22 8 14

underwent complete four-phase CT scans (732 volumes),
while 66 patients underwent CT scans with three phases (198
volumes). Our dataset contains five major subtypes of renal
tumors: ccRCC, pRCC, chRCC, AML, and oncocytoma. The
subtype labels of all tumors are pathologically confirmed by
surgical resection. Although AML and oncocytoma are benign
tumors, they are often mistaken for malignant ones due to
the substantial overlap in imaging features, which may lead
to unnecessary biopsy or surgery [54]. The diameter of the
tumor ranges from 1 to 7 cm. There are four different contrast
phases in each patient’s CT data: non-contrast, arterial, portal,
and delayed phases. These phases are obtained at different
time points after injecting the contrast material. From the 183
complete CT cases, 37 patient cases are randomly selected
for the testing and the rest are used for the training. From
the training set, 29 cases are randomly selected and used for
validation. As a result, the dataset is divided into train/val/test
split of 65%/15%/20%. For each complete four-phase CT scan,
we generate four simulated incomplete CT scans by dropping
one of the phase, each of which has a different missing phase
(non-contrast, arterial, portal, and delayed missing phase), to
learn to synthesize images of various phases. In addition, 66
incomplete CT cases are used as real-world test cases. Dataset
characteristics of training and testing sets are summarized in
Table I. Voxel-level segmentation masks for kidney and tumor
in each CT volume are annotated for training the segmentation
network S. Since there is a large number of slices in CT
volumes to be annotated, 10 trained annotators first delineate
the kidneys and tumors, and these annotations are checked and
refined by an experienced radiologist (11 years).
TCIA. For external validation, we collect 139 incomplete
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three-phase CT scans from The Cancer Imaging Archive
(TCIA) [55], which is a large public database of cancer im-
ages. This dataset contains three RCC subtype classes (ccRCC,
pRCC, and chRCC). The benign cases (AML and oncocytoma)
are not available in TCIA. The characteristics of the dataset
are presented in Table I. We evaluate the performance on this
external test dataset for the models trained on our in-house
dataset to demonstrate the generalizability of our method.
Data preprocessing. The size of each slice in a CT volume
is 512×512, and the number of slices varies across scans.
The pixel spacing ranges from 0.53 to 0.94 mm, and the
slice thickness ranges from 1 to 7 mm. To deal with varying
voxel spacings, we resample all volumes to 1.5×1.5×3 mm3

voxel size. We clip the intensity values of voxels to [-40,
350] HU, which covers the intensity range of kidneys and
tumors, and normalize the values by the mean and standard
deviation calculated from the training dataset. Since there are
some spatial misalignments between phases due to the patient
movements, all phases are registered using DEEDS [56].

B. Implementation details

We implement DiagnosisGAN in PyTorch [57] and train
it with an NVIDIA TITAN Xp GPU. We crop 192×160×96
regions from the whole volume containing kidneys and tu-
mors for computation efficiency. We utilize the 3D U-Net
architecture [48] for the generator G and the segmentation
network S, where each 3×3×3 convolutional layer is followed
by instance normalization (IN) [58] and LeakyReLU [59] acti-
vation. Downsampling is performed using convolutional layers
with stride 2, and transposed convolution with stride 2 is used
for upsampling in the segmentation network S, while trilinear
interpolation is used in the generator G. The discriminator D
is composed of a series of 4× 4× 4 convolutional layers with
stride of 2, each followed by IN and LeakyReLU. Motivated
by PatchGAN [17], we use a local 88×88×43 volume patch
for discriminating whether it is real or fake. The classifier C
consists of three fully connected layers with ReLU activation,
and a softmax layer to produce the probability distribution.
We apply dropout on the first two fully connected layers with
a ratio of 0.5 to prevent overfitting. The parameters in (7) are
tuned by cross-validation, and obtained as follows: λrec = 1,
λseg = 0.1, and λcls = 0.1.

The whole training procedure of DiagnosisGAN takes the
following steps. First, we train the segmentation network S
using Dice loss [53] with stochastic gradient descent. We set
the batch size to 2 and the initial learning rate to 0.01, and the
learning rate is decreased by a polynomial decay with a power
of 0.9. Data augmentations including image rotation, scaling,
elastic deformation, flipping, and Gaussian noise addition are
applied. Then, we train the classifier C on complete CT
data with the help of the trained segmentation network S
using the classification loss Lcls, which is minimized by
Adam optimizer [60] with the learning rate of 0.0001 and
the batch size of 1. Next, we train the generator G using
the full objective L with the fixed classifier C and train the
discriminator D using LD

adv . Adam optimizer with the learning
rate of 0.0001 is employed, and the batch size is set to 1.

Finally, we jointly fine-tune the generator G with the full
objective L and the classifier C with Lcls using the dataset
completed by G.

C. Baselines and evaluation metric
Baselines. We compare our method with the following base-
lines:

• Classification with three-phase CT (Cls-3P). A naive
approach for diagnosis with missing data is to build a
model that learns to classify cancer subtypes using the
given three-phase CT. As there are four possible combi-
nations of phases for three-phase CT, we train a separate
classifier for each combination independently, resulting
in four distinct cancer subtype classifiers. We explore
whether a joint synthesis and classification approach can
performe better than this naive baseline for diagnosis with
incomplete data.

• CollaGAN. We use the multiple cycle consistency loss
for the reconstruction of multiple input images as pro-
posed in CollaGAN [14], which performed better on
missing MRI contrast synthesis than existing single input
image-based synthesis methods [15], [19]. We predict
cancer subtypes using CT phases generated by this base-
line and compare the diagnostic performance with our
results.

• Synthesis with segmentation (Syn-Seg). The use of
the segmentation network S as extra supervision on the
generator G is proposed in [20], [34], which aims at
producing synthetic CT images that are effective for the
segmentation task. We investigate the effect of this seg-
mentation supervision on the performance of diagnosis
with synthesized CT images, which has not yet been well
explored in the previous works.

• ReMIC. We extract the shared content features across
phases and reconstruct images using the extracted content
feature and phase-specific style representation, following
the method of [32]. To incorporate the style representation
in the image generation, the adaptive instance normaliza-
tion (AdaIN) [61] is used for the normalization layer.

Since baseline synthesis methods only generate a 2D slice
image but not a 3D CT volume, we implement baselines based
on 3D volume generator architecture used in our method. We
apply the key components of each baseline to the generator
to compare their effect on the downstream diagnosis task. We
have trained and tuned all the baselines in a similar way with
the proposed method to obtain the optimal performance for
each method.
Evaluation metric. To evaluate whether the synthesized im-
ages are diagnostically useful, we use the area under the
receiver operating characteristic curve (AUC) to measure the
cancer subtype classification performance. The AUC score for
each subtype class is measured using a one-vs-all strategy,
and the mean AUC (mAUC) is computed by averaging AUC
among all classes. The cancer subtype prediction result is com-
puted from the completed four-phase CT using the classifier C
trained with the original complete CT dataset. For the Cls-3P
baseline, the subtype prediction result for the given three-phase
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ℒ𝑎𝑑𝑣
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𝜆𝑐𝑙𝑠 = 0.1

𝜆𝑠𝑒𝑔 = 1.0
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𝜆𝑐𝑙𝑠 = 1.0

Fig. 4. The loss curves of DiagnosisGAN for training on different hyper-parameter settings.

TABLE II
QUANTITATIVE COMPARISON OF CANCER SUBTYPE CLASSIFICATION PERFORMANCES WITH 37×4 (SIMULATED) INCOMPLETE MULTI-PHASE CT

DATA.

Classifier input Method ccRCC pRCC chRCC AML Oncocytoma mAUC p-value
Three-phase Cls-3P 74.8 85.5 88.2 89.5 69.3 81.5 0.0473

Three-phase +
One synthesized

BaseSyn 73.5 84.4 88.5 86.7 72.3 81.1 0.0177
CollaGAN 71.0 84.5 88.6 86.6 73.7 80.9 0.0154
Syn-Seg 70.9 84.2 90.3 87.6 73.5 81.3 0.0405
ReMIC 72.9 84.2 89.5 87.7 70.9 81.0 0.0273
DiagnosisGAN (w/o joint) 73.6 86.8 90.6 88.9 74.5 82.9 -DiagnosisGAN 73.7 86.7 92.0 89.4 75.0 83.4

Four-phase Cls-4P 73.3 87.0 91.3 91.4 74.2 83.5 -

CT is obtained by the trained classifier for the corresponding
phase combination. The higher AUC value indicates that
the generated CT images are more effective for the subtype
classification. To evaluate the statistical significance of the per-
formance gain of our method, we perform a permutation test
with 10,000 permutations and compute p-value. We compute
voxel-to-voxel comparison metrics including peak-signal-to-
noise ratio (PSNR) and structural similarity index measure
(SSIM), but these voxel-wise image quality metrics are not
expected to reflect the effectiveness of synthesized images for
our target task of the cancer subtype classification. In addition,
with the intuition that a more accurate tumor segmentation
map can be estimated from a better synthesized image, we
apply the segmentation model on the synthesized image and
measure the Dice score.

D. Ablation study

We conduct an ablation study on the impact of hyper-
parameters, λrec, λseg , and λcls in (7), on the learning process
of the proposed DiagnosisGAN. We set λrec = 1 by default,
and then investigate the influence of the other parameters by
setting λseg ∈ {0.1, 1.0} and λcls ∈ {0.1, 1.0}. Fig. 4 depicts
the loss curves of DiagnosisGAN for training and validation
on different hyper-parameter settings. When λseg = 1.0 and
λcls = 1.0, LG

adv does not well converge, while the desired
behavior is LG

adv = LD
adv = 0.25 as we adopted the least-

square adversarial loss. For λseg = 0.1 and λcls = 1.0,
Lseg and LG

adv do not converge. Therefore, we consider the
hyperparameter setting shows the better convergence if LG

adv =
LD
adv = 0.25 and Lseg and Lcls gradually decrease with

less fluctuation through the training epochs. The experimental
results show that the convergence behavior for λseg = 0.1,
λcls = 0.1 is more stable than the other settings.

E. Quantitative results

We compare the performance of our DiagnosisGAN with
the baselines for incomplete CT diagnosis. For each complete
four-phase CT scan in the test dataset, four simulated incom-
plete CT scans are generated as described in Section IV-A,
resulting in 37×4 simulated test cases. We measure the cancer
subtype classification performance for all produced completed
CT scans on this set.

The results are summarized in Table II. “Cls-4P” refers
to the subtype classification on original four-phase CT using
the classifier C trained with complete data. It is desired to
achieve the performance close to this setting by generating
informative samples for incomplete CT scans. It can be seen
that the mAUC of Cls-3P is lower than Cls-4P, which is an
expected result as Cls-3P lacks some visual information for
characterizing tumors. For ccRCC, Cls-3p was better than Cls-
4p, which means that ccRCC can be better classified using
only three phases. “BaseSyn” means the generator G is trained
with only the adversarial loss LG

adv and the reconstruction
loss Lrec, which serves as a starting point for missing phase
synthesis. A lower mAUC is observed for BaseSyn compared
to Cls-3P, indicating that the synthesized images do not benefit
the subsequent classification task. Adding the multiple cycle
consistency loss of CollaGAN to the training loss of the
generator G does not bring a performance gain over BaseSyn
in terms of AUC. The representational disentanglement of
ReMIC also does not show an improvement in classification
performance. Supervising the generator G using the seg-
mentation network S (Syn-Seg) improves the classification
performance to some degree (0.2% mAUC). However, there
is still a large gap between these baselines and Cls-4P.

On the other hand, the proposed DiagnosisGAN without
joint learning (Diagnosis w/o joint) achieves the mean AUC
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TABLE III
QUANTITATIVE COMPARISON OF CANCER SUBTYPE CLASSIFICATION

PERFORMANCES WITH THE FULL TEST SET (37×4 SIMULATED + 66
REAL INCOMPLETE CASES).

Classifier input Method mAUC p-value
Three-phase Cls-3P 78.1 0.0227

Three-phase +
One synthesized

BaseSyn 77.8 0.0053
CollaGAN 77.3 0.0049
Syn-Seg 77.9 0.0080
ReMIC 77.7 0.0029
DiagnosisGAN 79.6 -

TABLE IV
QUANTITATIVE COMPARISON ON 139 INCOMPLETE MULTI-PHASE CT

CASES FROM TCIA.

Classifier input Method mAUC p-value
Three-phase Cls-3P 83.6 0.0738

Three-phase +
One synthesized

BaseSyn 83.4 0.0704
CollaGAN 83.2 0.0379
Syn-Seg 83.5 0.1656
ReMIC 82.0 0.0288
DiagnosisGAN 85.9 -

of 82.9%, surpassing all the baselines by a large margin. Here
the generator G is trained using the full objective L with
the fixed classifier C. The performance of DiagnosisGAN
is further boosted by joint optimization of the generator G
and the classifier C, resulting in the performance gain of
0.5%. We confirm that the mAUC gains of our DiagnosisGAN
over all the baseline methods are statistically significant (p-
value<0.05). Our approach achieves better AUC than Cls-4p
in some of the classes. Since we jointly optimize the generator
and the classifier, the generator learns to synthesize images that
can lead to accurate classification.

We further evaluate our DiagnosisGAN with the baselines
on the full test set containing both simulated and 66 “real”
incomplete three-phase CT cases. All models including base-
lines and DiagnosisGAN have the same parameters used in
the evaluation in Table II. Note that the performance of Cls-
4P cannot be measured on this set since the ground-truth
CT image for the missing phase is not available in a real
incomplete CT case. The results are summarized Table III. We
can observe a similar trend that DiagnosisGAN outperforms
all the baselines with statistical significance (p-value<0.05).

To explore the generalizability of our approach, we conduct
experiments on an independent test dataset from TCIA. Since
the TCIA dataset only contains three RCC subtype classes,
we first train a three-class classifier using RCC data in our in-
house dataset, and then evaluate the classification performance
of the models on the TCIA dataset. Note that in this experi-
ment, DiagnosisGAN is trained with the three-class classifier.
The results are summarized in Table IV. We can see that
DiagnosisGAN still achieves the highest performance among
all compared methods, which shows that our joint learning
method can generalize to external data.

These results demonstrate that our method produces more
diagnostically useful CT images than existing synthesis ap-

TABLE V
EVALUATION OF SYNTHESIZED IMAGE QUALITY IN TERMS OF PSNR,

SSIM, AND DICE SCORE (MEAN±STD).

Method PSNR SSIM Dice (%)
BaseSyn 20.14±1.98 0.6188±0.1009 74.0±24.1
CollaGAN 20.01±2.15 0.6221±0.1065 74.6±24.5
Syn-Seg 19.69±2.11 0.6123±0.1051 78.0±21.0
ReMIC 20.33±2.02 0.6333±0.1012 75.2±24.4
DiagnosisGAN 20.07±2.06 0.6243±0.1045 77.9±20.8

proaches so that it is much better to classify cancer subtypes
with the completed four-phase CT rather than the given three-
phase CT.

F. Evaluation of synthesized image quality

Fig. 5 shows several examples where the proposed Diagno-
sisGAN leads to correct cancer subtype classification. Here we
present example results from BaseSyn, CollaGAN, Syn-Seg,
ReMIC, and DiagnosisGAN for different missing phase cases.
For each case, the true cancer subtype label is shown in the real
image. The tumor areas are zoomed in for more details. We
predict the cancer subtype probabilities p̂ from the completed
four-phase CT I+m using the classifier C, and the subtype
class having the highest probability in p̂ is displayed in each
synthesized result Îm. As can be seen, with the synthesized
images of DiagnosisGAN, the cancer subtypes are correctly
classified in all cases, while CollaGAN and Syn-Seg lead to
misclassification in several cases. For example, in the case of
synthesizing portal phase (the first two rows), BaseSyn, Colla-
GAN and ReMIC misclassify the cancer subtypes as ccRCC,
where the true label is AML, while DiagnosisGAN yields the
accurate subtype prediction result. We can see that the tumor
regions synthesized by DiagnosisGAN have a similar visual
appearance to that of the real images, while the results of the
baseline methods show different image characteristics around
tumor regions, such as intensity and contrast, and contain some
artifacts that are not present in the real images. It has to be
noted that it is nontrivial to judge the diagnostic usefulness of
the synthesized CT images solely by visual inspection since
renal tumors exhibit subtle differences in image features across
cancer subtypes, leading to inter-observer variability [47], [62].
However, we can clearly see that synthesizing missing phases
by using DiagnosisGAN is beneficial for the cancer subtype
classification of hard samples, which are misclassified by the
baselines. We also visualize some failed cases in Fig. 6. For
the top example in Fig. 6, the size of the renal mass is 1cm,
which is too small to accurately differentiate tumor subtypes in
CT. The true subtype of tumor is AML, but it is misclassified
as chRCC by our method. Besides, for the bottom example,
the inaccurate segmentation of tumor boundaries could cause
misclassification, but this issue can be alleviated by performing
further refinement process.

Table V presents the evaluation of synthesized image
quality in terms of PSNR, SSIM, and Dice score. It can be
seen that our DiagnosisGAN achieves high performance in
terms of both voxel-wise metrics (PSRN/SSIM) and Dice
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Fig. 5. Qualitative comparison. Tumor regions are zoomed-in and indicated by red arrows. The actual cancer subtype labels are shown in the real
image. The predicted subtype class using the completed four-phase CT is displayed on each result, where the correct labels are underlined.

Fig. 6. Qualitative examples of failure cases. For bottom bottom example, the ground-truth tumor segmentation mask and the predicted
segmentation mask are overlaid with zoomed-image.

score. Syn-Seg and DiagnosisGAN achieve much higher
Dice scores than other baselines, which means that the
supervision of tumor segmentation can lead to well-defined
tumor structure in synthesized images. It should be noted that
better performance on voxel-wise image quality metrics does
not guarantee better diagnostic performance. Importantly,
our proposed method leads to large improvement of the end
task performance, i.e., cancer subtype classification, over the
baselines, as can be seen in Table II, III, and IV.

G. Phase-level analysis
To investigate the effectiveness of our model on the phase

level, we further break down the performance comparison be-
tween our method and baselines into individual missing phase
case. We report SSIM, Dice score, and mAUC of all methods
for each missing phase case. The results are summarized in
Table VI. We can find that when arterial phase is missing, our
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TABLE VI
QUANTITATIVE PERFORMANCE COMPARISON OF MISSING CT PHASE SYNTHESIS AND CANCER SUBTYPE CLASSIFICATION FOR EACH MISSING

PHASE CASE. THE BOLDED NUMBERS REPRESENT THE BEST RESULTS, AND THE UNDERLINE INDICATES THE SECOND BEST.

Method Non-contrast Arterial Portal Delayed
SSIM Dice mAUC SSIM Dice mAUC SSIM Dice mAUC SSIM Dice mAUC

BaseSyn 0.6155 57.9 80.6 0.6284 80.1 80.0 0.6287 75.6 80.0 0.6027 82.5 81.1
CollaGAN 0.5974 61.5 82.0 0.6364 78.7 79.6 0.6442 76.4 80.1 0.6102 81.6 80.9
Syn-Seg 0.6097 66.5 77.6 0.6414 80.2 78.3 0.5931 82.8 80.2 0.6019 82.6 81.3
ReMIC 0.6260 61.0 79.1 0.6453 78.7 79.2 0.6252 81.3 80.3 0.6368 79.8 81.0
DiagnosisGAN 0.6105 64.0 81.7 0.6549 82.2 82.0 0.6408 83.0 83.1 0.6210 82.4 83.4

TABLE VII
QUANTITATIVE RESULTS OF CANCER SUBTYPE CLASSIFICATION WITH

MANUAL SEGMENTATION MAPS.

Classifier input Method mAUC p-value
Three-phase Cls-3P 87.8 0.0107

Three-phase +
One synthesized

BaseSyn 87.7 0.0060
CollaGAN 87.7 0.0044
Syn-Seg 87.3 0.0017
ReMIC 87.6 0.0144
DiagnosisGAN (w/o joint) 89.7 -DiagnosisGAN 90.0

Four-phase Cls-4P 91.8 -

DiagnosisGAN achieves the best performance on all metrics,
which demonstrate the effectiveness of our framework for
both missing phase synthesis and cancer subtype classification.
When portal phase is missing, DiagnosisGAN achieves the
best Dice and mAUC, and the second best SSIM scores.
Specifically, in terms of mAUC, our model surpasses second
best performing method by a significant margin of 2.8%. The
highest cancer subtype classification performance is obtained
when delayed phase is missing.

H. Impact of segmentation quality

Since the segmentation map ŝ predicted by the segmentation
network S is used to produce the lesion-level features f
through masked average pooling for classifying cancer sub-
types, the performance of the classifier C depends on the
quality of the output segmentation map ŝ. It is expected
that the classification performance will be improved with
more accurate segmentation maps. To investigate how much
the quality of predicted segmentation influences the overall
classification performance, we use the ground-truth (manually
annotated) segmentation map s instead of the prediction output
ŝ for lesion-level feature extraction, that is, ŝ is replaced by s
in (1). Under this setting, the classifier C for complete four-
phase CT is trained and tested, and then used to evaluate all
synthesis methods. As the classifier C involves the training of
DiagnosisGAN, we train DiagnosisGAN again in this setting,
while the baseline models remain the same as the previous
sub-section.

The results are summarized in Table VII. As expected, the
mAUCs for all methods are much higher than the results ob-
tained using the predicted segmentations, which are presented
in Table II. For example, there is a gap of 8.3% for Cls-4P

TABLE VIII
QUANTITATIVE COMPARISON OF CANCER SUBTYPE CLASSIFICATION

PERFORMANCES WHEN TWO CT PHASES ARE MISSING (p-VALUE <

0.05).

Classifier input Method mAUC
Two-phase Cls-2P 79.8

Two-phase +
Two synthesized

BaseSyn 77.2
Syn-Seg 77.6
ReMIC 75.4
DiagnosisGAN (w/o joint) 81.0
DiagnosisGAN 81.6

Three-phase Cls-3P 81.5

(83.5% vs 91.8%) and 6.3% for Cls-3P (81.5% vs 87.8%).
These differences indicate the impact of the segmentation qual-
ity on the performance of cancer subtype classification in our
experiments. Enhancing the performance of the segmentation
network S may benefit the classification task, which is beyond
the scope of this paper. Note that on the test cases, the average
Dice scores of the segmentation network for kidney and tumor
are 0.969±0.014 and 0.856±0.131, respectively.

When comparing our method to the baselines, we observe
similar trends, that is, DiagnosisGAN w/o joint significantly
improves the performance of BaseSyn by 2.0% mAUC, and
DiagnosisGAN outperforms all the baselines by a large margin
with statistical significance (p-value<0.05). The joint learning
strategy further boosts the performance by 0.3% mAUC. We
can see that Syn-Seg does not bring a performance gain over
BaseSyn, unlike the result of the previous experiment. This
can be interpreted that the supervision of the segmentation
task helps improve the quality of the predicted segmentation
map from the synthesized image, but it does not provide
useful information for the differentiation of renal tumors.
These results demonstrate the necessity and effectiveness of
supervising the learning of the missing phase synthesis with
cancer subtype classification.

I. Cases of more than one missing phase
As mentioned in Section III, our method can be applied to

the cases with more than one missing phase. In these cases,
if there are Nm missing phases, the output of the generator
has Nm channel dimension, where each channel of the output
is a synthesized image for the corresponding missing phase
index. We conduct experiments to investigate the performance
of DiagnosisGAN for the case of multiple missing phases.
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TABLE IX
QUANTITATIVE COMPARISON OF CANCER SUBTYPE CLASSIFICATION

PERFORMANCES WHEN THREE CT PHASES ARE MISSING (p-VALUE <

0.05).

Classifier input Method mAUC
One-phase Cls-1P 73.8

One-phase +
Three synthesized

BaseSyn 68.0
Syn-Seg 68.2
ReMIC 69.2
DiagnosisGAN (w/o joint) 75.0
DiagnosisGAN 75.4

Two-phase Cls-2P 79.8

Table VIII shows the results for the case of two missing
phases. It can be seen that the mAUC of classification with
two-phase CT (Cls-2P) is lower than Cls-3P as expected. We
can observe that DiagnosisGAN outperforms all the baselines
by a large margin with statistical significance (p-value<0.05).
Interestingly, DiagnosisGAN achieves similar performance to
Cls-3P, which indicates the effectiveness of our method for the
diagnosis with missing phases.

Table IX shows the results for the case of three missing
phases. As can be seen, classification with given one-phase CT
(Cls-1P) shows much lower performance than Cls-2P, which
is as expected since generating three missing phases from one
CT phase image is a very challenging task. Meanwhile, our
DiagnosisGAN still outperforms all the baselines by a large
margin with statistical significance (p-value<0.05).

V. CONCLUSION

In this paper, we propose a novel joint learning framework
for missing CT phase synthesis and cancer subtype classifica-
tion, termed DiagnosisGAN, which learns to generate missing
images that are effective for classifying pathological subtypes
of the tumor. Extensive experiments on 249 in-house and
139 external multi-phase CT scans of kidney cancer patients
demonstrate the effectiveness and superiority of our framework
over the baselines for the diagnosis with missing data. Notably,
with the images generated by DiagnosisGAN, we even achieve
comparable performance to the diagnosis with real CT images.
We believe that our work can serve as a strong baseline for
future research in diagnostically meaningful medical image
synthesis. Our future work will focus on the case of more
than one missing phase and involve diagnosing lesions of other
organs, such as the liver.
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