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Abstract—Accurate and rapid detection of COVID-19 pneumo-
nia is crucial for optimal patient treatment. Chest X-Ray (CXR)
is the first-line imaging technique for COVID-19 pneumonia
diagnosis as it is fast, cheap and easily accessible. Currently, many
deep learning (DL) models have been proposed to detect COVID-
19 pneumonia from CXR images. Unfortunately, these deep
classifiers lack the transparency in interpreting findings, which
may limit their applications in clinical practice. The existing
explanation methods produce either too noisy or imprecise
results, and hence are unsuitable for diagnostic purposes. In this
work, we propose a novel explainable CXR deep neural Network
(CXR-Net) for accurate COVID-19 pneumonia detection with
an enhanced pixel-level visual explanation using CXR images.
An Encoder-Decoder-Encoder architecture is proposed, in which
an extra encoder is added after the encoder-decoder structure
to ensure the model can be trained on category samples. The
method has been evaluated on real world CXR datasets from
both public and private sources, including healthy, bacterial
pneumonia, viral pneumonia and COVID-19 pneumonia cases.
The results demonstrate that the proposed method can achieve a
satisfactory accuracy and provide fine-resolution activation maps
for visual explanation in the lung disease detection. The Average
Accuracy, Sensitivity, Specificity, PPV and F1-score of models in
the COVID-19 pneumonia detection reach 0.992, 0.998, 0.985 and
0.989, respectively. Compared to current state-of-the-art visual
explanation methods, the proposed method can provide more
detailed, high-resolution, visual explanation for the classification
results. It can be deployed in various computing environments,
including cloud, CPU and GPU environments. It has a great
potential to be used in clinical practice for COVID-19 pneumonia
diagnosis.
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I. INTRODUCTION

TABLE I
LIST OF ABBREVIATIONS AND ACRONYMS USED IN THIS PAPER.

Abbreviation Definition Abbreviation Definition
ACC Average Accuracy GAN Generative Adversarial Network
AI Artificial Intelligence GGO Ground-Glass Opacity
AUC Area Under the Curve LIME Local Interpretable Model-Agnostic Explanations
CAM Classification Activation Map LR Learning Rate
CLAHE Contrast Limited Adaptive Histogram Equalization PPC Probability Perturbation Curve
CNN Convolutional Neural Network PPV Positive Predictive Value
COVID-19 COronaVIrus Disease 2019 ROC Receiver Operating Characteristics
CT Computer Tomography ROI Regions Of Interest
CXR Chest X-Ray RT-PCR Reverse Transcription Polymerase Chain Reaction
DL Deep Learning SARS-CoV-2 Severe Acute Respiratory Syndrome Coronavirus 2
DSC Dice Score Coefficient TN True Negative
FN False Negative TP True Positive
FP False Positive XGBoost Extreme Gradient Boosting

S Ince December 2019, the world has been experiencing
a global pandemic from the emergence and spread of

the potentially fatal COVID-19 (COronaVIrus Disease 2019)
caused by severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) [1]. To optimise the management of this dis-
ease, accurate and rapid diagnosis is essential.

Reverse transcription Polymerase chain reaction (RT-PCR)
has been recognised as an important method for the diagnosis
of SARS-CoV-2 [2], [3]. However, the limited availability of
test kits could severely delay the diagnosis of COVID patients
who may need immediate quarantine for transmission preven-
tion. Combining with clinical signs and symptoms, medical
imaging is another widely used approach for the diagnosis
of COVID-19. CXR and Computer tomography (CT) are two
appropriate imaging modalities [4], [5], [6], [7]. The COVID-
19 pneumonia imaging characteristics on CT include extensive
consolidation, ground-glass opacity (GGO), symptom of acute
pulmonary injury, lung consolidation, lung fibrosis, bilateral
blotchy shadows, multiple lesions and wacky pavement pattern
etc.[8], [9]. Compared to CT, CXR has some advantages: it is
faster, cheaper and more widely accessible, and has a low
level of radiation exposure to patients [5]. However, CXR
has poor sensitivity and CXR-based medical image analyses
have shown high positive predictive values for the detection of
COVID-19 related pulmonary opacity. Therefore, developing
fast and easily interpretable CXR analysis techniques are
extremely useful for timely, trustful and reliable diagnosis of
COVID-19.

Over the past several years, deep learning (DL) methods
have shown enormous potential in medical imaging analyses
for disease detection. With increasing publicly available CXR
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images, various deep learning-based methods have been exten-
sively used in the diagnosis of lung related diseases including 
COVID-19 [10], [11]. These methods can be broadly divided 
into two related categories: Organ area segmentation [12],
[13], [14], [15] and Lung disease diagnosis (classification)
[16], [17], [18].

Organ area segmentation is a useful way to improve the 
accuracy of diagnostic models through reducing the effect 
of disease-unrelated information in a CXR image. However, 
it usually requires manual annotation from clinical experts, 
which is labour-intensive and costly. With the help of deep 
learning-based semantic segmentation algorithms, automatic 
annotation of specific o rgans i n m edical i mages c an be 
achieved. In [13] and [14], the authors used deep learning-
based segmentation methods for organs and lesions recogni-
tion.

Deep learning models have also been used extensively for 
the diagnosis of lung diseases through image classification. In 
[19], a convolutional neural network called COVID-Net was 
designed to detect COVID-19 using CXR images consisting 
of only 358 COVID cases and 13,445 non-COVID cases, with 
an accuracy of 92.6%. Almost all the most commonly used 
deep learning-based classifiers, s uch a s A lexNet, DenseNet, 
ResNet etc., have been used for the lung disease classification 
on CXR images and have achieved a reasonably high accuracy 
[10], [20]. In [21], a deep learning-based method using deep 
feature extraction and eXtreme Gradient Boosting (XGBoost)
[22] was developed for identifying COVID-19 patients. The
proposed method achieved an accuracy of 98.71% and F1-
score of 99.25% in COVID-19 diagnosis. However, these
deep learning models are black box models which are not
straightforwardly explainable to clinicians, leading to a limited
understanding of predictions. Some researchers have tried to
use existing artificial intelligence (AI) explanation methods to
interpret the image classification r esults o f p atients b ased on
CXR images [23], [24], [25], [26]. Unfortunately, the results
obtained in a pixel level from these methods were either too
noisy or imprecise with low resolution, and hence are not
suitable for medical diagnostic purposes.

To address the aforementioned limitations, particularly with 
respect to understanding the classification r esults, t he current 
work presents an explainable classification model for COVID-
19 pneumonia identification w ith e nhanced v isualisation of 
feature representations, named CXR-Net. The contributions of 
this paper include:

1) From a clinical perspective, a novel deep learning-based
COVID-19 pneumonia diagnosis tool has been designed
and implemented, allowing for both accurate lung dis-
ease classification and pixel-level visual explanation.
This tool can be used to assist radiologists in screening
patients with suspected COVID-19, thereby reducing the
waiting time for clinical decisions.

2) From a methodological perspective, a novel Encoder-
Decoder-Encoder based multitask (classification and ex-
planation) deep learning model has been designed. It
consists of two jointly trained encoders for classification.
The first one is used to learn the features of original CXR
images and the second one is used to learn the features

of the representation image generated from the decoder.
The representation image between the two encoders acts
as a proxy to visualise the most relevant infected areas
for COVID-19 pneumonia diagnosis.

3) The proposed method has been validated against both
publicly available and the private hospital datasets,
which demonstrates the model generalisability and ro-
bustness for Lung-related and COVID-19 diseases.

The remainder of this paper is organised as follows: Section
II reviews related work. Section III describes the datasets
and methods; Section IV presents the experiment design and
results; and Section V concludes the work.

II. RELATED WORK

In this section, we review two types of deep learning-
based applications related to our work, including Organ area
segmentation and Lung disease diagnosis (classification).

A. Organ Area Segmentation

Extracting different areas and lesions from CXR images
can provide doctors with more focused relevant information in
diagnosing and quantifying lung diseases [27]. Deep learning-
based image segmentation methods have been used to detect
the abnormalities in CXR images. In [13], Gal et al. proposed
an attention U-Net based adversarial architecture for lung areas
segmentation using CXR images of COVID and Non-COVID
patients. The method performed well on the CXR images of
unknown datasets with various patient characteristics, attaining
a DSC (Dice Score Coefficient ) accuracy of 97.5%. In [28],
Vision Pro Deep Learning (A Deep Learning Software from
COGNEXs), was used to classify and segment the regions
of diseases and lungs from CXR datasets. The results were
compared with various state-of-the-art Deep Learning models
from the open-source community and achieved an F-score of
95.3% . In [14], Saeedizadeh et al. proposed a deep learning
framework for organ and abnormal area segmentation. The
popular U-Net architecture through adding a connectivity to
promote regularisation was used in their segmentation model.
The trained model was able to achieve a high accuracy in
detecting COVID-19.

B. Lung Disease Diagnosis

In recent years, deep learning approaches have been in-
creasingly used for lung disease diagnosis based on CXR
images. Pranav Rajpurkar et al. [20] developed a 121-layer
DenseNet model [29], called CheXNeXt. They used frontal
view chest radiographs to determine the presence of fourteen
distinct thoracic diseases, such as pneumonia, pleural effusion,
pulmonary masses and nodules etc. The model was trained
and validated on the ”ChestX-ray8” dataset [30], a public
repository of Chest X-ray images including 108,948 frontal
view X-Ray images with eight lung disease labels (Atelectasis,
Cardiomegaly, Effusion, Infiltration, Mass, Nodule, Pneumo-
nia and Pneumothorax). Ivo M. Baltruschat et al. [31] used
the same datasets to investigate the depth sensitivity of deep
learning models on lung disease classification by testing
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ResNet models [32] with three different depths (layers), 34, 
50 and 101.

The deep learning-based classifiers h ave a lso b een used 
for the diagnosis of COVID-19. There are two types of 
methods for COVID-19 detection, transfer learning/fine-tuning 
and novel architectures. Transfer learning/fine-tuning i s a 
technique for initialising a model with the weights of a pre-
trained model instead of using random values. This approach 
is usually based on existing model structures and uses the 
weights pre-trained on a large amount of more general data. 
Transfer learning/fine-tuning n ormally p erforms w ell w ith a 
limited dataset related to more specific problems in the domain 
of interests. In [33], [34], [35], [36], various classification 
architectures, including AlexNet [37], VGG [38], ResNet 
[32], Inception [39] and DenseNet [29], were selected for a 
comparative study of COVID-19 diagnosis. The weights of 
models pre-trained on ImageNet datasets were transferred for 
model initialisation. A high diagnostic accuracy of COVID-
19 (Acc >90%) was achieved in their study on public CXR 
datasets. This outstanding performance showed that the deep 
learning-based classifiers can accurately and effectively detect 
COVID-19, thereby providing potential benefits for improving 
patient care in clinical practice. Narin et al. [35] used CXR 
images of COVID-19 and non-COVID patients to fine-tune 
a ResNet-50 deep learning model for COVID-19 automatic 
classification, a nd a chieved a n a ccuracy o f 9 8% .  Zhang 
et al. [26] fine-tuned a  d eep l earning m odel t o distinguish 
between COVID-19 patients and pneumonia patients from a 
CXR image dataset of 70 patients diagnosed with COVID-
19 and other pneumonia. The proposed deep learning model 
could reach a sensitivity of 90% in the detection of COVID-
19 pneumonia and a specificity o f 8 7.84% i n t he detection 
of non-COVID-19 pneumonia. However, existing pre-trained 
models were trained on general-purpose conventional images. 
CXR images have their own range of values and spatial 
features. Transfer learning/fine t une f rom g eneralised pre-
trained models might introduce false biases [40].

Another approach to using deep learning for COVID diag-
nosis is to develop novel architectures for medical image data. 
Ozturk et al. [41] developed a deep learning model, called 
DarkCovidNet, to perform single and multiple category clas-
sification on CXR images of COVID-19 and other pneumonia 
patients. The whole dataset included 127 COVID-19, 500 
non-infected and 500 other infectious pathogens pneumonia 
cases. The model produced an accuracy of 98% for binary 
classification a nd 8 7.02% f or m ulti-category classification. 
In [42], a capsule network-based framework (COVID-CAPS) 
was designed to detect COVID infection from CXR and CT 
images. One benefit o f u sing a  c apsule n etwork i s t hat it 
performs well with limited data. In [43], a lightweight deep 
neural network was designed to accurately detect COVID-
19, bacterial pneumonia and normal cases from CXR images. 
In that work, a generative adversarial network (GAN) was 
trained to generate high quality COVID-19 images for model 
training in order to solve the problem of insufficient training 
data. Table. II shows the summary of the related work on the 
COVID-19 diagnosis based on the deep learning approaches.

Due to the existence of multiple non-linear structures in

TABLE II
THE SUMMARY OF RELATED WORK ON COVID-19 DIAGNOSIS BASED ON

DEEP LEARNING APPROACHES.

References Categories Deep Learning Algorthms
[33]

Transfer learning

VGG19, MobileNet v2, Inception, Xception, Inception ResNet v2
[34] ResNet, Inception-v3, Inception ResNet-v2, DenseNet169, NASNetLarge
[35] ResNet50, ResNet101, ResNet152, InceptionV3 and Inception-ResNetV2
[36] Inception
[6] MobileNet,VGG, Xception, Inception ResNet v2, Inception
[41]

Novel architecture

DarkCovid-Net
[42] COVID-CAPS
[43] Lightweight GAN
[44] DeTraC
[45] CoroNet

deep learning networks, deep learning-based classification
methods are always considered as ”Blackbox” approaches
[46]. The state-of-the-art deep learning-based methods have
been increasingly used in clinical prediction for healthcare, and
have achieved reasonably high performance. However, these
models do not provide the explanation to the predictions, lead-
ing to a limited understanding of the model prediction [47].
So far, there already have several visual explanation methods
for the prediction results from deep learning-based models,
such as saliency map [48], classification activation map (CAM)
[49], Gradient-CAM(Grad-CAM)[50] and their variants. When
using the saliency map for the prediction explanation, it is
assumed that the positive gradient of a predicted category
with respect to input image should ensure that category. The
saliency map could provide a high-resolution gradient result
with the same size as the image [51]. Class Activation mapping
(CAM) was also a widely used explanation method for the
object localisation extraction. In the CAM method, the top
fully connected layers in a classification model are replaced
with convolutional layers to keep the object locations, thus
determining the spatial distribution of discriminative areas for
the estimated category. However, the CAM changes the model
architecture which requires retraining the model, thus limiting
the use of this method. Grad-CAM is a development of the
CAM technique that retrains the original architecture and
generates weights by pooling the gradient. Since its inception,
this technique has been widely applied as it can be used to
all deep learning-based classification models [50]. In [23], the
author tested Local Interpretable Model-agnostic Explanations
(LIME) and CAM methods to explain the prediction from the
state-of-the-art deep learning classification methods on CXR
datasets. Brunese et al. [24] used the Grad-CAM method to
automatically detect the areas of interest in the CXR images
corresponding to the COVID-19 disease.

III. THE PROPOSED METHOD

The aim of this study is two-fold: (1) to classify a CXR im-
age into one of the four classes: Healthy, Bacterial pneumonia,
non-COVID Viral pneumonia (ViralN) and COVID-19; and (2)
to highlight virus infected areas on the image simultaneously.
Therefore, we proposed a novel deep learning framework for
classification and pixel-based visual explanation in an end-
to-end manner. Fig. 1 provides the overview of the proposed
solution consisting of two major components:

1) An Image Preprocessing module including Lung Seg-
mentation and Image Enhancement steps.
In the lung segmentation step, the lung areas are au-
tomatically extracted from CXR images based on a
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segmentation model, U-Net. Then, the Contrast Limited
Adaptive Histogram Equalization (CLAHE) is applied
to the segmented images to enhance their contrast.

2) A CXR-based Deep Neural Network (CXR-Net) for
Image Classification and Explanation model.
The proposed deep learning model, CXR-Net, is a
convolutional neural network(CNN) based multi-task
Encoder-Decoder-Encoder, consisting of two jointly
trained encoders for classification. The two encoders
are used for the classification task, and the decoder
is used to generate visual explanation from the deep
features extracted by the encoder. In this study, the first
encoder is used to obtain the features of original CXR
images while the second encoder is used to extract the
features of the reconstructed images from the decoder.
The representation image between the two encoders acts
as a proxy to visualise the most relevant areas associated
with COVID-19 pneumonia diagnosis.

These two components are detailed in the following two
subsections.

Fig. 1. The overview of the conceptual framework of the proposed model

A. Image Preprocessing

a) Lung Segmentation: To improve the classification
performance, the lung areas are extracted before performing
image classification.

In this study, U-Net, a commonly used deep learning-
based image segmentation model, was selected. Its structure
is shown in Fig. 2, which is the first architecture proposed
for biomedical image segmentation [52]. It forms a ladder-
like structure by concatenating the encoder feature maps with
upsampled feature maps from the decoder at each layer.

Fig. 2. The structure of the segmentation model, U-Net

The skip concatenation connections in the design allow the
decoder to re-learn relevant characteristics that are lost during
the encoder’s pooling processes. The U-Net model has a
simple and fast design, including a contracting path to capture
the environment and a symmetric expanding path to enable
accurate localisation. A hybrid loss mixed with Dice and
Cross entropy (CE) loss was used as the loss function in
the semantic segmentation networks. The loss function in this
work is defined as:

Loss = LossCE − log ( Loss Dice ) (1)

LossDice =
2× TP

2× TP + FP + FN
(2)

where TP, FP and FN are true positive, false positive, and
false negative, respectively.

b) Image Enhancement: The grey X-rays images are
typically low contrast, which makes their analyses challenging.
Image enhancement is a necessary step for improving the im-
age quality and information content before further processing.

In the process of image enhancement, the most frequent
pixel intensity values are often extended to the upper range of
the intensity domain [0,255] by conventional histogram equal-
isation, bringing their cumulative distribution function (CDF)
closer to the uniform distribution. However, this method might
over-amplify noise in near-constant regions. Instead, in this
work, the Contrast Limited Adaptive Histogram Equalization
(CLAHE) method was chosen to enhance the contrast of CXR
images. Before computing the CDF, it clips the histogram of
an image at a predetermined value to spread this portion of
the image evenly throughout all histogram bins. Applying the
CLAHE to an X-ray image produces visually appealing results,
as shown in Fig. 3.

Fig. 3. Example of CXR images before and after image enhancement with
the CLAHE method
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B. A CXR Based Multi-task Deep Neural Network (CXR-Net)
for Disease Classification and Explanation

To generate a pixel-level visual explanation result alongside 
classification, w e h ave p roposed a  C XR-based d eep learn-
ing neural Network model for classification a nd visualisa-
tion explanation, named CXR-Net. The high-level conceptual 
framework of the proposal model is shown in Fig. 4. It 
is an Encoder-Decoder-Encoder structure, consisting of two 
encoders and one decoder.

The Encoder-Decoder structure is commonly used in the 
generator of GAN models [53] and U-Net based segmentation 
models [52]. Training the encoder-decoder model requires 
equal-sized labelled samples, which in this work is the anno-
tation of the pathogenic regions. However, accurately labelling 
the pathogenic areas for COVID-19 is a difficult work because 
currently the pathogenic area is still not fully understood. We 
only have category labelling data. Thus, an encoder is added 
after the encoder-decoder to allow the model to be trained with 
category samples.

The first e ncoder i n t he m odel i s a  C NNs s tructure for 
feature extraction, which is used to encode the input image 
into feature representations. Then, the representation is fed 
into a classifier for identifying the disease types. The decoder 
is used to reconstruct a heat-map with the same size as the 
input from the extracted feature representation.

The second encoder has the same structure as the first one, 
which is used to encode the reconstructed image from the 
decoder. It is jointly trained with the first encoder to make sure 
that the reconstructed image represents the most influential 
areas and features for classification. The second encoder shares 
the same weights as the first e ncoder, a nd u ses a  f usion loss 
with a combination of the loss functions of both encoders. 
During the model training, the parameters of the decoder are 
iteratively updated to make the generated image keep the most 
relevant features for identifying the disease.

The model is detailed as follows:
a) An Encoder-Decoder Structure: In the model, an

encoder-decoder architecture with skip concatenation connec-
tions is adopted, as shown in Fig. 4. The network archi-
tecture consists of 5 encoder layers and 5 decoder layers.
The skip concatenation connections are introduced between
each encoder and decoder layers. These connections allow the
decoder at each level to re-learn relevant features lost during
the encoder’s pooling operations. The decoder follows the
encoder’s structure by adding an up-sampling layer to bring
the deep features back to its original size. The objective of
upsampling (U) is to generate pixels around and in between
existing pixels in order to achieve the required size. The
upscale is set to two for each decoder block to ensure that
its output has the same size as the forward encoder output.
In this model we use an improved method, known as pixel
shuffle with ICNR initialisation, which makes the gap filling
between pixels much more effectively and avoids generating
checkerboard artifacts [54].

The structure of the decoder is shown in Fig. 5 and can be
formulated as:

Decoder n = F (U ( Decoder n−1) + Encoder 4−n) (3)

where U(Decoder) denotes an up-sampling operation on a
decoder’s outputs, and F is a combination operation on the
concatenation of the feature outputs from the up-sampling
operation and the encoder. The F operation contains a rec-
tified linear unit (ReLU) and two convolution blocks. Each
convolution block consists of 3x3 2D convolution layers,
batch normalization and ReLU. In this study, the leaky ReLU
activation function [55] with a negative slope of 0.1 is applied
in the decoder to replace the regular ReLU activation. When
the unit is not active, it allows for a low gradient. This unit
outperforms the traditional ReLU, especially in an encoder-
decoder design [56], [57], [58]. The equation of leaky ReLU
is defined as :

LeakyReLU (x) =

{
x× slope ,x < 0

x,x ≥ 0
(4)

b) Encoders for Classification: The proposed model has
two encoders. The first one directly extracts features from the
input image, and the second is to extract the features from
the reconstructed image by the decoder. The two encoders
share the same weights. After the feature extraction by the
two encoders, the extracted feature maps are transformed into
a classifier for disease type identification through an average
pooling layer and a fully connected layer. The classifier can
adopt most of existing CNN classification architectures. In
this work, we evaluated four most commonly used encoder
architectures, AlexNet [37], VGG16 and 19 [38], ResNet
34 and 50 [32], and Inception-V3 [39]. Their structures are
illustrated in Fig. 6.

c) Fusion Loss: The loss function of the model is de-
signed to jointly minimise the losses of the two classifiers.
The cross-entropy loss is selected as the classification loss
function. The fusion loss function is defined as:

Loss = LossCE1 +LossCE2 (5)

LossCE = −
C∑
i

ti log (pi) (6)

The LossCE1 and LossCE2 are the loss values of the first
encoder and the second encoder, respectively, and pi is the
probability of class i.

IV. EXPERIMENTAL EVALUATION

A. Dataset Description

In this work, 6499 CXR images were used for model
training. Among them, there were 636 cases of COVID-19.
The dataset was collected from multiple public and private
sources: 5,863 cases from [59], 116 COVID-19 cases from
[60], [61], 479 COVID cases from [62], [63] and 41 images
from COVID-19 patients in the Critical Care unit at the
Whiston Hospital, St Helen’s & Knowsley NHS Trust, UK.
This research has been approved by the Health Research
Authority (HRA).

All the images were categorised into one of three classes:
Healthy, Bacterial Pneumonia and Viral Pneumonia. The
COVID-19 CXR images were labelled as Viral Pneumonia.
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Fig. 4. The architecture of the proposed classification and explanation model, CXR-Net

In this work we split the cases of Viral Pneumonia into two
groups, non-COVID-19 viral pneumonia (ViralN) and COVID-
19. The images from V7lab provided a pixel-level polygonal
lung segmentation on CXR images [64]. Fig. 7 shows some
typical samples of CXR images, and Fig. 8 displays two
typical examples of lung segmentation labels.

B. Performance Evaluation Metrics

To evaluate the performance of the lung segmentation
model, Intersection over Union (IoU), a commonly used
metric, was used. It is defined as:

IoU =
Area of Overlap
Area of Union

(7)

It is the area of overlap between the predicted segmentation
and the ground truth divided by the area of union between the
predicted segmentation and the ground truth. IoU ranges in
value from 0 to 1.

Due to obvious class imbalance in the dataset (636
COVID19 images vs 5863 Non-COVID19 images), we eval-
uated the classification performance of the proposed archi-
tecture (Especially for COVID-19 recognition) using multiple
performance metrics: Sensitivity, Specificity, Positive Predic-
tive Value (PPV), F1 score, Average Accuracy and Confusion
Matrix. These metrics can be calculated from the true positive
(TP), the true negative (TN), the false positive (FP) and the
false negative (FN). The metrics are defined as follows:

Sensitivity =
TP

TP + FN
(8)

Specificity =
TN

TN + FP
(9)

PPV =
TP

TP + FP
(10)

F1score =
Sensitivity × PPV
Sensitivity + PPV

× 2 (11)

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final 
publication. Citation information: DOI10.1109/JBHI.2022.3220813, IEEE Journal of Biomedical and Health Informatics



Fig. 5. The structure of the decoder in the model

Accuracy =
TP + TN

TP + TN + FP + FN
(12)

We also used the receiver operating characteristics (ROC)
and the area under the curve (AUC) for performance evaluation
of classification models. ROC plots are generated using false
positive rates and true positive rates, after plotting the region
of points under the curve, called AUC. If the AUC value is
close to 1, the model will be considered to be performing
well; if the AUC value is close to 0, then the model will
be considered to perform poorly. In this paper, both ROC
and AUC for evaluating COVID-19 detection performance are
provided.

Furthermore, Probability Perturbation Curve (PPC) was
calculated to evaluate the quality of visual explanation. The
essence of the PPC is to proportionally remove the important
regions in an image to produce the perturbations of variables to
the original image, and then to evaluate how the classification
performance responds to the changes of different portions in
pixel removals (perturbations). For instance, when removing
the large portion of an important region from an image, the
classification performance is supposed to be lower than that
without removal. Therefore, the greater the perturbation to
the classifier, the more important that removed region. Here,
the value of a pixel in the visualisation result determines its
importance for classification. Starting from removing those
pixels with high values in the explanation result, a perturbed
images will be generated. Then, the perturbed image is fed to
the trained classifier to get the probability of its corresponding
type. A curve can be plotted following the change of points
with coordinates (x, p(f(x))) during the pixel removal proce-
dure. The coordinate, x, starts from 1 to 0, and the coordinate,
f(x), denotes the removal procedure in which all the pixels
with a value of x are replaced with zeros. So, f(0) means no
change to the original image, and f(1) means all the pixels
with a value of 1 (the most important regions detected by
models) will be assigned with zeros. p(f (x)) is the probability
calculated from the classifier based on the processed image.

This approach will be used for all COVID-19 images, and
the probabilities are averaged to produce the curve. The area
over probability perturbation curve (AOPPC) is calculated to
evaluate the quality of visual explanation and is formulated
as:

AOPPC =
1

10

10∑
i=1

1∑
x=0.1

(p(f(0))− p(f(x))) (13)

C. Model Training Setup

This model was developed using Pytorch 1.6 and Fastai
[65]. All the experiments were trained on a workstation
equipped with an Intel®Xeon®E Processor E5-2650, NVIDIA
GeForce RTX 2080 Ti, and 64GB of RAM. Fastai is a
deep learning model training library that can quickly and
easily provide standardised training results in deep learning
domains. It provides researchers with custom APIs that can
be mixed and matched to build new models. In this work,
the optimisation technique used in the model was Adam (A
Method for Stochastic Optimisation) with a batch size of 12. In
general, the learning rate (LR) controls how much the weights
of the network are adjusted with respect to the loss gradient.
A bigger LR will allow for faster model training with large
steps, but may fail to find the best model. A small LR will
lead to a long training time. Since we utilised transfer learning
to accelerate model training in this work, a learning rate finder
[66] was used to search the best model learning rate. Fig. 9
shows the relationship between the loss and LR. From the
observation, it can be found that the best LR is 1×10−3. Thus,
we initially set a starting learning rate of 1× 10−3 for model
training. Then, the learning rate was gradually decreased to
1× 10−6 during the iteration.

For each model, we trained 100 epochs and saved the
weights for the model generating best validation results. To
validate our method, we applied a 5-fold cross-validation. The
model was trained and tested five times, and the database was
split in a ratio of 80 : 20. As a result, we obtained the mean and
its standard deviation. This allowed a more appropriate model
analysis and made it possible to avoid overfitting problems,
as the entire database was trained at least once during the 5-
fold validation procedure. The Pseudo-Algorithm of the model
training is shown in Fig. 10.

D. Experiment Evaluation

In this study, four experiments were conducted to evaluate
the model performance from four different aspects: a) model
classification performance, b) the effect of lung segmentation
on classification performance, c) model compatibility and
efficiency, and d) model explainability.

a) Model Classification Performance: In this test, the
model was trained on CXR images without pre-segmentation.
Six most commonly used CNN architectures and a standard
U-Net encoder part were considered for the encoder. They
included AlexNet, VGG-16, VGG-19, ResNet-34, ResNet-
50 and Inception-V3. The standard U-Net structure can be
considered as a simplified VGG-16 with two convolutions in
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Fig. 6. The schematic diagrams of AlexNet, VGG16, ResNet and Inception encoder blocks

Fig. 7. CXR image samples of a) Healthy, b) Bacterial, c) Viral and d)
COVID-19 cases in the datasets.

each layer. Table. III shows a comparison of average accuracy
(ACC) and model parameters (Giga Multiply-accumulate op-
eration (Gmac) and the number of parameters) when different
CNN architectures are chosen for the encoder. Among them,
the models with ResNet-50 or Inception-V3 architectures in
the encoder achieve the highest average accuracy. A better
performance of the model with ResNet-50 (50 layers) over
the model with ResNet-34 (34 layers) shows that a deeper ar-
chitecture may boost the performance. Due to the limitation of
GPU memory, we did not choose a more complex architecture
than ResNet-50.

AUC and ROC were also used for evaluating the perfor-
mance of COVID diagnosis. Fig. 11 shows the ROCs of the
models when six different CNN architectures are chosen for
the encoder. With an AUC of 0.96, the models using ResNet-

Fig. 8. Two examples of pixel-level lung segmentation on the CXR images.
The left one is the segmented result of a CXR image from a non-COVID-19
patient, and the right one is the segmented result of a CXR image from a
COVID-19 patient. The lung segmentation results are superimposed on the
raw CXR images.

Fig. 9. The relationship between the loss rate and the learning rate

50 or Inception-V3 in the encoder show a better classification
performance.

b) The Effect of Lung Segmentation on Model Perfor-
mance: The lung areas in CXR images are the regions of
interest (ROI) for the COVID-19 diagnosis. It is expected
that the model classification performance can be improved
by only focusing on lung areas. To verify this hypothesis,
we compared the classification results of the proposed model
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Fig. 10. The Pseudo-Algorithm of the model training

TABLE III
CLASSIFICATION ACCURACY AND MODEL PARAMETER COMPARISON OF

MODELS WITH DIFFERENT CNN ARCHITECTURES FOR THE ENCODER

ModelName Gmac Params(M) Acc± Std
AlexNet 0.72 61.1 0.785± 0.046
U-Net 11.36 133.06 0.785± 0.042
VGG-16 15.53 138.37 0.796± 0.102
VGG-19 19.7 143.68 0.815± 0.088
ResNet-34 3.68 21.8 0.831± 0.147
ResNet-50 4.12 25.56 0.879± 0.012
Inception-V3 2.85 27.16 0.878± 0.019

through training it on CXR datasets with or without lung
segmentation, respectively.

A U-Net semantic segmentation model was trained on the
same CXR dataset to extract lung areas. In this study, the IoU
accuracy reached 0.925, close to the results from other works
[13], [14], [28].

Fig. 12 a) shows a comparison of classification accuracy
when two different depth ResNet models (34 and 50 layers)
are trained on original images and lung segmented images, re-
spectively. The results show that the classification performance
of the model has been improved by training on lung segmented
images instead of original images. In addition, increasing
the model depth can improve the classification performance.
Fig. 12 b) shows the training loss curves of ResNet50 based
encoder models trained on original and segmented images,
respectively. It can be found that the loss is lower when the
model is trained on the segmented images rather than their
original images. This confirms that the model performs better
on the segmented images in the lung disease detection.

The effect of pre-segmentation on the model performance
can be further evaluated with their confusion matrix, as shown
in Fig. 13. In a confusion matrix, each value represents the
number of predictions produced by the model in which it
properly or incorrectly identifies the classes; each column
shows the predicted results of the model for one class. The

Fig. 11. The ROC curves in the COVID-19 detection for the models with
six different CNN architectures in the encoder

Sensitivity, Specificity, PPV and F1 score are provided in
Table IV for the ResNet50-based encoder trained on original
and segmented CXR images, respectively. From the Confusion
Matrix, we can find that the model performs well in the
detection of COVID-19. 128 out of 130 and 129 out of 130
cases are correctly identified by the model trained on original
and lung segmented CXR images, respectively. When the
model is trained on the segmented images, it achieves an
average accuracy of 0.879 for all classes and an F1-score
of 0.989 for COVID-19. However, bacterial and normal Viral
pneumonia are harder to be distinguished by the model. 61
out of 537 bacterial pneumonia CXR images are incorrectly
identified as non-COVID-19 viral pneumonia, while 54 out of
267 non-COVID-19 pneumonia are incorrectly identified as
bacterial pneumonia.

Fig. 12. A comparison of model performance of two ResNet models trained
on original images and lung segmented images, respectively : a) classification
accuracy and b) the training loss trend

c) Model Compatibility and Efficiency: One of the key
challenges for deep learning-based methods is the compat-
ibility of models from their development environments to
practical clinical applications. To investigate the compatibility
and efficiency of the proposed models, we deployed the
model to three different environments: AWS Cloud Computing
Services, Local CPU and GPU machines. We compared the
running time of the proposed model on these three different
computing platforms. As shown in Table V, the runtime of the
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TABLE IV
CLASSIFICATION RESULTS FOR LUNG DISEASES FROM THE MODELS TRAINED ON ORIGINAL IMAGES AND SEGMENTED IMAGES

Original Dataset Segmented Dataset
Sensitivity Specificity PPV F1-score Sensitivity Specificity PPV F1-score

Healthy 0.974±0.059 0.957±0.083 0.881±0.06 0.925±0.056 0.967±0.046 0.974±0.049 0.925±0.036 0.946±0.036
Bacterial 0.838±0.079 0.905±0.092 0.87±0.075 0.854±0.034 0.868±0.102 0.919±0.103 0.891±0.102 0.879±0.076
ViralN 0.655±0.071 0.918±0.093 0.686±0.071 0.67±0.053 0.745±0.088 0.931±0.119 0.748±0.052 0.747±0.023
Covid 0.985±0.047 0.998±0.054 0.985±0.055 0.985±0.033 0.992±0.147 0.998±0.141 0.985±0.148 0.989±0.089
Accuracy 0.847±0.023 0.879±0.019

Fig. 13. Confusion matrix from the ResNet50-based model trained on
Original and Lung Segmented CXR images, respectively

model on these three platforms is in the range of 5 seconds
to 1 minutes. This demonstrates that the deployment of our
deep learning model to promote the detection of COVID-
19 pneumonia from CXR images is achievable using regular
computers and cloud services, and therefore it is considered
scalable even in underdeveloped and remote hospitals.

TABLE V
A COMPARISON OF RUNTIME OF THE PROPOSED MODEL ON THREE

DIFFERENT COMPUTATIONAL ENVIRONMENTS

Machine Specifications Run time
AWS (CPU) 2 virtual central processing units (vCPUs) and 8GB memory 60 sec ± 10 sec

Local Server (CPU) 2.3GHz Intel Core i7 and 16GB memory 45 sec ± 5 sec

Local Server (GPU) NVIDIA GeForce RTX 2080 Ti 5 sec ± 1 sec

d) Model Explainability: The heatmap of classification
activation and the AOPPC were used to evaluate the per-
formance of our proposed model for visual explanation and
classification. It was also compared with two most commonly
used DCNN explanation methods: Saliency map and Grad-
CAM.

Fig. 14. Three typical examples of class activation heatmaps from three
visualisation algorithms (a) Saliency Map (b) Grad-CAM (c) Our method

Fig. 14 presents three typical examples of class activation
heatmaps from existing methods (Saliency map and Grad-
CAM) and our proposed approach. Compared to the Saliency
map and Grad-CAM approaches, our proposed algorithm pro-
vides shaper heatmaps due to its capability to generate pixel-
level results. The saliency map results are more noisy because
it uses gradients to measure the sensitivities of pixels rather
than their contributions to classification. Although the Grad-
CAM can globally localise important regions, it has missed
some areas identified by the proposed method. The missed
identification may be due to the low-resolution features used
by the Grad-CAM method when propagating the contributions
of class activation from the last convolution layer in the
models.

Fig. 15. The probability perturbation curves (PPC) and the area over
probability perturbation curve (AOPPC) of three visual explanation methods.
The perturbation index in x axis shows the level of perturbation on images
by removing the regions with a pixel value of x. The y axis presents the
probability of COVID-19 predicted by the trained classifier on the perturbed
images.

Fig. 15 shows the PPCs from three visualization approaches.
The AOPPCs from the Salient Map, Grad-Cam and our meth-
ods are 0.629, 0.868 and 0.903, respectively. Our method has
the highest score in evaluating the quality of visual explanation
for the COVID-19 detection.

V. DISCUSSION

In this work, we have proposed a pixel level explainable
classification model (CXR-Net) for COVID-19 pneumonia
diagnosis. This is a two-task model. The first task is to predict
classification results of CXR images for the diagnosis of lung
diseases. The second one is to generate an explainable mask
to highlight the areas related to classification decision making.
In this section, we will discuss the performance of the model
on these two tasks, classification and visual explanation.
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TABLE VI
COMPARATIVE PERFORMANCE OF THE PROPOSED METHOD AND SEVEN COMPETITORS

References Modality Subject Method Covid performance
Sensitivity Specificity

[67] Classification 1323 COVID, 7512 All CNN 93.98% 99.65%
[68] Classification 576 COVID, 6423 All CNN+Aquila Optimizer Algorithm 86.60% 89.40%
[69] Classification 184 COVID, 5128 All CNN 94.00% 99.30%
[7] Classification 430 COVID, 1130 All CNN+Transfer learning - 96.00%

[70] Classification+explanation 184 COVID, 5000 All CNN+ Saliency map 92.90% 98.00%
[71] Classification+explanation 219 COVID, 5520 All CNN+Grad-Cam 92.00% 98.66%
[6] Classification+explanation 459 COVID, 5877 All CNN+Grad-Cam 87.80% 98.00%

Our method Classification+explanation 636 COVID, 6499 All CNN+Encoder-Decoder 98.60% 99.20%

A. Performance of CXR-Net for COVID Diagnosis
Our model, CXR-Net, consists of two main steps for

COVID-19 diagnosis: Lung segmentation and lung disease
classification. The Lung segmentation is part of the image pre-
processing. We selected the most commonly used semantic
segmentation model, U-Net, for lung segmentation on CXR
images. The segmented images were then fed into the en-
coder for lung disease classification. Our results demonstrated
that using segmented images can significantly improve the
diagnostic accuracy of the model. The diagnostic accuracy
was improved by 2.2% and 3.2% on ResNet-34 and 50 mod-
els, respectively. Similar results have also been demonstrated
in previous studies [72], [73]. However, fine-grained lung
segmentation still remains a challenging task. Especially in
patients with severe lung diseases, the segmentation accuracy
could be poor. Fig. 16 shows two examples of erroneous
lung segmentation results on CXR images of COVID-19
patients where a part of lung areas is not properly segmented.
This could adversely affect the accuracy of diagnosis. We
will continue to explore more effective and accurate lung
segmentation algorithms in future work.

Fig. 16. Two examples of wrong segmentation results of lungs

In this study, CXR-Net is designed to allow a flexible choice
for the encoder’s network structure. To evaluate the effect
of different network structures on classification accuracy,
we selected four commonly used CNN structures, including
AlexNet , VGG , ResNet and Inception, The computational
complexity and the number of parameters in each encoder

are shown in Table III. AlexNet and VGG use plain and
linear CNN structures with large kernel sizes (5 and 7). The
results show that a large kernel size dramatically increases
the computational complexity and the number of parameters.
However, this does not result in a significantly improvement
on the classification accuracy of the model.

Compared to the plain structure design in AlexNet and
VGG, the residual connection introduced in ResNet allows the
gradient to flow through the structure to solve the problem of
vanishing gradient in deep neural networks which may cause
the failure of model training or convergence [32]. As shown in
Table III, this structure significantly improves the model depth
and its accuracy. Compared with ResNet models, the Inception
model increases the network width, but does not improve the
classification accuracy in this study.

B. Model Explainability

COVID-19 pneumonia can increase the X-ray opacity of
lungs, which shows as white on Chest radiography. There-
fore, multi-focal ground-glass opacity, linear opacities, and
consolidation can be seen as evidence for the existence of
COVID-19 infection [74]. Accurately identifying these areas
on CXR images will bring more robust and confident diagnosis
for patients.

The second task of the CXR-Net is to generate an explain-
able mask for more trustful COVID-19 diagnosis. Compared
with two most commonly used interpretable methods, Saliency
map and Grad-CAM, our model can generate more detailed,
high-resolution masks of the pathogenic regions and has
achieve the highest score in terms of the AOPPC value in
quantifying the performance of visual explanation.

Fig. 17 shows two examples of our heatmap results along
with manual annotations on CXR images of COVID-19 pneu-
monia patients. On the left column, the red polygons on
the raw images mark the glass opacities, the bilateral dense
peripheral consolidation and the linear opacity area annotated
by two radiologists. The middle and right columns show the
heatmaps by Grad-CAM and our method. As shown in Fig. 17,
due to the low resolution of the Grad-CAM, it is difficult to
clearly visualise the disease-related areas. However, all the
ground-glass opacity and linear opacity areas annotated by the
radiologists are highlighted by our model.

C. Model Comparison

It is unfair to perform a direct comparison between different
methods due to the use of different datasets and experiment
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Fig. 17. The CXR images of a patient with COVID-19 pneumonia. On the left
column, the red polygons on the images mark the ground glass opacities, the
bilateral dense peripheral consolidation and the linear opacity areas, annotated
by radiologists. The right column presents the heatmap from our method.
The heatmaps from the Grad-CAM model are added on the third column for
comparison.

environments. Therefore, we have only indirectly compared
our model with seven recent machine learning-based COVID-
19 diagnosis methods [6], [7], [67], [68], [69], [69], [70],
[71]. The results are shown in Table VI. It can be found
that all the listed deep learning-based models achieve sat-
isfactory accuracy in the diagnosis of COVID-19. However,
our model outperforms other existing approaches in terms of
both sensitivity and specificity. Additionally, our datasets are
acquired from both publicly available data and private hospital
data, which contains more COVID-19 cases, compared to the
datasets used in the existing methods except for [67].

VI. CONCLUSION AND FUTURE SCOPE

In this work, we have proposed a pixel level explainable
classification model (CXR-Net) for COVID-19 pneumonia
diagnosis which are validated using real clinical data. It is
based on an encoder-decoder-encoder architecture, enabling
a multitask learning for accurate and explainable disease
classification. The experimental results have demonstrated
that the proposed method can achieve a reasonably high
accuracy on classification using lung segmented CXR images.
The model achieved an average accuracy of 0.879, and the
Sensitivity, Specificity, PPV and F1-score of COVID-19 are
0.992, 0.998, 0.985 and 0.989, respectively. Moreover, the
model can generate sharper and more precise visualisation
images, compared to another two most popular visual expla-
nation approaches, Salient Map and Grad-Cam. The model-
generated high-resolution heat maps to highlight the suspected
abnormal regions match clinical annotations, which could help
explain the classifier’s decision and diagnosis of COVID-19
pneumonia from the model. A clinically acceptable computing
time provided by the model in three different operational
environments demonstrates its suitability for clinical appli-
cations, even in underdeveloped and remote areas. Overall,
the proposed model has a great potential to assist radiologists
in screening patients with suspected COVID-19 within a
reasonable time scale, thereby reducing the waiting time for
clinical decisions. Currently, the CXR image data on COVID is
still limited, compared to other pneumonia data. In the future,
we will collect more COVID-19 related CXR data for model

training in order to increase the generalisability of the model
and make them publicly accessible to the community.
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