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Hi-BEHRT: Hierarchical Transformer-Based
Model for Accurate Prediction of Clinical
Events Using Multimodal Longitudinal
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Dexter Canoy, Thomas Lukasiewicz, and Kazem Rahimi

Abstract—Electronic health records (EHR) represent a
holistic overview of patients’ trajectories. Their increasing
availability has fueled new hopes to leverage them and
develop accurate risk prediction models for a wide range
of diseases. Given the complex interrelationships of med-
ical records and patient outcomes, deep learning models
have shown clear merits in achieving this goal. However,
a key limitation of current study remains their capacity in
processing long sequences, and long sequence modelling
and its application in the context of healthcare and EHR re-
mains unexplored. Capturing the whole history of medical
encounters is expected to lead to more accurate predic-
tions, but the inclusion of records collected for decades and
from multiple resources can inevitably exceed the recep-
tive field of the most existing deep learning architectures.
This can result in missing crucial, long-term dependencies.
To address this gap, we present Hi-BEHRT, a hierarchical
Transformer-based model that can significantly expand the
receptive field of Transformers and extract associations
from much longer sequences. Using a multimodal large-
scale linked longitudinal EHR, the Hi-BEHRT exceeds the
state-of-the-art deep learning models 1% to 5% for area
under the receiver operating characteristic (AUROC) curve
and 1% to 8% for area under the precision recall (AUPRC)
curve on average, and 2% to 8% (AUROC) and 2% to
11% (AUPRC) for patients with long medical history for
5-year heart failure, diabetes, chronic kidney disease, and
stroke risk prediction. Additionally, because pretraining for
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hierarchical Transformer is not well-established, we provide
an effective end-to-end contrastive pre-training strategy for
Hi-BEHRT using EHR, improving its transferability on pre-
dicting clinical events with relatively small training dataset.

Index Terms—Deep learning, electronic health records,
risk prediction.

I. INTRODUCTION

R ISK models play an important role in disease prognosis, di-
agnosis, and intervention. Currently, most risk models are

conventional statistical models based on expert-selected predic-
tors. For instance, QRISK, Framingham risk score, and ASSIGN
risk score are commonly used models for cardiovascular diseases
[1]. However, with the growing access to EHR, especially linked
longitudinal EHR, from millions of patients, we now have an
unprecedented opportunity to achieve a better understanding of
patients’ health trajectories, and to develop novel risk prediction
models, which can capture important predictors and their long-
term interdependencies towards more accurate risk prediction.

EHR provide up-to-date and comprehensive information
about patients. It allows a clinician to assess the entire patient
journey and represents what is actually available in clinical
practice [2]. Due to its complexity and heterogeneity, modelling
using large-scale EHR is a challenge. Some of the previous
works have shown that deep learning is an effective method and
deep learning models outperform standard statistical models in
various complex risk prediction tasks using EHR. For instance,
Nguyen et al. [3] introduced a convolutional neural network
(CNN) model named Deepr for the prediction of readmission
and it substantially outperformed the logistic regression (LR).
Choi et al. [4] applied a shallow recurrent neural network (RNN)
for the prediction of heart failure and greatly improved the
prediction performance compared to the LR and multi-layer per-
ceptron. Recently, Transformer-based models have gained wide
popularity for risk prediction using EHR due to their superior
performance for handling sequential data. In one of the earliest
works in applying Transformer to EHR, Li et al. [5] proposed
BEHRT and presented the idea of utilizing multiple embeddings
(i.e., event, visit, age, and position) to represent a patient’s
medical history. It substantially outperformed the CNN and
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RNN-based models for the subsequent visit risk prediction. In
a similar attempt, another Transformer adaptation, Med-BERT
[6], had a similar structure as the BEHR. It only included event
and position embedding for patient representation learning and
trained on EHR data from 20 million patients. Building on these
works, a recent study proposed CEHR-BERT [7], which used
different strategy for the incorporation of event, visit, age, and
position, together with the additional artificial time tokens, for
patient representation. It achieved outstanding performance for
four different risk prediction tasks.

However, existing works as applied to EHR have largely been
based on US EHR [8] and relied on a fraction of information
available in the datasets (typically disease and medications from
hospital records). This would typically involve maximally a few
hundred records from a patient [4], [6]. A realistic demand
of using more comprehensive information from the records
can substantially increase the number of available records and
expand the EHR sequence length for modelling. Therefore,
adapting risk prediction model to handle patients with thousands
of records or even longer EHR sequence and avoid missing
important historical information is highly desired, but still re-
mains as a critical bottleneck. For instance, the complexity of
Transformer-based models grows quadratically as the sequence
length grows [9], and a Transformer model with over 100 million
parameters can only handle a sequence with maximally 512
sequence length [10].

Recent research has proposed two potential solutions for the
Transformer-based models: 1) the use of sparse attention or
lower-rank approximation to replace the classic self-attention
mechanism in Transformer (e.g., Longformer [11] and Lin-
former [12]); 2) and the use of hierarchical model architectures
to extract local temporal features and reduce sequence length
before feeding into the higher-level Transformer architecture
[13]. Both approaches substantially reduce the complexity of
Transformer models and adapt them to better handle data with
longer sequence. Considering that medical events naturally have
stronger local correlation (i.e., the closer two events are in time,
the more likely that they are also semantically related), the first
objective of this paper is to apply the hierarchical model architec-
ture [13] to further enhance a state-of-the-art Transformer-based
risk prediction model, BEHRT [5]. The hierarchical BEHRT
(Hi-BEHRT) model will be able to handle risk prediction for
patients with more comprehensive and longer EHR than BEHRT.
We will investigate and compare model performance on incident
risk prediction for four diseases: heart failure (HF), diabetes,
chronic kidney disease (CKD), and stroke. In addition, by con-
trast with BEHRT which used diagnosis only as model input,
we will also include information about medications, procedures,
tests, blood pressure (BP) measurement, drinking status, smok-
ing status, and body mass index (BMI), which are important
predictors of outcomes and periodically measured in routine
clinical practice.

In addition to the model architecture, the pre-training strategy
is also a critical component in modelling. Most of the current
pre-training methods for Transformer are either based on the
masked language model (MLM) or the sequence pair prediction
(e.g., the next sentence and the next segment prediction) or both

[5], [10], [14]. Because the definition of the “next sentence”
in EHR is not as clearly defined as the concept in natural
language processing, MLM is deemed a more suitable approach
in EHR applications [5], [14]. In terms of the training task, MLM
predicts the masked records in a sequence using their contexts.
However, in the hierarchical structure, the lower-level feature
extractor has transformed the records into high dimensional
representations, thus, defining a clear label for MLM training
is difficult. Some of the previous works using hierarchical
Transformer only initialized the weight of embeddings or certain
components of a model using weights pre-trained on other tasks
[13]. Therefore, pre-training the entire hierarchical Transformer
architecture and fine-tuning on down-stream tasks using EHR
is still not well-established. Recent proposed self-supervised
pre-training framework on contractive learning, more specif-
ically, bootstrap your own latent [15] (BYOL) provides an
alternative approach for pre-training. It directly compares the
latent representations from the model, expecting the different
augmentations of the same input to have similar representations.
Therefore, it is flexible in terms of the model architecture and
can be adopted to the Hi-BEHRT model. However, the reported
advantage of BYOL in pre-training and overcoming data scarcity
has only been tested on an image dataset and whether this
can have some advantages when applied to sequential EHR is
unclear. To this end, the second objective of this paper is to
evaluate the usability of BYOL for sequential Hi-BEHRT model
using EHR.

II. METHODS

A. Data Source and Cohort Selection

We undertook a cohort study in a large population of primary
care patients using Clinical Practice Research Datalink (CPRD)
[16]. It is one of the largest deidentified longitudinal EHR dataset
that contains patient data from approximate 7% of the U.K.
population [17]. Primary care records from CPRD can also
link to secondary care records from Hospital Episodes Statistics
Admitted Patient Care data and death registration data from the
Office for National Statistics. It is broadly representative in terms
of age, sex, and ethnicity. We identified an open cohort of patients
aged 16 years and older and contributed to data between Jan
1, 1985 and Sep 30, 2015. Patients were eligible for inclusion
if their records were labelled as “accept” by the CPRD quality
control [16] and they were linked to Hospital Episodes Statistics.
This led to a cohort with 4063811 patients.

Among the identified patients, we split them into 60%, 10%,
and 30% for training, tuning, and validation for the risk predic-
tion task, respectively. Additionally, the patients in the training
and tuning cohorts were also used for pre-training. Within each
risk prediction cohort, we identified two important dates for
each patient, an incident date of the event of interest and a
baseline date. All the records before the baseline date were used
as learning period to predict the 5-year risk of an event of interest
after it. Given the known inaccuracies in recording of timing of
events, we also ignored the events that occurred within 1-year
after the baseline date. We achieved this by firstly identifying
the incident date for all positive cases, and randomly selected
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a baseline date within a 1-year to 5-year window before the
incident date. For patients who did not have recorded event of
interest, we considered them as negative patients, and randomly
selected a baseline date for each of them with a guarantee of
having at least 5 years of records after the baseline date. For
all risk prediction tasks, we also excluded patients who had less
than 3 years of records (learning period) before the baseline date.

B. Case Identification

In this study, we focused on 5-year risk estimation of the
incidence of HF, diabetes, CKD, and stroke. HF was defined as
a composite condition of rheumatic heart failure, hypertensive
heart and disease with (congestive) heart failure and renal failure,
Ischemic cardiomyopathy, chronic cor pulmonale, congestive
heart failure, cardiomyopathy, left ventricular failure, and car-
diac, heart, or myocardial failure; Diabetes was defined as a
composite condition of type 1 and type 2 diabetes mellitus,
malnutrition-related diabetes mellitus, other specified diabetes
mellitus, and pre-existing malnutrition-related diabetes melli-
tus [18]; CKD included chronic kidney disease from stage 1
to stage 5, kidney transplant failure and rejection, obstructive
and reflux uropathy, acute renal failure, nephrotic syndrome,
hypertensive renal failure, type 1 and 2 diabetes mellitus with
kidney complications, chronic tubulo-interstitial nephritis [19];
and the identification of stroke used a composite condition of
cerebrovascular diseases, subarachnoid hemorrhage, intracere-
bral hemorrhage, sequelae of cerebrovascular disease, cerebral
infarction, and occlusion and stenosis of cerebral arteries [19].
We further defined the incident HF, diabetes, CKD, and stroke
as the first record of corresponding disease in primary care or
hospital admission records from any diagnostic position. The
list of International classification of diseases, tenth revision [20]
(ICD-10) codes been used to identify these four diseases can be
found in Supplementary.

C. Data Processing

We included records from diagnoses, medications, hospital
procedures, general practice (GP) tests, BP measurements (both
systolic and diastolic pressure), drinking status, smoking status,
and BMI. For diagnosis, we used ICD-10 as the standard format,
thus, we mapped all diagnostic records from the primary care
(Read [21]) to the ICD-10 level 4 as the work proposed by Has-
saine et al. [22]. In brief, all codes were mapped to ICD-10 using
a vocabulary provided by NHS digital [23] and SNOMED-CT
[24]. The NHS digital vocabulary had higher priority than the
SNEMOED-CT wherever a conflict occurred. For medications,
procedure, and test, we used British National Formulary (BNF)
[25] coding scheme in the section level, The Office of Population
Censuses and Surveys (OPCS) Classification of Interventions
and Procedures codes, and Read code, respectively. Both drink-
ing and smoking status were recorded as categorical values,
including current drinker/smoker, ex, and non. For continuous
values, we included systolic pressure, diastolic pressure, and
BMI within range 80 to 200 mmHg, 50 to 140 mmHg, and 16
to 50 kg/m2, respectively. Afterwards, we categorized systolic
and diastolic pressure into bins with a 5-mmHg step size (e.g.,

80-85 mmHg). BMI was processed the same way with a step size
1 kg/m2. In the end, all records of a patient were formatted as
a sequence and ordered by the event date. For the convenience
of modelling, additional feature of each record, age, was also
calculated by the event date and the patient’s date of birth. All
the records in the pre-training dataset were used for pre-training.
However, in the risk prediction dataset, only records before the
baseline date were used as learning period for risk prediction
tasks.

D. Training and Validation of the Models

We used the same hyper-parameters for pre-training and all
four risk prediction tasks. The hyper-parameters were tuned on
the tuning set of HF risk prediction task. Afterwards, we reported
area under the receiver operating characteristic (AUROC) curve
and area under the precision recall (AUPRC) curve validated on
the validation set of each risk prediction task with model trained
on data from both training and tuning set.

E. Model Derivation and Development

Fig. 1 uses a hypothetical patient to show the model archi-
tecture of the BEHRT model [5] and the proposed Hi-BEHRT
model. For the BEHRT model, four types of embeddings were
taken as inputs. The token embeddings were projected from all
available codes or categorical variables of records from diag-
nosis, medication, procedure, test, BP measurement, drinking
status, smoking status, and BMI. The age embeddings were
representations of the age in year. The segmentation embed-
dings alternatively changed between different visits with value
0 and 1 and the position embeddings monotonically increase
across different visits. The embedding of each encounter (i.e., a
record and its corresponding age, segmentation, and position) is
represented by the summation of the record, age, segmentation,
and position embeddings. The inputs were followed with a
Transformer model to extract the feature interactions, and the
latent representation of the first timestep in the last layer was
projected by a pooling layer for risk prediction.

Instead of extracting the interaction of records in the entire
medical history, we used a similar idea as the work proposed by
Pappagari el al. [13] for the Hi-BEHRT. The Hi-BEHRT model
used a sliding window to segment the full medical history into
smaller segments and applied a Transformer as a local feature
extractor to extract temporal interaction within each segment.
Because medical records naturally have stronger correlation
when they are closer in time, we would expect the local feature
extractor learns the most representative latent representation for
each segment. Afterwards, we applied another Transformer as
a feature aggregator to globally summarize the local features
extracted in all segments. Similarly, a risk prediction was made
based on the latent representation from a pooling layer.

F. Pre-training

We applied BYOL [15] for the self-supervised pretraining.
It was originally designed for image representation learning. In
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Fig. 1. Model architecture for BEHRT and hierarchical BEHRT. Despite the segment representation appearing non-overlapping (right), they are
built on overlapping tokens in the sliding window (left). Age, segment, and position embedding are used for providing rich temporal contextual
information for modelling.

this work, we implemented this idea with MLM [10] and adapted
it to pre-train our Hi-BEHRT model.

1) BYOL: The main idea of BYOL is that the different aug-
mentations of the same data should have similar representations.
Therefore, this framework has two networks for training: an on-
line network and a target network. The online network includes
an encoder, a projector, and a predictor; the target network has
a similar architecture as the online network but with a different
set of weights. As shown in Fig. 2, the objective of the task is to
minimize the mean squared loss between the output of the online
predictor and the output of the target projector. The weights
of the online network are updated through backpropagation;
however, the weights of the target network are the exponential
moving average of the weights of the online network. This can
be shown as following,

ζ ← τζ + (1− τ) θ,

where ζ and θ are the weights of the target network and the
online network, respective, and τ is a decay factor between 0
and 1.

2) BYOL for Hierarchical BEHRT: In our study, the encoder
was the Hi-BEHRT model, and both the projector and the
predictor were a one hidden layer multi-layer perceptron net-
work. Additionally, to adapt BYOL for EHR, we applied two
augmentation strategies at present study for the raw EHR and the
segment representations, respectively. We referred them as EHR
augmentation and segment augmentation as shown in Fig. 2.
The purpose of EHR augmentation is to enrich the EHR data
and increase the data diversity. Segment augmentation is the
key component of applying BYOL for Hi-BEHRT. Firstly, we
only applied segment augmentation to a certain proportion of
time steps in the latent segment representation space, similar
to the idea of MLM in BERT [10]. Additionally, unlike the
BYOL, which applies augmentation to both online and target
network, we only augmented the segment representations in
the online network and did not augment anything in the target

Fig. 2. Illustration of BYOL and BYOL for hierarchical BEHRT. BYOL
(top) includes four components, data augmentation, encoder, projector,
and predictor. Both online and target network have a similar model archi-
tecture. BYOL for hierarchical BEHRT (bottom) has similar framework,
the segment augmentation corresponds to the augmentation in BYOL
(top), and the segment augmentation is conducted on temporal features
extracted by local feature extractor.

network (as shown in Fig. 2). The intuition is that we expect
the context can provide sufficient information for the network
to reproduce the representation for the augmented time steps.
Therefore, our objective was to use the online and the target
network to reduce the dissimilarity of the representation of the
augmented time steps and their original representations, and this
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can be achieved by optimizing the summation of the similarity
loss of all augmented time steps.

3) EHR Augmentation: EHR augmentation was applied be-
fore sliding window. We applied random crop for the EHR
with a probability Pc and randomly masked each token with
a probability Pm. Random crop means randomly select a subset
period of EHR. This allows to create more diverse medical
records for a patient by assuming that patient enters and leaves
the study at a different time.

4) Segment Augmentation: Segment augmentation was ap-
plied to segment representations before feeding them into feature
aggregator. We either masked a segment representation by cast-
ing it to 0 or added a standard Gaussian noise to deprecate the
latent representation.

G. Implementation Details

1) Data Augmentation: For pre-training, we firstly used 50%
probability (Pc) to random crop a EHR sequence, followed
by a random mask with 20% probability (Pm) to mask each
record. We additionally had 50% probability to augment the
segment representation, including 85% probability of masking
a representation to 0 and 15% probability of adding standard
Gaussian noise to deprecate it.

2) Architecture: For comparison, we implemented Hi-
BEHRT and compared with BEHRT and two other state-of-the-
art benchmark models, Med-BERT [6] and CEHR-BERT [7].
The BEHRT model used hyper-parameters searched in another
work [26], and we adopted the same parameters of Transformer
for Med-BERT and CEHR-BERT. For Hi-BEHRT, we applied
grid search for model tuning (more details can be found in
Supplementary). More specifically, for BEHRT model, we used
hidden size 150, number of attention heads 6, intermediate size
108, number of layers 8, maximum sequence length 256, dropout
rate 0.2, and attention dropout rate 0.3. For Hi-BEHRT model,
we extended the maximum sequence length to 1220, which
covered the full EHR for approximate 97% patients across all
four risk prediction tasks. We used 50 and 30 as the size and the
stride for the sliding window, respectively. Similarly, we used
hidden size 150, number of attention heads 6, intermediate size
108, dropout rate 0.2, and attention dropout rate 0.3. The number
of layers for the feature extractor and feature aggregator is 4 and
4, respectively. Additionally, we used moving average decay
factor 0.996 as recommended by BYOL to update the target
network, and hidden size 150 for both projector and predictor in
the pre-training stage for the Hi-BEHRT model. Gaussian error
linear units (GELU) were used as activation function for both
models.

3) Model Complexity: For a Transformer model, the space
and time complexity of the self-attention are О(L2+Ld) and
О(L2d), respectively, where L represents the sequence length
and d represents the hidden dimension size. Comparing to
Transformer (e.g., BEHRT), the sequence lengths of the local
feature extractor and the feature aggregator in the Hierarchical
Transformer (e.g., Hi-BEHRT) are the sliding window size (50)
and the number of segments (39 for maximum sequence length
1220 with window size 50 and stride size 30), respectively. Both

of them are substantially shorter than the sequence length of the
Transformer model (256). Even though the space complexity of
the local feature extractor increases linearly as the increase of
the number of segments, the Hi-BEHRT is still much smaller
than the BEHRT model, and the longer the EHR sequence, the
bigger the difference.

4) Optimization: We used Adam optimizer with a three-stage
learning rate scheduler [27] and early stopping strategy, over 100
epochs, to train all models for risk prediction. The three-stage
learning scheduler included 10%, 40%, and 50% epochs for
warm-up, hold, and cosine decay, respectively. We used batch
size 128 and swept the hold learning rate among 5e-5, 1e-4, and
5e-4, and reported the one with the best performance for each of
the risk prediction task. In terms of the early stopping strategy,
we stopped training once the validation loss doesn’t decrease
for 6 epochs. We followed the same strategy to fine-tune the
pre-trained Hi-BEHRT model for the downstream risk predic-
tion tasks. For the pre-training task, we used a similar set up as
the BYOL paper [15]. More specifically, we used a stochastic
gradient decent optimizer with momentum 0.9, with a cosine
decay learning rate schedule, over 1000 epochs, with a warm-up
period of 10 epochs. However, due to resource limitation, we
were only able to finish 35 epochs for a 10-day training using
batch size of 256 split over 2 P100 GPUs.

III. RESULTS

A. Descriptive Analysis of the Cohorts

After cohort selection, we included 2844733 patients in the
pre-training cohort, and 2438352, 406381, and 1219078 pa-
tients in the training, tuning, and validation cohort, respectively.
Moreover, 1995 diagnosis codes, 378 medication codes, 275
test codes, 960 procedure codes, 24 systolic BP categories, 17
diastolic BP categories, and 34 BMI categories were considered
for modelling (we created bins from continuous measures for
categorization and details can be found in Methods C). The
descriptive analysis of the selected cohort for HF, diabetes, CKD,
and stroke risk prediction are shown in Table I. We define the
learning period as the time period of EHR up to the baseline.
Due to the random selection for the baseline for the negative
patients and the exclusion of patients who has less than 3 years
of learning period, there are certain variability for the number
of patients included across different risk prediction tasks.

B. Model Performance Evaluation

We assessed the performance of Hi-BEHRT on four risk pre-
diction tasks and compared it with the performance of BEHRT,
Med-BERT, and CEHRT-BERT; and the Hi-BEHRT finetuned
on self-supervised pre-training task on the validation set. Ad-
ditionally, we applied subgroup analysis to evaluate model per-
formance on patients with different learning period in respect
of the EHR length. For patients who have EHR length longer
than the pre-defined maximum length in BEHRT model (256),
we used the latest 256 EHR records in terms of the event date
for modelling and the Hi-BEHRT model is processed the same
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TABLE I
DESCRIPTIVE ANALYSIS OF PATIENTS

way but with maximum length 1220. We ran each experiment
over three seeds and reported the average performance.

1) Evaluation on Risk Prediction: Table II shows the per-
formance comparison for the general population. With smaller
model size and less model complexity, the Hi-BEHRT model
shows superior performance and outperforms the benchmark

TABLE II
MODEL PERFORMANCE EVALUATION FOR RISK PREDICTION

models on all risk prediction tasks with 1% to 5% and 1% to 10%
absolute improvement for AUROC and AUPRC, respectively.
The improvement is more substantial for HF, diabetes, and CKD
risk prediction and compared with BEHRT and Med-BERT, and
it significantly (p-value < 0.05 using Wilcoxon Signed-Rank
test [28]) outperformed the best performing benchmark model,
CEHRT-BERT, for the risk prediction tasks. While the results
prove the superior performance of Hi-BEHRT in risk prediction
in the general population, its strength is to enhance the prediction
for patients with longer EHR.

2) Subgroup Analysis for Patients With Different Learning
Period in Respect of EHR Length: To better understand how
BEHRT, Med-BERT, CEHR-BERT, and Hi-BEHRT handle pa-
tients with longer learning period, we evaluated model perfor-
mance on subgroups of patients that have EHR length 0–256 and
longer than 256 in learning period, respectively. Additionally,
because patients with longer EHR (i.e., > 256) have higher
percentage of positive cases, we included one more experiment,
which preserved all negative samples and bootstrapped a subset
of positive samples to create an evaluation dataset with similar
proportion of positive cases as the subgroup of patients with
shorter EHR (i.e., 0–256), for a fairer comparison. We repeated
bootstrap for 5 times and reported the averaged results. Here,
256 is the maximum EHR length a Transformer (i.e., BEHRT,
Med-BERT, and CEHR-BERT) model can handle in our exper-
iment.

Table III shows that Hi-BEHRT outperforms the benchmark
models, especially BEHRT and Med-BERT, in almost all sub-
groups for all four risk prediction tasks. More specifically, for pa-
tients who have EHR length longer than 256, Hi-BEHRT model
shows approximate 2%–6% and 2%–11% improvement in terms
of AUROC and AUPRC, respectively. Additionally, when com-
paring subgroups of patients with EHR length 0–256 and >
256 but with similar percentage of positive cases, Hi-BEHRT
shows a more substantial improvements with the inclusion of
more records, proving its advantage on processing long EHR.
For instance, for stroke risk prediction, where Hi-BEHRT shows
minor improvement in the general population (Table II), the Hi-
BEHRT has similar performance as the benchmark models for
patients with shorter sequence length, while the improvement for
patients with longer EHR is more substantial. Such observation
reassures the viability of Hi-BEHRT for handling patients with
longer EHR. Moreover, we also notice for HF risk prediction,
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TABLE III
SUBGROUP ANALYSIS FOR PATIENTS WITH DIFFERENT EHR LENGTH IN

LEARNING PERIOD

the performance of BEHRT, Med-BERT, and CEHR-BERT is
considerably worse than the Hi-BEHRT on short EHR subgroup.
Even within the models themselves, their performance on short
EHR subgroup is far worse than their performance on long
EHR group. This is quite unusual considering the differences
of its performance between long and short EHR subgroups are
relatively small for other diseases. One potential reason is HF is
an extremely imbalanced task with only 4.7% positive cases and
most of the positive cases are within the subgroup of patients
who have long EHR. Because the benchmark models used global
attention and took the latest 256 records for risk prediction on
patients with long EHR, and these patients could have different
contextual information compared to patients with short EHR.
Therefore, the training of the benchmark models can be driven to
have better discrimination performance for identifying positive
cases in long EHR group than in the short EHR group. However,
with the inclusion of almost the entire EHR sequence and using
sliding window to constrain the receptive field for the local
feature extractor, Hi-BEHRT has a better focus on identifying
local temporal features and distinguishing patterns between long
and short EHR sequence, leading to a more comprehensive risk
estimation under both circumstances.

3) Semi-supervised Training for Risk Prediction: Next, we
evaluated the performance of the Hi-BEHRT obtained when

TABLE IV
PERFORMANCE COMPARISON ON TRANSFERRING PRE-TRAINED

REPRESENTATIONS TO RISK PREDICTION TASK

fine-tuning pre-trained representation on the risk prediction task
with a small subset of the training dataset (i.e., both training and
tuning sets). We bootstrapped 1% and 5% of the training dataset
for three runs and reported the averaged AUROC and AUPRC
evaluated on the validation set. Table IV shows that comparing to
Hi-BEHRT model trained from scratch, the pre-trained represen-
tation can provide substantial improvement when fine-tuning on
small dataset. In general, for models fine-tuned on the pre-trained
representation, they can achieve similar performance as the
model trained on 5% of training dataset without pre-training
when only been trained on 1% of the training dataset. Ad-
ditionally, the improvement is clearer when there is a higher
percentage of positive cases. For example, CKD with 9.3% of
positive cases on 5% subset of training dataset improves 7% and
3% for AUPRC and AUROC, respectively; and stroke with 13%
of positive cases on 5% subset of training dataset improves 12%
and 7% for AUPRC and AUROC, respectively, comparing to the
Hi-BEHRT model without pre-training.

C. Ablation Analysis

In this section, we use HF risk prediction task as an example
to present ablations on Hi-BEHRT to give an illustration of its
behavior and performance. We reported the average performance
of models trained over three random seeds.

1) Training Size and Performance: In Table IV, we fine-
tuned the pre-trained representations of Hi-BEHRT over 1%
and 5% of the training dataset. In this section, we used HF risk
prediction as an example to further explore the difference of
model performance between with and without pre-training over
1%, 5%, 10%, 20%, 50%, and 100% of the training dataset. As
shown in Fig. 3 , model with pre-training has better performance
on small dataset (i.e., 1%, 5%, and 10%), and the model with
pre-training substantially outperforms the model without pre-
pretraining for 31% and 4% in terms of AUPRC and AUROC,
respectively, on a subset of training set with 10% of samples and
their performance shows strong diminish returns of pretraining
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Fig. 3. Performance of Hi-BEHRT trained on a fraction of training
dataset.

Fig. 4. Ablation on modalities. Evaluate Hi-BEHRT on patients with
inclusion of diagnosis (D), medication (M), procedure (P), test (T), BP
measurement (B), BMI (I), smoking status (S), and drinking status (A).

at about 20% of training data size. In general, all metrics from
both models trained with and without pre-training follow the
power law learning curve [29], which includes the small data
region (model struggle to learn from a small number of training
samples), power-law region (a region that substantially improves
model performance with inclusion of more training samples),

and irreducible error region (a region that represents the lower-
bound error and model will be unable to improve if within this
region). The figure shows the model with pre-training can reach
the power-law region with smaller sample size. Additionally,
figure also shows that our model reaches the irreducible error
region with around 50% samples.

2) Ablation of Modality: EHR from different modalities can
potentially provide different information for modelling. Di-
agnosis and medication are commonly used modality in risk
prediction task. In this experiment, we investigated additional
EHR from procedure, test, BP measurement, BMI measurement,
drinking and smoking status, and compared how the richness
of the EHR affected the model performance. To this end, we
used the Hi-BEHRT model reported in Table II and evaluated
the model performance on all patients with the inclusion of one
additional modality a time besides diagnosis and medication.
As shown in Fig. 4, we see a trend that with the inclusion of
more modalities, the model performance in terms of AUPRC
and AUROC improves. However, the contribution of a modality
is highly related to the frequency of that modality in the dataset
and its importance. Firstly, model greatly improves with the
inclusion of test, BP measurement, and smoking status. One
of the most obvious reasons is that all of them have relatively
high frequency of recording in the dataset (Table I). On the
contrary, BMI, drinking status, and procedure have very poor
contribution due to their scarcity, and with the inclusion of other
modalities, their occurrence and contribution become more neg-
ligible. More specifically, for example, there were 960 procedure
codes included in the dataset, however, there were only 4.4
procedure related records on average for each patient. Therefore,
the scarcity of the procedure codes in the dataset can limit its
contribution to the prediction. Secondly, with similar frequency
of recording, the inclusion of BP measurement shows greater
improvement than the inclusion of smoking status, indicating
BP measurement is a more important modality than smoking
status for HF risk prediction.

IV. DISCUSSION

In this article, we proposed an enhanced BEHRT model,
Hi-BEHRT, for risk prediction. It can incorporate long EHR
sequences from various modalities, address the shortcomings
of vanilla Transformers in processing long sequential data, and
avoid missing important historical information in risk predic-
tion. With the capability of using the full medical records, Hi-
BEHRT outperformed BEHRT, Med-BERT, and CEHR-BERT
in terms of AUROC (1%-5%) and AUPRC (1%-8%) for all four
investigated (HF, diabetes, CKD, and stroke) risk prediction
tasks. Despite the improvement of Hi-BEHRT for the general
population, its strength was to further enhance the risk prediction
for patients with long EHR sequence. The experiments demon-
strated a 2%-6% and 2%-11% improvement in terms of AUROC
and AUPRC, respectively, among patients with long EHR across
four risk prediction tasks.

Our work has several novelties. Unlike most existing deep
learning risk models that focused on using diagnoses only [5],
[6], in this work, we investigated EHR from other modalities,
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including medication, procedure, test, BP measurement, BMI,
drinking status, and smoking status. Since they provided addi-
tional information for modelling, as expected, the Hi-BEHRT
model achieved better performance with the inclusion of more
modalities. Therefore, our work highlighted the great benefit
of including rich medical history for accurate risk prediction.
However, we further observed that the contribution of a modality
to the model performance is in general highly related to its
frequency of recording in the dataset. It is partially due to
the fact that higher frequencies of recording can provide more
information for prediction. Another possible explanation is that
the information provided by modalities with low frequency are
overpowered by the modalities with much higher frequency. This
phenomenon has been described in the natural language process-
ing literature for the embedding of words as well which tend to
be biased towards higher word frequencies [30]. Therefore, one
potential future work will be to investigate how to incorporate
features or modalities with low frequency in a more meaningful
way for risk prediction.

Furthermore, to better understand the advantage of including
patients’ complete medical history for modelling, we compared
Hi-BEHRT to the benchmark models in terms of handling pa-
tients with different learning periods. We conducted a subgroup
analysis to evaluate model performance on patients who have
EHR length within the capacity of Transformer models (i.e., less
than or equal to 256 in our study) and longer than the Transformer
models’ capacity (i.e., more than 256) in the learning period.
We found that the Hi-BEHRT model showed similar or better
performance than the benchmark models on risk prediction tasks
for patients within the relatively short EHR length group, but
it greatly improved model performance with the inclusion of
more records (i.e., > 256). However, due to the limitation of
sequence length in the benchmark Transformer models, the
difference of model performance between patients with long
EHR and short EHR is relatively small. Additionally, we notice
for very imbalanced outcomes, for example HF, the majority of
the positive cases occur in patients with longer EHR and these
patients can have different contextual patterns compared to the
patients with short EHR. By making risk prediction with only
a fraction of the latest records in the benchmark Transformer
models when patients have long EHR sequence, they treated
patients with long EHR the same way as making prediction
for patient with short EHR sequence. Therefore, the models,
which rely on the global attention, can be driven to have better
discrimination performance for the positive cases with long EHR
records in the training and have relatively poor capability of
identifying positive cases with short EHR sequence. On the
contrary, with the inclusion of the entire EHR, together with
local feature extractor and global feature aggregator to identify
temporal and global patterns, the Hi-BEHRT model is more
capable of distinguishing different patterns of positive cases in
both long and short EHR sequences. Considering the majority
(70%) of the population have relatively short EHR length (less
than 256) in our risk prediction tasks and probably in most of
the cases in reality, this can be an important additional feature
of our proposed model.

In addition to model architecture, we also evaluated the usabil-
ity of a contrastive learning pre-training strategy, BYOL, in this
work. We combined the framework, which was originally de-
signed for image pre-training, with the MLM task, and adapted
it to pre-train our sequential model. With the pre-training, the
Hi-BEHRT model can achieve similar performance using only
1% of training data as the model trained without pre-training
using 5% of training data. With additional ablation analysis,
we concluded that the pre-training can potentially expanded the
power-law region [29] and allowed the model to reach power-law
region with smaller data size. However, our results also indicated
that the model performance almost saturated when using 50%
of training dataset. It means the model achieves the irreducible
error region. Future work should investigate more robust model
architectures to shift the power-law curve and improve the model
accuracy.

One of the major contributions of this work is the provi-
sion of a framework for risk prediction with the inclusion of
long and comprehensive EHR. With the growing accessibil-
ity and usability of EHR systems, risk prediction using long
EHR can be inevitable and have important implications for
medical practice. To our best knowledge, long sequence mod-
elling and its application in the context of healthcare and EHR
remains unexplored. Our work proposed a potential solution
to tackle this problem and investigated its benefit comparing
to model that makes prediction using only a fraction of the
EHR. Moreover, we provided a self-supervised pre-training
framework for the proposed model, and pre-training can adapt
risk prediction model to handle tasks with less training data
available, which is highly desired in most of the scenarios.
We also encourage future work to further explore other long
sequence modelling strategies (e.g., Longformer [11]) for EHR
modelling.

Our study also has limitations. First, we focused on the risk
of HF, diabetes, CKD, and stroke. As such, the conclusion may
not generalize to other diseases. Additionally, our work relied on
internal validation and the model performance under data shifts
or in the external cohorts requires further investigation.

APPENDIX

A. Additional Information on Dataset

In this section, we provide more information on modalities
that are not commonly included in the modelling. More specif-
ically, we will introduce procedure and test.

1) Procedure: Procedure is CPRD linked data collected
from Hospital Episode Statistics (HES) Admitted Patient Care
(EHS APC) data. It is recorded at the point of admission to, or
attendances at NHS healthcare providers. All procedure infor-
mation is coded using the U.K. Office of Population, Census
and Surveys classification (OPCS) 4.6, and procedures that are
not covered by OPCS code is not included in the system. Each
record in the system is specified with a start and an end date,
as well as event date. We used OPCS code and event date to
structure the timeline of a patient’s EHR history for modelling.
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2) Test: Test is recorded in the CPRD test table and coded as
Read code. It includes information on history/symptoms, exami-
nation/signs, diagnostic procedures, and laboratory procedures.
In the experiment, we only used the information in the Read
code level, which represents what examinations or procedures
are carried out. More detailed quantitative information was
excluded.

B. Clinical Codes for HF, Diabetes, CKD, and Stroke

TABLE V
ICD-10 CODES USED TO IDENTIFY PATIENTS WITH HEART FAILURE IN
HOSPITAL DISCHARGE RECORDS AND GENERAL PRACTICE RECORDS

TABLE VI
ICD-10 CODES USED TO IDENTIFY PATIENTS WITH DIABETES IN HOSPITAL

DISCHARGE RECORDS AND GENERAL PRACTICE RECORDS

C. Model Evaluation Stratified By Baseline Age

We evaluated model performance stratified by the baseline
age. The comparison was conducted on three subgroups of
patients: 1) patients with baseline age between 35 and 50 years
old (young adult); 2) patients with baseline age between 50 and
70 years old (middle-aged adult), and 3) patients with baseline
age 70–90 years old (older adult). Table IX shows that the
hierarchical BEHRT model has better performance across all
subgroups, and it substantially outperforms for BEHRT model
on HF and diabetes risk prediction tasks, especially for patients
with younger age.

TABLE VII
ICD-10 CODES USED TO IDENTIFY PATIENTS WITH CKD IN HOSPITAL

DISCHARGE RECORDS AND GENERAL PRACTICE RECORDS

TABLE VIII
ICD-10 CODES USED TO IDENTIFY PATIENTS WITH STROKE IN HOSPITAL

DISCHARGE RECORDS AND GENERAL PRACTICE RECORDS

D. Size and Overlap of Sliding Window

For Hi-BEHRT model, we used sliding window to segment
the raw EHR into segments. As shown in Table X when window
size is relatively small (i.e., 50), the size of the stride does not
have significant impact in terms of predictive performance, and
the bigger stride size can potentially decrease the number of
segments and reduce model complexity. However, for the larger
window size (i.e., 100), the stride size becomes more important,
and some level of overlap between segments is necessary. With-
out any overlap for window size 100, the AUPRC decreases
4% comparing to the model with stride size 50. Additionally,
the analysis shows that not larger window size always the
better choice. For instance, AUPRC of window size 100 without
overlap decreases 2% comparing to AURPC of window size
50 without overlap. Without overlap, larger window can lead
to shorter length in the segment level, and a balance between
window size and length of segment might be more preferred in
the hierarchical structure.
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TABLE IX
BASELINE AGE STRATIFIED SUBGROUP ANALYSIS

TABLE X
PERFORMANCE OF HF RISK PREDICTION WITH DIFFERENT WINDOW AND

STRIDE SIZE

TABLE XI
HI-BEHRT HYPER-PARAMETER TUNING

E. Hyper-Parameter Tuning

We set up hierarchical BEHRT with similar hyper-parameters
as the BEHRT model and used it as a reference model to
tune the hidden size and intermediate size of the Transformer.
More specifically, we applied grid search for hidden size among
[90, 150, 240] and intermediate size among [108, 256]. All
experiments were conducted on the 5-year HF risk prediction
task. Table XI shows that hidden size 150 and intermediate size
108 can achieve similar performance as the model with larger
size.

F. Evaluation for Multiple Levels of Hierarchy

In this section, we investigated how the number of levels of
hierarchy in Hi-BEHRT can influence the model performance
in risk prediction. Specifically, we compared the performance
of Hi-BEHRT with two and three levels of hierarchy. This
is because each additional level can substantially reduce the
sequence length. For instance, a sequence with maximum length
1225 would reduce to sequence length 118 with window size
50 and stride size 10 after the first level of hierarchy and would
further reduce to 7 after the second level of hierarchy. Therefore,
our dataset limited the number of levels we can investigate, and it

would not make sense to investigate Hi-BEHRT with more than
three levels of hierarchy. We encourage future work to replicate
our work to more comprehensively investigate Hi-BEHRT with
more levels of hierarchy. In our experiment, we only modified
the feature extractor and kept the total number of layers in feature
extractor the same for both comparators. More specifically, the
two-level Hi-BEHRT had one level of hierarchy with four layers
of Transformer for the extractor while the three-level Hi-BEHRT
included two levels of hierarchy with a two-layer Transformer
for each hierarchy. Both comparators used window size 50 and
stride size 10 and the rest parameters were the same as reported
in the manuscript. The results show that both models achieved
AUROC 0.96 and AUPRC 0.76 for HF risk prediction, and
there is no material difference between two-level and three-level
Hi-BEHRT in our dataset.
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