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FCSN: Global Context Aware Segmentation
by Learning the Fourier Coefficients of Objects in Medical Images

Young Seok Jeon, Hongfei Yang, Mengling Feng

Abstract— The encoder-decoder model is a commonly used
Deep Neural Network (DNN) model for medical image segmenta-
tion. Conventional encoder-decoder models make pixel-wise pre-
dictions focusing heavily on local patterns around the pixel. This
makes it challenging to give segmentation that preserves the ob-
ject’s shape and topology, which often requires an understanding
of the global context. In this work, we propose a Fourier Coefficient
Segmentation Network (FCSN)—a novel global context-aware DNN
model that segments an object by learning the complex Fourier
coefficients of the object’s masks. The Fourier coefficients are
calculated by integrating over the whole contour. Therefore, for our
model to make a precise estimation of the coefficients, the model
is motivated to incorporate the global context of the object, leading
to a more accurate segmentation of the object’s shape. This global
context awareness also makes our model robust to unseen local
perturbations during inference, such as additive noise or motion
blur that are prevalent in medical images. We compare FCSN
with other state-of-the-art global context-aware models (UNet++,
DeepLabV3+, UNETR) on 5 medical image segmentation tasks,
of which 3 are camera imaging datasets (ISIC_2018, RIM_CUP,
RIM_DISC) and 2 are medical imaging datasets (PROSTATE, FE-
TAL). When FCSN is compared with UNETR, FCSN attains sig-
nificantly lower Hausdorff scores with 19.14 (6%), 17.42 (6%),
9.16 (14%), 11.18 (22%), and 5.98 (6%) for ISIC_2018, RIM_CUP,
RIM_DISC, PROSTATE, and FETAL tasks respectively. Moreover,
FCSN is lightweight by discarding the decoder module, which
incurs significant computational overhead. FCSN only requires
29.7M parameters which are 75.6M and 9.9M fewer parameters than
UNETR and DeepLabV3+, respectively. FCSN attains inference and
training speeds of 1.6ms/img and 6.3ms/img, which is 8× and 3×
faster than UNet and UNETR. The code for FCSN is made publicly
available at https://github.com/nus-mornin-lab/FCSN .

Index Terms— Medical Image Segmentation, Global
Context-aware Learning, Decoder-Free Segmentation.

I. INTRODUCTION

Over recent years, we have witnessed increasing popularity in the
applications of Deep Neural Network (DNN) for various medical
image segmentation tasks. The encoder-decoder model [1], [2] is cur-
rently the most widely adopted DNN approach for the segmentation
task. Given enough training data, the encoder-decoder models can
extract local patterns from an image that are associated with labels
at each spatial coordinate. However, due to its heavy reliance on
local patterns, the model often fails to exploit the global contexts
that potentially help to nullify nuisance local variations.

Specifically, in medical imaging tasks where the risk of misclassi-
fication is high, we need a robust model for many unpredictable local
variations by incorporating global contexts. Taking the segmentation
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Fig. 1: Comparison of encoder-decoder model (upper) and Fourier
Coefficient Segmentation Network (FCSN) (lower). Unlike the encoder-
decoder model, which makes a coordinate-wise prediction of an object,
our FCSN predicts the complex Fourier coefficients of the objects masks,
which requires learning broader contextual information. Moreover, FCSN
is more memory-efficient with the absence of a decoder.

of optic cup in retinopathy as an example which is demonstrated in
figure 1, the following problems are difficult to address unless the
model learns the global context:

• anatomically, the shape of an optic cup is always like a single
filled oval, but current DNN often gives segmentation with
multiple components or with holes

• an optic disc has a smooth contour, but the current DNNs give
contours with sharp corners or unnecessary zigzags

• retinopathy images from different sources are likely to suffer
from different degradations, which cause generalization prob-
lems for current DNNs.

In this paper, we argue that these problems, which are either
ignored or indirectly treated in the conventional encoder-decoder
segmentation models, can be effectively addressed if we train the
DNN to directly predict the shape, size, and location of an object.

A. Encoder-decoder Segmentation Model
As shown in the first row of figure 1, modern segmentation

models typically adopt an encoder-decoder structure which models
a conditional probability of predicting label yhw given an input x
at each spatial coordinate h,w (i.e. p(yhw|x)). The model is then
optimized to maximize the likelihood of the spatially summed log
probability (i.e. argmaxp

∑
hw yhw log p(yhw|x)), assuming spatial

independence across the coordinates. Based on the structure of the
model and the way in which the model is optimized, the existing
encoder-decoder model will make a prediction mainly relying on
local patterns and often does not utilize the global context of the
image at all. This absence of global context can cause inconsistency
in segmentation performance, especially for the tasks that assume
specific global priors.

Most of the existing works on global context learning aim to solve
the problem by proposing a more flexible (general) model structure
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that offers the model an opportunity of capturing global patterns [3]–
[5]. However, offering the opportunity does not necessarily mean
that the model will explore the new aspect of learning. There is a
possibility that the model will still focus on finding local shortcut
evidence and hence fails to focus on the global evidences [6]. Also,
higher flexibility could negatively impact the model performance
when the network is trained under a data constraint. In this regard,
we argue that increasing the model flexibility alone is an unstable
solution to the global context learning problem.

B. Contribution
We propose a novel segmentation model—Fourier Coefficient

Segmentation Network (FCSN) that lifts segmentation to a shape pre-
diction task, representing the shape as Fourier coefficients. As shown
in figure 1, FCSN perceives the segmentation mask as a smooth
function in a complex domain, which can be accurately approximated
as complex Fourier coefficients. We use Fourier Transform to extract
the Complex Fourier coefficients of the contour of the mask. Hence,
FCSN learns the global shape of an object by predicting its Fourier
coefficients, and during inference, a contour is retrieved with Inverse
Fourier Transform.

To motivate how predicting Fourier Coefficients helps to learn
global context, imagine we want to segment an ellipse-shaped object,
which can be precisely described by three complex Fourier Coeffi-
cients z−1, z0, z1. The z0 describes the center of the ellipse, and
z−1 and z1 determine the lengths and orientations of the semi-major
and semi-minor axes. Thus, for a DNN to precisely predict the three
coefficients, the model must learn to perceive the whole ellipse as a
single object. This is in contrast to the traditional encoder-decoder
model, where the model makes predictions only by looking at the
local structure of the object.

Also, we propose to add a Fourier differentiable spatial to nu-
merical transform (F-DSNT) module [7] to improve the accuracy of
Fourier coefficient prediction and also to reduce memory consump-
tion. One could view the coefficient prediction as a typical regression
problem and introduce fully-connected (FC) layers on top of the spa-
tially flattened feature. However, FC layers have several drawbacks:
1) they are over-parameterized, affecting the generalizability, 2) it
assumes a fixed input shape; and 3) the output range is not bounded.
Instead, DSNT drives the encoder module to produce heatmaps that
represent the probability distributions of Fourier coefficients. DSNT
does not introduce any trainable parameter and works with any input
shape.

We evaluate the performance of FCSN on 5 Medical image
segmentation tasks, which include skin lesion, optic disc, optic cup,
prostate, and fetal head. FCSN outperforms state-of-the-art segmenta-
tion models such as DeepLab-v3+ and U-Net++ when evaluated with
Hausdorff Distance. Furthermore, as our model can attend to global
features, its performance does not degrade from local perturbations
such as contrast change, additive noise, or motion blur. Lastly, our
model is lightweight, requiring less computational cost by discarding
the decoder module that has been indispensable in the modern
segmentation model and incurs a considerable memory overhead.

II. RELATED WORK

A. Encoder-decoder Models
FCN [8] and U-Net [1] were the early few DNN models that pro-

posed encoder-decoder structure for semantic segmentation. However,
the two approaches often produced noisy predictions that contained
holes or non-smooth contours, implying that the models failed to
understand the global context. The issue had been addressed broadly
in two ways while preserving the encoder-decoder structure: by 1)

increasing the receptive field size and 2) introducing a regularizer
that penalizes non-smooth prediction.

1) Broader Receptive Field: For a unit in the prediction of a
network, the theoretical receptive field (TRF) of this unit refers to
the region in the input image that contributes to the prediction of
this unit. For convolution neural networks, the TRF is usually only
a fraction of the input image, which depends on the architecture and
filter sizes of the networks. To make more global aware predictions,
the TRF must be large enough to cover the whole region that contains
information related to the prediction.

In the literature, several methods have been proposed to increase
TRF. In [4], the authors proposed ParseNet, which incorporated
a global context feature that is generated using a global pooling
operation in feature embedding. In [2], the authors proposed DeepLab
with Atrous Convolution module to increase TFR. Atrous convolution
introduces extra spacing in the kernel, which provides a wider field
of view with the same computational cost.

With recent advances in Transformer models [9], [10], which
are sequential methods, people have been adopting Transformer
structures to computer vision models to broaden their receptive
field. In [11], [12], the authors proposed non-local U-Nets, which
included Transformer modules [9] to extract long-range features, and
in [13] the authors applied Transformer structure to medical image
segmentation models.

As observed in [14], the effective receptive field (ERF) can be very
different from the theoretical receptive field. The ERF is defined as
the collection of pixels inside TRF that have a non-negligible impact
on the prediction. It is found in [14] that for neural networks before
training, the ERF is usually smaller than TRF, and proper training is
needed to enlarge ERF. Therefore, models with large TRF may not be
capable of effectively understanding the global context. In [15], the
authors proposed the Lovász metric, which is a convex function that
approximates the Intersection over Union (IoU) metric. Since IoU is
calculated over the whole image, the proposed metric can facilitate
global learning.

2) Regularizing Prediction: Another approach to promote
smooth segmentations is to adopt regularization on the models or the
predicted masks. In [16], the authors proposed the ACNN-Seg for
predicting high-resolution segmentation masks from low-resolution
images. They introduced an extra autoencoder (AE) network to
regulate segmentation outputs, such that the AE would produce
similar features for both the predicted masks and the ground-truths.

More recently, the authors in [17], [18] proposed to add spatial
regularization to softmax activation functions to minimize the total
variation of predictions, such that the predicted masks are more robust
to various local perturbations in the images.

B. Segmentation via Shape

Most DNNs make per-pixel predictions for segmentation masks.
One way to obtain more regularized prediction is to predict the
shape of the segmentation mask, which effectively reduces the output
dimensionality and complexity.

In [19], [20], the authors proposed DNNs that learn the
parametrization of boundary curves via piecewise Bézier curves.
However, the Bézier parametrization does not necessarily converge
to the true boundary curve. In [21], the authors proposed to predict
polar coordinates of sampled points on boundary curves for instance
segmentation.

For classical image processing methods, the Fourier descriptor is
a widely used technique to use Fourier transformation to encode
boundaries of objects for image shape analysis and shape matching
[22]–[25]. There are not many DNN approaches that utilize Fourier
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Fig. 2: Overview of the FCSN architecture (left) and differentiable spatial to numerical transform (DSNT) (right)

transforms for segmentation. In [26], the authors used DNN to
learn Fourier coefficients of sampled points on boundary curves
for instance segmentation. However, they regarded the x and y
coordinates of boundary points as two sequences of real numbers
and applied Fourier transforms independently. In our approach, we
regard the boundary curve as a sequence in the complex domain,
and we apply Complex Fourier Transform only once to get Fourier
coefficients.

III. PROPOSED METHOD

As shown in figure 2, our DNN model consists of four modules.
The first module CNNθ is a feature extraction module that takes an
image as its input. Any standard CNN backbone can be adopted. The
second module UPθ generates heatmaps which represent the discrete
probability distribution functions (PDF) of Fourier coefficients. The
third module F-DSNT “softly" picks up the most probable Fourier
coefficient from each of the PDFs. The last module FT recovers
segmentation masks from the predicted Fourier coefficients. To
understand our approach, we first explain how we convert masks
to Fourier coefficients. Also, the code for FCSN is made publicly
available at https://github.com/nus-mornin-lab/FCSN.

1) FT : Segmentation Masks to Fourier Coefficients: Let Y
be a binary segmentation mask. We regard Y as a function on the
complex domain D = {x+jy : −1 ≤ x, y ≤ 1}, where Y (x+jy) =
1 for foreground and Y (x+jy) = 0 for background. Let α : [0, 1]→
C be a parametrization of the boundary curve of foreground. We
assume α is a complex valued smooth curve with α(0) = α(1). Given
the boundary curve α, the region enclosed by α is the segmentation
region.

The Fourier coefficients {zn ∈ C} of the boundary curve α(t) is
defined by

zn =

∫ 1

0
α(t)e−2πjnt dt (1)

for n = . . . ,−1, 0, 1, . . . , where j is the imaginary unit. The original
boundary curve α can be fully recovered from the Fourier coefficients
{zn} by taking the Inverse Fourier transform defined by

α(t) =

∞∑
n=−∞

zne
2πjnt. (2)

Fig. 3: Original mask (second row) and masks generated from boundary
curves with 21 Fourier coefficients (third row).

Therefore, instead of making a direct prediction of the segmentation
mask Y , it is possible to predict the Fourier coefficients {zn} and
recover the mask Y with Inverse Fourier transform.

Predicting Fourier coefficients forces the training of DNN to utilize
global context better. As suggested by equation (1), the Fourier
coefficients, which we predict, are obtained by integrating global
information on the boundary curve. This forces DNN models to
learn the global context of an image better, facilitating to make more
spatially consistent segmentation.

It is usually sufficient to only learn to predict the lower Fourier
coefficients, which encode the location and the general shape of
the boundary curve α. This is because the coefficients {zn} are
concentrated on small absolute values of n when α is smooth: In
fact, if α is k-times continuously differentiable, then zn converges
to 0 faster than 1/|n|k for large n. Discarding higher Fourier
coefficients can be regarded as a regularization that smooths ground-
truth boundary curves. Figure 3 shows segmentation masks obtained
by only taking zn for −10 ≤ n ≤ 10.

2) UPθ : Probability Distribution of Coefficients: Given a
feature extracted from a raw input using a CNN module, UPθ

generates heatmaps that represent the discrete PDFs of possible
Fourier coefficients. (i.e. {p(zn|x)}+k

−k = UPθ◦CNNθ). UPθ module
consists of a 2D transposed convolution layer with 2 ∗ k+1 kernels,
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followed by a softmax activation across spatial axes. 2D transposed
convolution layer projects input features to a higher spatial resolution;
thus, the generated heatmaps are more granular. We apply softmax
to normalize the heatmaps such that it is non-negative and sum to
one.

3) F−DSNT : Selecting the Most Probable Coefficients:
Finding the most probable coefficient from each discrete PDF (i.e.
ẑn = argmax p(zn|x)) is not differentiable. To make it differentiable,
we adopt DSNT [7], which can be viewed as a soft-argmax operation.
This is done by calculating the expectations of the PDFs. As shown
in figure 2, the expectations are calculated by performing a weighted
sum of discrete PDF with real and imaginary coordinate values.

For the original implementation of DSNT in [7], the PDFs are
assumed to have spatial range [−1, 1] × [−1, 1]. In our model, we
multiply the output of our DSNT module with scaling constants
estimated by checking the range of each Fourier coefficient from
the training dataset. This is equivalent to increasing the resolution of
PDFs for higher Fourier coefficients which are usually close to zero.

4) Loss Function: Our loss function is a combination of weighted
L1 and L2 losses plus the Jensen-Shannon (JS) divergence regular-
ization. Given a batch of M input images {x(m)}, our predicted
coefficients {ẑ(m)

n : −k ≤ n ≤ k}, and the ground truth Fourier
coefficients {z(m)

n : −k ≤ n ≤ k}, the loss function is

Loss(zn, ẑn) =
1

M

∑
m,n

{
wn

(
|ẑ(m)
n − z

(m)
n |+ |ẑ(m)

n − z
(m)
n |22

)
+ JS(p(ẑ(m)

n |x(m))||N (ẑ
(m)
n , σI2))

}
,

(3)
where p(ẑ|x) is the PDF generated by our UPθ module. The wn’s are
weight constants that we introduce to promote the learning of higher
Fourier coefficients which are much smaller than lower coefficients,
defined as

wn = min

{
1 +

1

maxi |z
(i)
n |+ ε

, 10

}
.

The JS(p(ẑ|x)||N (ẑ, σI2)) is the JS divergence between the PDF
p(ẑ|x) and the bivariate normal PDF N (ẑ, σI2) with the same mean.
The covariance σ of the bi-normal PDF is a hyperparameter. The
JS regularization is minimized when the heatmap matches with the
Gaussian distribution, thus making sure our heatmaps of Fourier
coefficients are unimodal and concentrate nicely around the true
locations of the Fourier coefficients.

IV. EXPERIMENTS

A. Evaluation Metrics

(a) (b) (c) (d)

Fig. 4: (a) Ground truth, (b)–(d) three predictions with the same Dice
value 0.9 but Hausdorff distances (smaller is better) 11.3, 26.9 and 93.3

respectively. Note that the star shape in (b) is smaller than that in (a).

Let Y be a segmentation mask, and let Ŷ be a mask predicted by
a DNN model. To measure model performance, we use both the Dice
metric and the Hausdorff distance defined by

H(Y, Ŷ ) = max

{
sup

Y (y)=1
d(y, Ŷ ), sup

Ŷ (y)=1

d(y, Y )

}
, (4)

where d(y, Y ) is the Euclidean distance from the point y to the target
in Y , and d(y, Ŷ ) is defined similarly. The smaller the Hausdorff
distance is, the better the approximation of Ŷ is to Y , and H(Y, Ŷ ) =
0 means Y and Ŷ coincides completely.

The Dice metric is widely used in evaluating segmentation models.
However, the Dice metric is not sensitive to changes in the shape and
topology of the masks. This is demonstrated in figure 4, where (a)
is the ground truth, and (b)–(d) are three predictions with the same
Dice value 0.9. However, it is clear that Figure 4(b) gives the best
segmentation, while the shape of the segmentation in (c) is wrong,
and the topology of the segmentation in (d) is wrong. On the other
hand, the Hausdorff distance is more sensitive to changes in shape
and topology, and it can successfully pick up the best segmentation.

B. Datasets
We test our methods on both camera imaging and medical imaging

datasets.
1) Camera imaging dataset: We use two publicly available

dataset: 1) ISIC-2018 [27] and 2) RIM-ONE-DL [28].
i) The ISIC-2018 dataset contains 2,594 and 100 dermoscopic

images with ground truth segmentation for training and vali-
dation, respectively. The test dataset is not publicly available.
Hence, following conventions of other papers using ISIC, we
report the final evaluation results using 5-fold cross-validation
on the training dataset.

ii) The RIM-ONE-DL dataset consists of 313 and 172 retinogra-
phies from normal and glaucoma patients. All images include
a manual segmentation of the disc and cup that have been
assessed by experts. The dataset contains 341 and 149 training
and testing samples, respectively. As suggested by the dataset
provider, we perform a simple train-test split evaluation.

2) Medical imaging dataset: We use two publicly available
datasets: 1) PROSTATE [29] and 2) FETAL [30].

i) The Prostate dataset contains 48 3D volumes of MR images,
and the target is to segment prostate central gland and periph-
eral zone. We report the final evaluation results using 5-fold
cross-validation on this dataset.

ii) The Fetal dataset contains 2D ultrasound images of the standard
plane of the fetal head, and the target is to segment the fetal
head. There are 999 images in training set with segmentation
masks and 335 test images without segmentation masks. We
report the final evaluation results using 5-fold cross-validation
on the training dataset.

C. Implementation Details
During training and inference, images are resized to have size

256×256. For data augmentations, we used ColorJitter, random crop,
and random flip for the RIM dataset, and we replaced random crop
by resizing and random crop for the ISIC dataset. For all our training,
we trained for 500 epochs with a batch size of 8, and we used the
Adam optimizer [31] with a learning rate of 3e−4 without weight
decay.

To generate Fourier coefficients, we sampled 71 points on bound-
ary curves and used FFT to get the Fourier Coefficients, where
the model only learns 21 lower coefficients (i.e. {zn}+10

−10). These
numbers are hyper-parameters which we fixed for all experiments.
See Appendix II for the effects of varying these hyper-parameters.

D. Results
1) Precise Shape Prediction: We compare the performance

of FCSN with different backbone settings against state-of-the-art
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TABLE I: Dice & Hausdorff comparison between FCSN and baseline encoder-decoder models on camera imaging datasets. The standard deviation
(std) is computed from 5-fold results. The best result is in bold, and statistically worse performing results are in gray.

ISIC_2018 RIM_CUP RIM_DISC

Models Haus±std Dice±std Haus Dice Haus Dice # Parameter (M) # Flops (G)

UNet 25.00 ± 1.00 0.89 ± 0.01 22.35 0.78 10.78 0.96 31.39 55.84
UNet++ 24.06 ± 0.80 0.89 ± 0.01 22.25 0.77 11.79 0.96 36.63 138.16

DeepLabV3 (ResNet50) 20.79 ± 1.09 0.90± 0.01 21.69 0.77 10.92 0.96 39.63 40.99
DeepLabV3+ (ResNet50) 20.80 ± 0.76 0.90± 0.01 22.25 0.77 11.27 0.96 39.76 43.31
DeepLabV3+ (ResNet50 + Lovász) 20.44 ± 1.34 0.90± 0.01 20.60 0.78 10.63 0.96 39.76 43.31
UNETR (VIT-B-16) 20.05 ± 0.76 0.90± 0.01 18.98 0.78 10.95 0.96 105.32 32.14

FCSN (ResNet50) 20.21 ± 0.88 0.88 ± 0.01 18.15 0.77 9.85 0.96 29.71 23.54

FCSN (DResNet26) 20.14 ± 1.00 0.88 ± 0.01 18.07 0.77 9.59 0.96 22.16 83.01
FCSN (DResNet50) 19.14± 0.86 0.88 ± 0.01 17.42 0.78 9.16 0.96 29.71 98.11

TABLE II: Dice & Hausdorff comparison between FCSN and baseline encoder-decoder models on medical imaging datasets. The standard deviation
(std) is computed from 5-fold results. The best result is in bold.

PROSTATE FETAL

Models Haus±std Dice±std Haus±std Dice±std

UNet 12.70 ± 1.93 0.80 ± 0.03 7.63±1.02 0.97± 0.00
UNet++ 14.73 ± 2.14 0.81 ± 0.03 9.31±1.78 0.97± 0.00

DeepLabV3 (ResNet50) 11.25 ± 1.26 0.82± 0.02 6.33±0.52 0.97± 0.00

DeepLabV3+ (ResNet50) 12.18 ± 0.49 0.81 ± 0.03 6.04±0.57 0.97± 0.00
DeepLabV3+ (ResNet50 + Lovász) 11.75 ± 0.83 0.82± 0.02 6.01±0.57 0.97± 0.00

UNETR (VIT-B-16) 14.12 ± 0.49 0.81 ± 0.02 6.19±0.34 0.97± 0.00

FCSN (ResNet50) 11.23 ± 1.58 0.80 ± 0.02 6.58±0.37 0.96±0.00
FCSN (DResNet26) 11.07± 1.20 0.81 ± 0.01 5.84± 0.26 0.96±0.00
FCSN (DResNet50) 11.18 ± 0.92 0.81 ± 0.02 5.98±0.31 0.96±0.00

Fig. 5: Computational efficiency of FCNS and baseline models in 4 different aspects: Floating point operations (FLOPs), inference & train speed
(ms/img), and model size (M).

segmentation models, including vanilla UNet [1], UNet++ [32] and
DeepLab-v3+ [2] (with ResNet50 as its backbone) with/without the
lovász-softmax loss [15], and UNETR [13] (with VIT-B-16 as its
backbone). We perform experiments on 2 categories of medical
images: camera imaging dataset (ISIC skin lesion, RIM_CUP, and
RIM_DISC) and medical imaging dataset (PROSTATE and FETAL).
The model performance is accessed with Hausdorff and Dice metrics.

As shown in Tables I and II, for all instances, FCSN achieves a
lower Hausdorff score while maintaining a competitive Dice score,
supporting that the shape of generated mask closely matches with
ground truth. We note that the performance of FCSN improves
when we use DResNet [33] backbone that produces higher resolution
output. Also, using the deeper DResNet50 backbone for the camera
imaging dataset further improves the performance. However, the
DResNet26 backbone achieves the best performance for the medical
imaging dataset.

Based on paired T-tests and results for all tasks, our FCSN method

with DResNet26 or DResNet50 backbone outperforms all baseline
methods with a significant level 0.05. We have provided full p-value
matrices for test statistics in Appendix III.

2) Robustness to Perturbations: We test the robustness of
models to four types of perturbations at inference: Gaussian noise,
Salt & Pepper noise, contrast changes, and motion blur. All the
models are not re-trained with perturbed data: they are all trained only
with original data, which does not include any of the perturbation
cases we test on. We chose Gaussian and Salt & Pepper noises
because they are the most common additive and impulsive noises,
respectively. Contrast change and motion blur are typical degradations
in medical images. The results are summarized in figure 7, where the
level of perturbation increases along the x-axis. Compared with the
DeepLab-v3+ (with Lovász loss) and the UNETR models, our method
is more robust, especially for the two noises, where our method can
give almost consistent predictions regardless of noise level; on the
other hand, the predictions of the DeepLab-v3+ model deteriorate
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Fig. 6: Comparison of Effective Receptive Field (ERF)

heavily as noise level increases. Metrics of results of the UNETR
model are either similar to that of DeepLab-v3+ or lie between the
DeepLab-v3+ and our method.

Figure 8 shows examples of segmentation results for images with
perturbations (more examples in Appendix IV). For images with noise
or contrast change, the DeepLab-v3+ method omitted large portions
of target areas, and the UNETR failed to correctly segment the RIM
cup with Salt & Pepper noise, while our method consistently gives
reasonable segmentation for all cases. For the image with motion blur,
the DeepLab-v3+ and UNETR methods wrongly included a large
portion of the background area. All the predictions of the DeepLab-
v3+ have either the wrong shape or the wrong topology. On the other
hand, our method gives satisfactory segmentation results.

3) Global Context Awareness: Here, we empirically prove that
the two major strengths of FCSN, precise shape prediction and
robustness to perturbations, indeed arise from the model’s global
context awareness. We propose to use the Effective Receptive Field
(ERF), initially proposed by Luo et al. [14], as the method to measure
the global context awareness of models. ERF measures how much
each input pixel contributes to the model prediction. Mathematically,
this is done by computing the partial derivative of an arbitrary output
unit yi with respect to input tensor x (i.e ∂yi/∂x), measuring how
much yi changes as x changes by a small amount. ERF is therefore
a natural measure of the importance of x with respect to yi.

Figure 6 shows the comparison of ERF for various models. We
observe that FCSN visually attains a significantly bigger ERF size
compared to baseline models across all tasks, strongly supporting our
global context awareness argument.

4) Computational Efficiency: We compare the computational ef-
ficiency of FCSN against baseline segmentation models. Specifically,
we measure models’ Floating point operations (FLOPs), inference
time (ms/img), training time (ms/img), and parameter number (M).
We compare FCSN with ResNet50 backbone against vanilla UNet,
DeeLab with ResNet50 backbone, and UNETR with VIT-B-16 back-
bone. During the measure of FLOPs, inference & training time, we
set the input size to 256 × 256. The results in Figure 5 show the
computational efficiency of FCSN in all of the 4 aspects. Comparing

Fig. 7: Hausdorff distance (smaller the better) of inferences with per-
turbations. Red: DeepLab-v3+ with ResNet50 backbone (Lovász loss),
Green: UNETR with VIT-B-16 backbone, Blue: FCSN with ResNet50
backbone. FCSN is more robust to perturbations, especially for heavy
noises. The results of DeepLab-v3+ on PROSTATE and FETAL tasks
are omitted because it frequently gives empty or near-empty prediction
even when light noise is present, as shown in figure 9.

with the least performing model for each of the aspects, FCSN
requires 58% less FLOPs, 8× faster training and inference speed, and
5× less parameter number. Note that the computation overheads from
Fourier and inverse Fourier transforms are small, which are equivalent
to two 1D convolution layers with kernel size of 21 and input size
21. Empirically, these two transforms only take 0.05ms/img.

Our model has high computational efficiency because our model
does not contain a conventional decoder. For most segmentation
models employing neural network approach, they contain decoders
that have several layers of 2D convolution and up-sampling opera-
tions. This will introduce a large number of model parameters and
heavy computations. On the other hand, our model only contains the
encoder, and the prediction of Fourier coefficients is based on the
F-DSNT layer, which incurs little computation and does not contain
learnable parameters.

E. Ablation

1) Impact of DSNT: For comparison, we remove UPθ and
DSNT parts of our model and connect the feature maps from
our backbone to FC layers to get Fourier coefficients. Experiment
results in table III show that for the Dice metric, the DSNT approach
consistently gives better results, while for the Hausdorff metric, the
DSNT approach gives better results in most of the cases.

We argue that this is because the FC layers contain a significant
number of learnable parameters, which made the training more
difficult. On the other hand, DSNT method does not introduce extra
learnable parameters. Our observation here is in consistence with
findings in key point detection tasks [7], where DSNT approach has
better performance than directly using FC layers.

2) Impact of JS Divergence: We study the effect of the Jensen-
Shannon divergence regularization on our model by removing the
regularization or by altering σ in the covariance σI2 of the 2D
Gaussian PDF. As seen from table IV, the introduction of the
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(a) (b)

Fig. 8: Visual comparison of predicted masks (a) ISIC (b) RIM_CUP tasks with perturbations.

(a) (b)

Fig. 9: Visual comparison of predicted masks with perturbations (a) PROSTATE (b) FETAL.

regularization greatly improves model performance, but our model
is not sensitive to the choice of σ.

We believe this is because the JS divergence can promote learning
of unimodal probability density functions (PDF) regardless of the
variance, which can be regarded as a regularization of the PDF.
Regularizing using divergences is a common technique in PDF
learning/estimation which improves model accuracy [34], [35].

V. LIMITATION AND FUTURE WORKS

There are a couple of future research directions that can make the
proposed FCSN more robust.

1) 3D shape learning: MRI and CT scans are 3D in nature. To
apply the current FCSN structure to 3D tasks, the scan must be inter-
preted as independent slices. However, the independent assumption
across the slices could lead to an inconsistent mask prediction. As a
solution to this, one can generalize our framework by modifying our
2D F-DSNT module to a 3D version of it.

2) High Variance of Higher Frequency Coeficients: Figure 10a
shows that FCSN can give accurate predictions for the (-1)-th Fourier
coefficients for ISIC task. The violin plots in Figure 10b show that the
relative errors of the predicted Fourier coefficients become larger as
the index of coefficients increase from −1 to −10 and from 1 to 10,
and the (−1)-th and 0-th coefficients have the smallest errors. Note
that the Python package we used produced clockwise boundaries.
The (−1)-th coefficients correspond to clockwise circles that match
the overall size of the clockwise boundaries and the 0-th coefficients
correspond to the centers of the objects, which are the most prominent
geometric features of masks in our setup. We propose the following
conjectures for the larger errors of higher frequency coefficients:

• Our current backbones have excessive pooling layers which
reduce spatial resolution of output feature maps. Thus some
information in higher frequencies may have been lost.

• Image masks can be noisy, which leads to larger noise in ground
truth of higher frequency coefficients. This makes learning them
difficult.
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TABLE III: Dice and Hausdorff of FCSN (ResNet50) with DSNT or FC
head.

Epoch Number

Tasks Metric Heads 100 200 300 400

ISIC
Dice

DSNT 0.87 0.88 0.89 0.89
FC 0.86 0.87 0.87 0.88

Haus
DSNT 21.64 20.07 20.11 19.82
FC 21.70 19.91 21.03 20.31

RIM_CUP
Dice

DSNT 0.74 0.76 0.77 0.77
FC 0.74 0.76 0.76 0.76

Haus
DSNT 19.16 18.62 18.39 18.47
FC 18.46 19.04 18.59 19.09

RIM_DISC
Dice

DSNT 0.95 0.95 0.96 0.96
FC 0.95 0.95 0.95 0.95

Haus
DSNT 10.04 9.45 9.42 9.46
FC 10.48 10.23 10.56 10.16

TABLE IV: Dice of FCSN (ResNet50) on ISIC task with varying
regularisation.

σ = 0.005 σ = 0.01 σ = 0.015 no JS

Dice 0.89 0.88 0.89 0.84

(a) Plot of real parts of (−1)-th Fourier coefficients for a batch of
256 images. Blue lines: Predictions by FCSN (ResNet50). Red lines:
Ground truth.

(b) Violin plot of prediction errors (normalized by maximum value)
of real parts of all Fourier coefficients.

Fig. 10: Error of predicted Fourier coefficients on ISIC validation set.

• Higher coefficients usually have much lower scales, which may
hinder gradient flows when using stochastic gradient descent
methods to optimize model parameters.

We leave proper investigation to future research.
3) Multi-object Segmentation Task: To extend FCSN to multi-

instance segmentation cases such as multi-organ segmentation, one
could fuse FCSN with MaskRCNN [36]. The MaskRCNN method
performs multi-object segmentation in two steps: in the first step, for
each object, the method predicts a bounding box that covers the whole
object; in the second step, the method extracts the image patch inside
the bounding box and perform a per-pixel segmentation prediction

within the patch. We propose to replace the per-pixel segmentation
step in MaskRCNN with our FCSN method.

4) Learning other transforms: FCSN learns to predict Fourier
Coefficients for segmentation, and it works well for targets with
smooth boundaries. However, if the target boundaries contain sharp
corners, one may consider modifying FCSN to learn coefficients from
more general transforms, like wavelet or tight frame transform. The
idea is to use a proper family of base functions that are more efficient
in coding boundary curves.

VI. CLOSING REMARKS

In this paper, we propose FCSN, a novel and lightweight segmen-
tation model that segments an object by predicting the Fourier coeffi-
cient of the object’s contour. Our model is designed to incorporate the
global context of an image, leading to more accurate segmentation
that better preserves the shape and topology of the object. Moreover,
global context awareness makes our model robust to unseen local
perturbations during inference.

Our approach is the first step towards a systematic study of
performing segmentation by predicting coefficients of mask decom-
position. There are many other approaches besides predicting Fourier
coefficients. For instance, one can use wavelet or tight frame trans-
forms to obtain more efficient decomposition for boundary curves
with sharp corners.

APPENDIX I
PSEUDOCODE FOR TRAINING WITH FCSN (RESNET50)

Algorithm 1 FCSN (ResNet50) training pseudocode

Require: Training images {x} and corresponding Fourier coefficient
vectors {z}.
i← 0, B ← 8 ▷ Batch size 8
net.encoder← ResNet50.layers[:-2]
net.up-sampling← UP in Subsection III-.2
net.DSNT← F-DSNT in Subsection III-.3
θ ← net.weights
adam← Adam optimizer with parameter list θ
while i < total epoch do

while sample (without replacement) B images x do
get feature maps: y = net.encoder(x)
up-sample feature maps: ỹ = net.up-sampling(y)
get PDFs: p = soft-max(ỹ)
predict Fourier coefficients: ẑ = net.DSNT(p)
get loss: Loss(z, ẑ) = L1(z, ẑ) + L2(z, ẑ)
gradients← backward propagate Loss(z, ẑ)
θ ← adam(gradients)

end while
end while

Full code at https://github.com/nus-mornin-lab/FCSN.

APPENDIX II
HOW MANY FOURIER COEFFICIENTS SHALL WE LEARN?

For all our experiments, FSCN is fixed to predict 21 Fourier
coefficients (10 positive-order coefficients, 10 negative-order coef-
ficients, and also the 0-th order coefficients), where the ground truth
coefficients are 21 coefficients truncated from lower frequency parts
of Fourier coefficients calculated from 71 sampling points on the
boundary of segmentation mask. Note that using 21 lower Frequency
coefficients calculated from 71 sampling points is different from
sampling 21 points and use all their Fourier coefficients, where the
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Fig. 11: Difference between using 21 Fourier coefficients from 21
sampling points and using 21 lower Frequency coefficients from 71
sampling points. Yellow pixels for false negative, and red pixels for false
positive.

Fig. 12: Masks generated with varying number of sampling points and
number of ground-truth Fourier coefficients. Yellow pixels for false
negative, and red pixels for false positive.

latter may cause an aliasing problem, see figure 11. In general, one
needs a high number of sampling points, but using only the first few
lower frequency Fourier coefficients achieves a good recovery of the
mask.

Figure 12 demonstrates masks generated with varying numbers of
sampling points and number of ground-truth Fourier coefficients. We
see that with our current setup, the mask generated from 21 lower
frequency Fourier coefficients is virtually indistinguishable from the
original mask (with Dice over 0.99). On the other hand, 11 Fourier
coefficients always produce over-smoothed masks. Configurations
with more sampling points or number of coefficients can produce
slightly better masks, but they will lead to heavier data pre-processing
load or slower training/inference time. Moreover, our experiments
suggest that these slight improvements in recovering masks do not
lead to better validation/testing results.

For the ISIC and Fetal dataset, we have done experiments to train
FSCN to predict 11 Fourier coefficients, and we observe that for
both dataset the accuracy of predictions are similar to FSCN with
21 Fourier coefficients with less than 1% difference. For the Fetal
dataset, this is expected since the segmentation masks are always oval
shaped, where 11 Fourier coefficients are usually enough to recover
the ground-truth mask. For the ISIC data, as shown in Figure 12,
11 ground-truth Fourier coefficients produce over-smoothed masks
with Hausdorff distance around 6. We argue that our observation
from the experiment is because the segmentation task in ISIC is
difficult to learn. From table I we see that for comparing methods
which all predict per-pixel segmentation, the best Hausdorff distance
is above 20, which is much higher than 6. Thus we conjecture that
the over-smoothed label produced by 11 Fourier coefficient is not the
bottleneck in training our FSCN on ISIC images.

We stress that the number of Fourier coefficients to learn for our

(a) p-value matrix for Hausdorff metric.

(b) p-value matrix for Dice metric.

Fig. 13: Statistical tests (significant level 0.05) for model performances
on all dataset for the Hausdorff metric and the Dice metric. Value at (i, j)
is p-value for testing the Hausdorff/Dice for the method at row i than the
method at column j.

FSCN is a hyper-parameter, and users can always make plots like
those in Figure 12 to pick up a good empirical value if our proposed
21 does not work for them.

APPENDIX III
STATISTICAL TESTS FOR NUMERICAL EXPERIMENTS

Figure 13 gives p-value matrices for testing different models for the
Hausdorff and the Dice metrics. With DResNet26/DResNet50 back-
bones, our FCSN method consistently outperforms all the baseline
methods for the Hausdorff metric with significant level 0.05.

APPENDIX IV
SEGMENTATION VISUALIZATION

We give segmentation results on clean images in figure 14a and
14b, where some bad segmentation parts are highlighted by yellow
circles. We also visualize some segmentation results in figures 14c to
14f, where in each subfigure a single image is perturbed with various
noises.
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(a) (b)

(c) (d)

(e) (f)

Fig. 14: Visualization of segmentation results on clean images (a) ISIC and RIM_CUP (b) FETAL and PROSTATE. Some small bad segmentation
parts are highlighted by yellow circles. Visual comparison of predicted masks (c) ISIC (d) RIM_CUP tasks with perturbations on a single image.
Visual comparison of predicted masks with perturbations (e) PROSTATE (f) FETAL on a single image.
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