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HS-Vectors: Heart Sound Embeddings for
Abnormal Heart Sound Detection Based on

Time-Compressed and Frequency-Expanded
TDNN With Dynamic Mask Encoder

Lihong Qiao , Yonghao Gao , Bin Xiao , Xiuli Bi , Weisheng Li , and Xinbo Gao

Abstract—In recent years, auxiliary diagnosis technol-
ogy for cardiovascular disease based on abnormal heart
sound detection has become a research hotspot. Heart
sound signals are promising in the preliminary diagno-
sis of cardiovascular diseases. Previous studies have
focused on capturing the local characteristics of heart
sounds. In this paper, we investigate a method for mapping
heart sound signals with complex patterns to fixed-length
feature embedding called HS-Vectors for abnormal heart
sound detection. To get the full embedding of the complex
heart sound, HS-Vectors are obtained through the Time-
Compressed and Frequency-Expanded Time-Delay Neural
Network(TCFE-TDNN) and the Dynamic Masked-Attention
(DMA) module. HS-Vectors extract and utilize the global and
critical heart sound characteristics by masking out irrev-
erent information. Based on the TCFE-TDNN module, the
heart sound signal within a certain time is projected into
fixed-length embedding. Then, with a learnable mask atten-
tion matrix, DMA stats pooling aggregates multi-scale hid-
den features from different TCFE-TDNN layers and masks
out irrelevant frame-level features. Experimental evalua-
tions are performed on a 10-fold cross-validation task using
the 2016 PhysioNet/CinC Challenge dataset and the new
publicly available pediatric heart sound dataset we col-
lected. Experimental results demonstrate that the proposed
method excels the state-of-the-art models in abnormality
detection.

Index Terms—Abnormal heart sound detection, HS-
vectors, Time-Compressed and Frequency-Expanded Time-
Delay Neural Network, Dynamic Masked-Attention statistics
pooling.
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I. INTRODUCTION

CARDIOVASCULAR diseases (CVDs) are the leading
cause of death globally. According to statistics from the

World Health Organization, the number of deaths due to CVDs
represents 32% of all global deaths in 2019 [1]. Therefore, it
becomes significant to investigate an effective CVDs detection
method. As a non-invasive but also cost-effective procedure,
cardiac auscultation is used for the early diagnosis of various
heart diseases. However, effective cardiac auscultation depends
on trained cardiologists, a resource that is insufficient particu-
larly in low-income countries of the world [2]. Moreover, the
accuracy of auscultation depends on the proficient clinical skills
and extensive subjective experiences of the physicians. There-
fore, to improve efficiency, a computer-based method for heart
sound diagnosis highlights the necessity of assisting physicians
in diagnosis.

In the past few decades, the traditional methods of Phono-
cardiogram (PCG) abnormality detection have been greatly ex-
tended. The process of PCG classification generally consists of
three main steps: preprocessing, feature extraction, and classifi-
cation. First, preprocessing performs operations such as filtering
and segmentation. Filtering denoises the signal, and segmenta-
tion divides the PCG signal into four parts: S1, systole, S2 and
diastole. Then, the physiological and pathological information
about the heart is extracted [3], [4], [5], [6], [7], [8]. In the last
step, a classifier is used to classify the PCG [9].

However, the pattern of heart sound signals is complex due to
different acquisition devices and environments. For traditional
methods, the feature extractor mainly relies on artificial design
and requires professional knowledge. Moreover, the features
extracted by the designed function are often plain in pattern,
which is not enough to characterize the complex pattern of
the heart sound signals. These methods are usually aimed at
a specific task and have poor generalization and robustness. In
contrast, the DNN models are better at capturing the underlying
relations in the PCG signal. The CNN-based methods [10], [11]
achieve better results.

In this paper, we investigate a method for mapping heart
sound signals with complex patterns to fixed-length global fea-
ture embeddings called HS-Vectors as a model for heart sound
abnormality detection based on embedding representation.
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The proposed HS-Vectors utilize Dynamic Masked-Attention
(DMA) statistics pooling on the TCFE-TDNN to obtain the
global heart sound characteristics by suppressing uninformative
regions. First, the TCFE-TDNN module is proposed to improve
the frequency resolution and compress the features in the time
domain so that the network can observe the potential abnor-
mal performance of each frame in the low-dimensional and
high-dimensional frequency hidden feature space. Then, the
DMA module masks out useless information and aggregates
multi-scale hidden features from different TCFE-TDNN layers.
HS-vectors aggregates global time-frequency feathers with good
representation ability. Besides, HS-vectors does not employ
segmentation in the frameworks, as the potentially incorrect
segmentation of the input PCG signal may lead to poor per-
formance. To our knowledge, this is the first time that a global
vector integration method has been proposed to detect abnormal
heart sounds.

The main contributions of this paper are as follows:
� The proposed HS-Vectors consider the embedding of heart

sound in Time-Compressed and Frequency-Expanded
TDNN (TCFE-TDNN) module to project the heart sound
signal within a certain time into a fixed-length signal
characterizing embedding and enhance the feature dis-
crimination.

� The proposed HS-Vectors apply Dynamic Masked-
Attention statistics pooling on the TCFE-TDNN to obtain
the stable key heart sound characteristics by suppressing
uninformative regions.

� The proposed HS-Vectors have the complementary of
mapping heart sound signals with complex patterns to
fixed-length feature embedding, which improves the net-
work performance according to global properties of the
heart sound.

The rest of this paper is structured as follows. In Section II,
we introduced a brief review of related works. Then, the pro-
posed HS-Vectors for detection of abnormal heart sounds are
introduced in detail in Section III. Section IV contains the
implementation details of our evaluation experiment, results
of our methods, and comparisons with several state-of-the-art
PCG classification methods. Finally, we conclude this paper in
Section V.

II. RELATED WORK

In the past few decades, the traditional methods of Phono-
cardiogram (PCG) abnormality detection have been greatly
extended. The process of PCG classification generally con-
sists of three main steps: preprocessing, feature extraction, and
classification. First, preprocessing performs operations such as
filtering and segmentation. Filtering is denoising the signal,
and segmentation is dividing the PCG signal into four parts:
S1, systole, S2 and diastole. For this step, Francesco Renna
et al. [12] and Omer Deperlioglu et al. [13] respectively used
a second-order 25 Hz–400 Hz Butterworth filter and elliptical
digital filter to denoise the heart sound signal. Sun et al. [14] pro-
posed an automatic heart sound segmentation method based on
the Hilbert transform. The hidden semi-Markov model (HSMM)

Fig. 1. The waveforms of heart sound and speech. (a) PCG signal. (b)
Speech signal (continuous English speech). The speaker information is
spread throughout the speech signal. Similarly, the potential pathologi-
cal information is spread throughout the heart sound signal.

method [15] was extended with logistic regression to achieve
signal segmentation in a noisy environment. Furthermore, there
are some segmentation methods based on deep learning [16],
[17], [18]. In the second step, the physiological and patho-
logical information about the heart is extracted. There are a
variety of heart sound feature extraction methods, which involve
features that mainly include temporal features [3], [4], [19],
frequency features [6], [20], wavelet transform [5], [21], [22]
and MFCCs features [7], [8]. MFCCs have been shown to be
an effective individual identification feature [23]. Therefore,
MFCCs are used as features for abnormal heart sound detection
in this paper. In the last step, a classifier is used to classify
the PCG. Classifiers based on machine learning like Support
Vector Machines (SVM) [9], k-Nearest Neighbor(k-NN) [24],
and Artificial Neural Network(ANN) [25] were employed
frequently.

Recently, Deep Learning Neural Network (DNN) has been
used for abnormal heart sound detection due to its powerful fea-
ture representation ability. In the case of temporal or frequency
features, Thomae et al. [26] built an end-to-end deep neural
network that directly extracts hidden features in the temporal
domain. Besides, Ryu et al. [10] constructed a CNN model for
classifying segmented PCGs. Recently, Humayun et al. [11] de-
signed a time-convolutional (tConv) unit to learn hidden features
from temporal features. Devjyoti Chakraborty et al. [6] trained
a 2D-CNN with the spectrum of the cardiac cycle. However,
it is difficult for a single feature to represent complex heart
sound patterns, which limits the classification capabilities of
these methods.

To improve the classification performance, some models are
constructed based on the time-frequency features of heart sounds
and classify the segmented PCG. For instance, Rubin et al. [27]
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Fig. 2. Illustration of the network structure in our proposed HS-Vectors. Our architecture takes heart sound MFCCs as input and uses TCFE-TDNN
to extract frame-level features at different resolutions in the low-dimensional and high-dimensional frequency hidden feature space. Then, DMA stats
pooling is used to aggregate frame-level features into segment-level features, and a fully connected network is utilized to encode these features into
a fixed-dimensional vector representation (called: HS-vector). Finally, the HS-vector is fed into a fully connected network with dropout to classify
PCG.

extracted MFCCs features from the segmented PCG and fed
them to the CNN for abnormal heart sound detection. Potes
et al. [28] proposed a model integrating AdaBoost-abstain and
CNN. Recently, Deng et al. [29] constructed CRNN, which
combines CNN and RNN to improve feature extraction capa-
bilities. In recent studies, some non-segmented methods have
been proposed in abnormal heart sound detection [23], [30], [31].
However, a large number of time-frequency models mainly learn
the local features of heart sounds, and there are few studies on
the global feature representation of heart sounds. The challenge
in abnormal heart sound detection is to estimate the global
characteristics of heart sounds. This problem is similar to the
speaker verification (SV) task. The waveforms of heart sound
and speech are shown in Fig. 1. The speaker information is
assumed to be spread throughout the speech signal, and an em-
bedded representation of the entire speech is used in SV. Among
them, X-vectors is a DNN model with superior performance, and
its variant models have been widely used in SV [32], [33], [34].
Although the CNN-based heart sound methods obtained accept-
able results, most of them either blindly increase the filters and
the number of convolution layers to pursue a slight performance
improvement at the cost of increasing the computation burden.
Besides, most of them didn’t fully consider the characteristics
of heart sound in designing the network structure, which also
limits the improvement of classification performance.

III. PROPOSED METHOD

For abnormal heart sound detection, how to holistically rep-
resent the periodic changes of long-term signals is the key
problem. In previous studies, the feature extractor was mainly
based on convolutional networks to capture local hidden rela-
tionships of heart sounds, and a few RNN-based models only
incorporated contextual information into local features. Inspired
by X-vectors, which is a Time-Delay Neural Network (TDNN)

that applies statistics pooling to project variable-length utter-
ances into fixed-length speaker characterization embeddings, we
define HS-vector as the feature embedding of the heart sound
signal within a certain time and design the HS-Vectors for
abnormal heart sound detection. As shown in Fig. 2.

First, the one-dimensionally transformed MFCC features are
fed to the Time-compressed and Frequency-expanded TDNN
(TCFE-TDNN) module, which adopts a variable-scale fre-
quency hidden feature extraction strategy to diversify the frame-
level features so that the network can observe the potential
abnormal performance of each frame in the low-dimensional
and high-dimensional frequency hidden feature space. TCFE-
TDNN focuses on extracting frame-level features with different
time-frequency resolutions, but these features only reflect local
variations of the heart sound signal. Therefore, this study com-
bines TCFE-TDNN with statistical pooling to achieve global
heart sound signal representation by dynamic masked-attention
statistical pooling (DMA stats pooling). This module is proposed
to aggregate multi-scale frame-level features from different
TCFE-TDNN layers through adaptive statistical methods so that
the output of the segment-level feature by the module contains
the time-frequency feature details of heart sounds. The two-layer
fully connected (FC) network followed by DMA stats pooling
encodes the fragment-level features as a HS-vector. Finally, a
fully connected network with dropout is used to perform the
heart sound classification task. This architecture enables the
model to aggregate different features to obtain a HS-vector with
good representation ability and mask out the irrelevant frames.
Besides, our method does not employ segmentation due to the
potentially incorrect segmentation of the input PCG signal. To
our knowledge, this is the first time a whole vector embedding
method has been applied to the task of abnormal heart sound
detection.

The proposed HS-vector could be derived by the TCFE-
TDNN module and DMA stats pooling, respectively. Thus, we
first implemented the TCFE-TDNN to get the low-dimensional
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Fig. 3. The receptive fields of different convolutions methods of the
heart sound MFCCs. (a) Receptive field of 2D convolution. (b) Receptive
field of 1D convolution.

and high-dimensional frequency features of PCG signals in each
frame.

A. Time-Compressed and Frequency-Expanded
TDNN Module

It is a difficult problem to get the potential abnormal per-
formance of each frame in the low-dimensional and high-
dimensional frequency hidden feature space. We introduce a
mechanism that can automatically increase the frequency reso-
lution and compress the features in the time domain of the PCG.
To derive HS-Vectors, we introduce the Time-Compressed and
Frequency-Expanded TDNN (TCFE-TDNN) module, which
doubles the frequency features by increasing the number of
convolution filters and compresses temporal features because
of valid-convolution layer by layer. The heart sound MFCCs are
regarded as a one-dimensional time series of multi-frequency
channels and perform frame-level hidden feature extraction on
it using a valid convolution-based network.

1) One-Dimensional Transformation of MFCC: First, we
treat the heart sound MFCCs as a one-dimensional time series
of multi-frequency channels and extract their hidden features
through 1D convolution with a larger frequency receptive field.
In recent studies [23], [29], the heart sound MFCCs was used as
the main heart sound feature research objects due to its excellent
representation ability. Traditionally, the heart sound MFCCs are
regarded as a 2D image and extract hidden features through
2D convolution, which causes the model to capture features in
a non-existent spatial domain, as shown in Fig. 3(a). In SV,
people treat the MFCCs as a one-dimensional time series of
multi-frequency channels and extract its hidden features through
1D convolution with large kernel attention, as shown in Fig. 3(b).
It can be known that 1D convolution has a larger frequency
receptive field, which builds up large receptive fields. We treat
the heart sound MFCCs as a one-dimensional time series of
multi-frequency channels and extract its hidden features. The
strategy based on 1D convolution makes it easier for the model
to observe the details of the PCG signal over time.

2) The Structure of TCFE-TDNN Module: TDNN is a multi-
layer one-dimensional convolutional neural network structure,

Fig. 4. Schematic diagram of frequency features variation in two
different network structures. (a) The hidden features variation in TDNN.
(b) The hidden features variation in TCFE-TDNN.

which expands the receptive field of the convolution kernel by
increasing the dilation rate layer by layer, as shown in Fig.
4(a). Each TDNN layer performs feature extraction through
a fixed number of convolution filters to obtain a frame-level
feature with a fixed dimension. We define the outputs of layers
3 and 4 as high-level features and the outputs of layers 1 and 2
as low-level features. In the extensive research of CNNs [35],
the output of shallow layers focuses on the representation of
details and the output of deep layers has more complex global
information. Frequency is one of the important information
reflecting the characteristics of heart sounds. In TDNN, the
high-level features are restricted to be represented in the same
scale space as the low-level features, which is not conducive to
the complete representation of complex features and makes it
difficult to observe more potential frequency details from the
high-level hidden features.

To solve the above problems, we proposed the Time-
Compressed and Frequency-Expanded TDNN (TCFE-TDNN)
module as shown in Fig. 4(b). To obtain more details of potential
features, the TCFE-TDNN doubles the frequency features by
increasing the number of convolution filters layer by layer and
compresses temporal features, which adopts a variable hidden
feature extraction strategy to diversify the hidden features. In
TCFE-TDNN, the frequency dimension of the heart sound fea-
tures is used as the channel dimension of the input features.
The 1D convolution filter uses all the frequency elements of the
temporal feature frame in the receptive field to obtain a linear
representation of the frequency features. This linear representa-
tion is an implicit frequency feature in the heart sound signal. We
increase the number of filters layer by layer so that the network
can obtain more details of the implicit frequency features layer
by layer. This process can be considered an extension of the
heart sound frequency features. The variable hidden feature
extraction strategy uses valid convolution to reduce the time
domain dimension and increase the frequency dimension of the
heart sound features layer by layer. The feature variations in



1368 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 27, NO. 3, MARCH 2023

Fig. 5. Schematic diagram of temporal features variation in two
different network structures. (a) The hidden features variation in TDNN.
(b) The hidden features variation in TCFE-TDNN.

the time domain are shown in Fig. 5. Compared with TDNN,
TDFE-TDNN uses valid convolution without padding operation,
which makes the temporal dimension of features decrease layer
by layer. The temporal features are compressed by doing these.
In addition, the elements of TCFE-TDNN output features are
obtained from the real input features of the same receptive
field due to valid convolution without padding operation. The
temporal feature frames from the same layer of TCFE-TDNN
have the same real receptive field. In contrast, the output features
from different layers contain different numbers of temporal
feature frames and different frequency features, which reflects
the diversity of hidden features.

In detail, we denote the input of model as X ∈ RCfreq×T ,
whereCfreq, T denote the dimension of frequency and time axes
of heart sound MFCCs, respectively. The output of i-th TCFE-
TDNN layer are defined as Hi ∈ RCi×Ti for i = 1, 2, 3, 4 and
Hi = {hi

1, h
i
2, . . . , h

i
Ti
} where hi

t ∈ R1×Ci is the output frame-
level feature at time captured by i-th TCFE-TDNN layer. The
output of each TCFE-TDNN layer can be expressed as:

Hi =

{
BN(ReLU(F̂i(X))), i = 1

BN(ReLU(F̂i(H
i−1))), i = 2, 3, 4

, (1)

where BN and ReLU are batch normalization and ReLU
function. F̂i denote the convolution of i-th TCFE-TDNN layer.
The first TCFE-TDNN layer (TCFE-TDNN-1) contains a valid-
convolution with kernel size of 5. TCFE-TDNN-2, TCFE-
TDNN-3 and TCFE-TDNN-4 contains the valid convolutions
with kernel size 3, and their dilation rates are 2, 3 and 4,
respectively. TheCi satisfiesC4 = 2C3 = 4C2 = 8C1 = 1024.
It should be noted that each TCFE-TDNN layer also contains
a convolution with kernel size of 1, which precedes the valid
convolution and does not change the feature dimension. Its
structure can be found in Fig. 2.

With different dilation rates and valid convolution, we con-
struct the TCFE-TDNN. This module extracts frame-level hid-
den features of the heart sound MFCCs with different time-
frequency resolutions layer by layer, so that the network can
observe the potential abnormal performance of each frame in the

low-dimensional and high-dimensional frequency hidden fea-
ture space. This conversion mechanism from temporal features
to frequency features of TCFE-TDNN enriches the representa-
tion of frame-level features. These features are used to generate
HS-vector, which improves the frequency resolution even more
and focuses the features in the time domain.

B. Dynamic Masked-Attention Statistics Pooling

Statistics pooling is a global pooling structure that implements
aggregation by calculating the mean and standard deviation of
the features on each channel dimension. In time series related
tasks, using statistics pooling instead of global average pool-
ing can better capture the long-term temporal characteristics.
Besides, given the hierarchical structure of TCFE-TDNN, the
features at each level exhibit different details, which are closely
related to heart sound classification. Thus, we constructed a
Dynamic Masked-Attention statistics pooling (DMA Stats Pool-
ing), which dynamically masks out irrelevant frame-level fea-
tures by applying masked-attention statistics pooling (MA stats
pooling) to different TCFE-TDNN layers so that HS-vector
emphasizes the representation of important regions. This module
enables the model to aggregate different resolution features
to obtain a HS-vector with good representation ability. The
Masked-Attention Statistics Pooling is shown in Fig. 6.

We denote the output of a TCFE-TDNN layer as H ∈ RC×T

and H = {h1, h2, . . . , hT } where ht ∈ RC×1 is the output fea-
ture frame at time t captured by hidden layer. T,C denote
the dimension of time and channel axes of the frame-level
features, respectively. We first obtain an attention matrix. The
channel-dependent attention [33] is defined as follows:

B = υT f(WH + bo) + ko, (2)

where the parameters W ∈ R(C/r)×C and b ∈ R(C/r)×1 com-
press the attention information by r times. This combines fuse
the features of each channel and reduces the amount of com-
putation. All elements of the matrix o ∈ N1×T are 1. f(·) is an
activation function and Tanh function is used here. The weights
υ ∈ R(C/r)×C and the bias k ∈ RC×1 are the parameters of the
1D-Conv layer. B ∈ RC×T is the output of the bottleneck layer
and the scalar et,c in B is expressed as:

et,c = υT
c f(Wht + b) + kc, (3)

where υc ∈ R(C/r)×1 denotes the c-th weight vector in υ and kc
denotes the c-th scalar in k. The et,c represents the scalar score
of the t-th feature frame on the c-th channel. Then, the softmax
function is applied along the time axis of the B:

αt,c =
exp(et,c)∑T
τ exp(eτ,c)

, (4)

where αt,c represents the importance of the t-th feature frame
on the c-th channel. The attention matrix A ∈ RT×C is defined
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Fig. 6. Masked-Attention Statistics Pooling.

as follows:

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

α1,1 α1,2 α1,3 · · · α1,C

α2,1
. . .

...
... α2,C

α3,1 · · · . . .
... α3,C

... · · · · · · . . .
...

αT,1 αT,2 αT,3 · · · αT,C

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (5)

The potential pathological features are an essential diagnostic
basis for the heart sound signal. In our proposed DMA mod-
ule, the learnable attention matrix A represents the level of
attention paid to the features by the model. The features with
high attention weights positively affect the diagnostic outcome,
and the features with low attention weights negatively affect
it, which is verified in the experimental section. Therefore, our

masked-attention masks out irrelevant features. First, the mask
matrix M is defined as follows:

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

m1,1 m1,2 m1,3 · · · m1,C

m2,1
. . .

...
... m2,C

m3,1 · · · . . .
... m3,C

... · · · · · · . . .
...

mT,1 mT,2 mT,3 · · · mT,C

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (6)

where

mt,c =

{
1 at,c ∈ topk{aτ,c|τ = 1, 2, . . . , T}
0 else

. (7)

here, topk{·} means the top k numbers in the descending list,
which is used to obtain features with high attention weights. The
mask matrix M ∈ {0, 1}T×C is a binarized output. Then, we
create an attention matrix using mask A′ ∈ RT×C is expressed
as:

A′ = M ⊗A, (8)

where ⊗ denotes the element-wise multiplication. A′ represents
the attention matrix that only retains the top k weight scores
on each channel dimension, which emphasizes the attention to
important regions. It is worth noting that A′ = A when k =
T . For convenience, we define mask rate v as the ratio of the
removed feature number divide the original feature number, that
is v = T−k

T .
Statistics pooling is used to create a uniform feature embed-

ding representation for all frames, which consists of various
statistics computed across frames for each channel. To enhance
the feature embedding representation of heart sounds, the pro-
posed MA stats pooling suggests applying the mask attention
matrix A′ to the statistics calculation. Specifically, statistics
pooling is utilized to obtain the weighted mean vector μ̃ ∈ RC×1

and weighted standard deviation vector σ̃ ∈ RC×1 along the
time axis. The weighted mean μ̃c and standard deviation σ̃c of
their corresponding each channel are expressed as:

μ̃c =

T∑
t

α′
t,cht,c, (9)

σ̃c =

√√√√ T∑
t

α′
t,ch2

t,c − μ̃2
c . (10)

P is the result of connecting μ̃ and σ̃ along the channel axis.
We perform a flatten operation to reshape P into a vector E:

P ∈ R2C×1 → E ∈ Rd, (11)

where d = 2 · C. E represents the segment-level features of
heart sounds, which is the output of MA stats pooling aggre-
gating frame-level features H along the time axis.

To take full advantage of the multi-scale frame-level features
extracted by TCFE-TDNN, a dynamic masked-attention statis-
tics pooling(DMA stats pooling) is proposed, which constructs
MA stats pooling for each frame-level feature and concatenates
all the segment-level features as output. As shown in Fig. 7.
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Fig. 7. Dynamic Masked-Attention Statistics Pooling.

Since the four frame-level features of a heart sound sample have
different representations, DMA stats pooling can dynamically
identify the different features of each layer and mask out the
irrelevant features. It learns dynamic mask functions to match
the heart sound embedding in the same period at a different level,
then combines the information from all functions to obtain the
final representation. The final output E′ of DMA stats pooling
is the concatenation of all output vectors:

E ′ = [E1, E2, E3, E4], (12)

where Ei represents the output vector of the i-th TCFE-TDNN
layer.

C. Loss Function

In the proposed HS-Vectors heart sound classification neural
network, we mainly use focal loss [36] and center loss [37]
to constrain the learnable parameters. The former is used to
improve the classification accuracy of the model for hard-to-
classify samples. The focal loss function is defined as follows:

LF = − 1

m

m∑
i=0

(1− ŷi)
γ log(ŷi), (13)

where ŷi denote the probability that the i-th sample is predicted
to be its actual class, and its value is calculated by Softmax.
The γ is an adjustable hyperparameter that can be adjusted to
control the classification of hard-to-classify and easy-to-classify
samples. The size of mini-batch is m.

In addition, to improve the convergence speed of the model
training and enhance the generalization ability of the model, the
center loss is applied to aggregate HS-vector. With the center
loss, the HS-vector of each heart sound sample is aggregated to
the corresponding class center vector in high-dimensional space.

The center loss function can be expressed as:

LC =
1

2

m∑
i=1

‖xi − cyi
‖22, (14)

where xi ∈ Rd′
denote the HS-vector of the i-th sample. cyi

∈
Rd′

represents the class center vector corresponding to label yi
of the i-th sample.

Finally, we add L2 regularization on this CNN model to
prevent overfitting:

L2 =
1

2
‖W‖22, (15)

where W denotes the parameter to be learned in the network.
The final loss function is:

L = LF + λ1LC + λ2L2, (16)

where λ∗ is a scalar to balance the corresponding loss function.

IV. EXPERIMENTS

In this section, we present the implementation details and
evaluation metrics in the experiments and evaluate our pro-
posed algorithm on two heart sound datasets. Subsection IV-
A introduces the datasets used for the experiments. Subsec-
tion IV-B describes the preprocessing and feature extraction
of heart sounds. Subsection IV-C introduces the implemen-
tation details and evaluation metrics in the experiments. In
Subsection IV-D, we compared the impact of different mod-
ules on model classification. Finally, we analyzed the advan-
tages of our proposed algorithm in comparative experiments
in Subsection IV-E.

A. Datasets Acquisition

The heart sound datasets used in our experiment are the 2016
PhysioNet/CinC Challenge Dataset (PCCD) and the Pediatric
Heart Sound Dataset (PHSD), respectively.

1) 2016 PhysioNet/CinC Challenge Dataset (PCCD): The
2016 PhysioNet/CinC Challenge Dataset [38] consists of six
sub-datasets(A through F) from seven different research groups,
containing a total of 3240 heart sound recordings, which were
collected in either a clinical or nonclinical environment, lasting
from 5 seconds to just over 120 seconds. These heart sound
recordings were divided into two types: normal and abnormal
heart sound recordings and each recording was resampled to
2000 Hz. In addition, this dataset has the characteristic of
an imbalance in the number of normal and abnormal sam-
ples, which contains 665 Abnormal and 2575 Normal heart
sound recordings. The detailed dataset information is listed
in Table I.

2) Pediatric Heart Sound Dataset (PHSD): The Pediatric
Heart Sound Dataset is a publicly available heart sound dataset
that we constructed in our previous work [4]. This dataset con-
tains 528 pediatric heart sound recordings with durations ranging
from 3 to 249 seconds. The child subjects involved ranged in age
from one month to 12 years. These heart sound recordings are
collected by using the Thinklabs One digital stethoscope with a
sampling frequency of 44.1 kHz and 16 bits per sample. There is
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TABLE I
DETAILED PROFILES FOR THE AVAILABLE HEART SOUND DATASETS

also an imbalance in the number of samples in this dataset, which
contains 193 Normal and 335 Abnormal heart sound recordings.
All the heart sounds are grouped into seven categories: Normal,
Atrial Septal Defect (ASD), Ventricular Septal Defect (VSD),
both ASD and VSD, Tetralogy of Fallot (TOF), both ASD and
TOF, and other heart-related diseases, such as Mitral Regurgi-
tation, Aortic Stenosis, Pulmonary Stenosis, etc.

B. Data Preprocessing and Feature Extraction

As mentioned in Section I, data preprocessing and feature
extraction are important pre-operation. In our method, heart
sound signals were preprocessed with a second-order Butter-
worth filter from 25 Hz to 400 Hz for denoising. Since the
real heart sound signal is non-fixed length, we employed a
sliding window algorithm to intercept the heart sound signal
into 3 s length patches with a stride of 1 s. It should be pointed
out that this is not a segmentation (S1, systole, S2, diastole)
but a simple slice. Then, the 81-dimensional MFCCs from a
256 ms window with a 128 ms frame shift were fed into our
model.

C. Implementation Details and Evaluation Metrics

The proposed HS-Vectors is trained from scratch on a
NVIDIA GeForce RTX 3090 GPU. The adaptive moment
(Adam) estimation algorithm is used as the optimizer. The
hyperparameters γ, λ1 and λ2 of the proposed loss function
are set to 2, 1 and 0.01, respectively. Our proposed model is
trained for 60 epochs and a batch size of 512. The learning rate
is initially set to 0.002, and the cosine annealing algorithm is
used to decay the learning rate to 0.00002 during the training.
Finally, the 10-fold cross-validation is adopted to evaluate the
performance of our algorithm.

For the evaluation of the proposed algorithm, four evaluation
metrics are introduced for experiment: Accuracy, Sensitivity,
Specificity, and F1-score which are given as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
, (17)

Sensitivity = Recall =
TP

TP + FN
, (18)

Specificity =
TN

TN + FP
, (19)

Precision =
TP

TP + FP
, (20)

F1 = 2× Precision×Recall

Precision+Recall
. (21)

where TP is the number of true positive results, TN is the
number of true negative results, FP is the number of false
positive results and FN is the number of false negative results.
We considered the correctly diagnosed abnormal heart sound
recordings as true positive samples in this article.

D. Evaluation of the Proposed HS-Vectors

To analyze the relative contributions of different components
of our architecture, we evaluate some variants of the proposed
method with different settings on the PCCD dataset.

1) Model Performance With Different Mask Rates: As men-
tioned subsection III-B, mask rate is an important parameter in
the process of model generating HS-vector. In this part, we find
the best mask rate for the task of abnormal heart sound detection.
In order to ensure that the total number of features is within an
appropriate range, we take the mask rate v from the interval
[0,0.9]. Fig. 8 shows the classification results for different mask
rates on PCCD. It shows that our model can achieve better
classification performance when focusing on a small number
of important features, even if we mask out 90% of the features.
It proves that the mask-attention can balance the relationship
between the discriminative ability and the feature dimension and
remove redundant information. Besides, the F1-score changes
with the mask rate and has the highest value when the mask
rate is 0.5. Therefore, we selected 0.5 as the mask rate of the
proposed HS-Vectors according to the priority order of F1-score,
accuracy, specificity and sensitivity.

2) Model Performance With Different Architectures: To eval-
uate the proposed TCFE-TDNN and DMA stats pooling, we
construct three architectures including: TCFE-TDNN&DMA
Stats Pooling (named: M1), TDNN&DMA Stats Pooling
(named: M2), and TCFE-TDNN&MA Stats Pooling (named:
M3) to analyze the contribution of each module to classifica-
tion. M1 is our proposed model. M2 replaces TCFE-TDNN
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Fig. 8. Classification performance on the PCCD with respect to differ-
ent mask rates. When v is equal to 0, it means we are not using the
mask mechanism.

Fig. 9. Classification performance on the PhysioNet/CinC 2016 be-
tween models with different network architectures.

in M2 with TDNN. M3 uses single-scale DMA stats pool-
ing for feature aggregation. The mask rate for all models
is 0.5.

M1 vs. M2: Since TCFE-TDNN is an improved version
of TDNN, we compared the abnormal heart sound detection
performance of TCFE-TDNN module and TDNN module.
For TDNN in M2, the same-convolution is used for frame-
level feature extraction, and each layer outputs features of
the same scale. Specifically, the output Hi ∈ RCi×Ti for i-th
layer of TDNN satisfies T1 = T2 = T3 = T4 and C1 = C2 =
C3 = C4 = 512. Fig. 9(a) shows the experimental results, in
which we can observe that the proposed model M1 has a
higher index score. It shows the superiority of our TCFE-TDNN
module.

M1 vs. M3: To see the effectiveness of the DMA stats pooling,
we compared multi-scale M1 and single-scale M3. The M3 only
uses MA stats pooling to perform feature aggregation on H4.
Fig. 9(b) shows the comparison results, in which the multi-scale
model M1 has better performance in sensitivity and F1-score.
Since the DMA stats pooling aggregates frame-level features
from different TCFE-TDNN layers, the impact of potential
lack of detailed features on the model generation HS-vector
is reduced.

Fig. 10. The accuracy, sensitivity, specificity and F1-score in different
cross-validation folds for the different implemented methods.

E. Comparative Experiments and Discussion

1) 2016 PhysioNet/CinC Challenge Dataset: To verify the
superiority of our proposed HS-Vectors, we compared our
method with several state-of-the-art methods for heart sound
classification on PCCD. These methods include the ones using
1D heart sound features [4], [10], [26], [28] and others based on
2D heart sound features [27], [39], [40], [41], [42]. The results
of the comparative experiments on PCCD are shown in Table II.
We have implemented all the methods except those marked with
* in Table. The experimental results of these unimplemented
methods are derived from their papers. From Table II, it can be
observed that our proposed method has a decent performance
compared to the state-of-the-art methods. In particular, our
method is more than 3% ahead of other methods in the F1-score
indicator.

Furthermore, the Accuracy, Sensitivity, Specificity and F1-
score in different cross-validation folds for the different imple-
mented methods are illustrated in Fig. 10. It can be found that our
method has stable and better performance in each fold, which
can prove the superiority of our method.

2) Pediatric Heart Sound Dataset: The results of the com-
parative experiments on PHSD are shown in Table III. It can
be seen that our proposed method still achieves the best per-
formance, and its evaluation indicators: Accuracy, Specificity,
F1-score are close to 1 and Sensitivity is equal to 1. It proves
that our method, which extends the HS-vector embedding into
a heart sound deep learning model, can not only represent the
heart sound characteristics without a large number of datasets
but also make the model better adapt to the datasets, achieving
stronger generalization.

V. CONCLUSION

In this study, we propose the TCFE-TDNN module, which
adopts a variable hidden feature extraction strategy to diversify
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TABLE II
CLASSIFICATION PERFORMANCE COMPARISON ON THE PCCD BETWEEN OUR PROPOSED METHOD AND OTHER HEART SOUND CLASSIFICATION METHODS

TABLE III
PERFORMANCE ON THE INDEXES OF OUR METHOD ARE COMPARED ON THE

PHSD WITH THE AVERAGE PERFORMANCE OF OTHER HEART SOUND
CLASSIFICATION METHODS

the hidden features. The network can observe the potential
abnormal performance of each frame in both low and high-
dimensional frequency hidden feature space. Then, we apply the
Dynamic Masked-Attention Statistics Pooling to each TCFE-
TDNN layer, which dynamically masks out irrelevant features
so that the HS-vector generated by the model focuses on the rep-
resentation of essential regions and improves the classification
performance of heart sounds. Compared with previous studies,
our method adds a global feature representation process after the
local feature extraction stage, which enhances the generalization
of the model to long-time features. Experiments have proved
that our method has strong robustness in terms of Accuracy,
Sensitivity, Specificity and F1-score.

Although our method achieves superior performance, these
metrics suggest that the method still has some drawbacks for
clinical application. For example, low-quality heart sound sig-
nals in the dataset may reduce the model’s ability to generalize
to valid data. Furthermore, our model cannot be applied to the
diagnosis scenario of multiple anomaly categories. However, as
a heart sound-aided diagnosis system, the superior performance
shown by our method makes it sufficient to assist doctors in
diagnosis.

This thesis has provided a deeper insight into heart sound
detection. Our method can capture pathological information and

perform abnormal heart sound detection within the effective
interval of clinical PCG signals, opening a series of perspec-
tives for future research and clinical applications. The task of
identifying different types of abnormalities will be our future
research work.
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