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Abstract—Precise classification of histopathological im-
ages is crucial to computer-aided diagnosis in clinical
practice. Magnification-based learning networks have at-
tracted considerable attention for their ability to improve
performance in histopathological classification. However,
the fusion of pyramids of histopathological images at dif-
ferent magnifications is an under-explored area. In this
paper, we proposed a novel deep multi-magnification sim-
ilarity learning (DSML) approach that can be useful for
the interpretation of multi-magnification learning frame-
work and easy to visualize feature representation from
low-dimension (e.g., cell-level) to high-dimension (e.g.,
tissue-level), which has overcome the difficulty of under-
standing cross-magnification information propagation. It
uses a similarity cross entropy loss function designation
to simultaneously learn the similarity of the information
among cross-maghnifications. In order to verify the effec-
tiveness of DMSL, experiments with different network back-
bones and different magnification combinations were de-
signed, and its ability to interpret was also investigated
through visualization. Our experiments were performed on
two different histopathological datasets: a clinical nasopha-
ryngeal carcinoma and a public breast cancer BCSS2021
dataset. The results show that our method achieved out-
standing performance in classification with a higher value
of area under curve, accuracy, and F-score than other
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comparable methods. Moreover, the reasons behind multi-
magnification effectiveness were discussed.

Index Terms—Multi-magnification, histopathological
image, similarity, classification, deep learning.

[. INTRODUCTION

ISTOPATHOLOGICAL diagnosis is the gold standard

for the clinical diagnosis of cancer [1]. Observation of
the microscopic lesions structure, cell morphological changes,
cancer stage, etc., provides a reference basis for preoperative
diagnosis, treatment options, and postoperative prognosis for
patients. The development of whole slide images (WSIs) has
also brought many applications, such as the recognition of
colorectal cancer [2], classification of lung cancer [3], diagnosis
of lymphoma [4], and prediction of bladder cancer recurrence
[5]. However, pathologists generally rely on experience and
knowledge to analyze WSIs [6], which means the evaluation
results are subjective. This type of manual analysis is also
time-consuming and labor-consuming when dealing with a large
quantity of histopathological data [7].

To reduce the burdens of manual analysis, automated analysis
techniques have been continuously improved [8], [9], [10].
Utilizing machine learning to analyze WSIs automatically is
still a challenge [11]. The development of convolutional neural
networks (CNNs) in deep learning has been a powerful new
tool. Over the years, numerous methods have been proposed for
cancer diagnosis of histopathological images using deep learn-
ing and achieved impressive results [12], [13], [14], [15], [16].
Computer-aided diagnosis systems for gastric cancer [13] and
lung cancer diagnosis [14] have been successfully implemented
on pathological images. For the diagnosis of precancerous le-
sions of esophageal carcinoma, a semi-automatic classification
method based on deep learning has been developed, which can
reduce the workload of pathologists by 57% [15]. Although
these diagnostic methods have achieved promising results, they
all need massive amounts of data, and the images used in the
experiment have only a single magnification. In reality, however,
pathologists usually combine information at different magni-
fications [17], i.e., from scales ranging from the sub-nuclear
(=0(0.1 pum)) to the cellular (=O(10 pm)) and intercellular
(=O(100 pm)) to other higher tissue (=O(1mm)) sizes, to make
diagnoses [18].

In practical application, histopathological images are stored in
pyramid form [19], in which each layer has images with different
magnifications. In recent years, the research hotspots utilizing
the different magnification information in histopathological im-
ages mainly focused on multi-scale image processing [20] or
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multi-scale feature utilization [21]. This paper distinguishes the
difference between multi-scale and multi-magnification images
in the A part of the Method. In multi-scale image processing,
Nishio et al. [22] extracted the features of different scale images
by statistical methods and classified them by machine learning.
As for deep learning methods, Chen et al. [23] added a multi-
scale framework to the vision transformer network. The primary
way to obtain multi-scale images is to apply different cropping
methods to the same image to obtain images with different res-
olutions or different visual fields. Tong et al. [24], [25] adopted
a similar strategy in the classification of breast cancer. Marini
et al. [26] proposed a multi-scale-task learning convolutional
neural network to diagnose colon cancer in which the size and
resolution of images used in WSI combinations are the same,
though their scales are different. Each image is a subsection of a
different image, magnified until they are the same size. Sun et al.
[27] proposed a method to learn differently scaled images and
classify histopathological images by simultaneously inputting
them into the network. The image pairs input into the network
come from different magnifications, and the information of the
image pairs is different. Among the methods using the multi-
scale features, there are many exciting works. Gao et al. [28]
proposed a new CNN block representing multi-scale features
at a granular level, which means the increase in perception is
quite a small level for each network layer. Zhou et al. [29]
jointly modulated features using features at different scales in
high-dimension feature space, then gradually unsampled and
refined them until their final desired resolution. In the present
work, only image information at one magnification was input
into the network, while multi-scale features are incorporated in
the use of the image characteristics at different scales. Making
full use of multi-scale features is equivalent to adding some
learnable parameters modules to the original network, which is
essentially different from the direct multi-magnification image.

The abovementioned techniques using multi-scale images
and multi-scale features for processing differ from multi-
magnification methods in which the network processes dif-
ferent magnifications of the same image. Since sufficient in-
formation for multi-magnification classification is available, a
multi-magnification learning strategy inspired by the approach
of pathologists is proposed in the current study. The multi-
magnification work already in the literature that uses deep
learning methods can be roughly divided into two research
directions. In the research field of machine learning, Doyle
et al. [30] proposed to input multi-magnification images to a
Bayesian classifier for classification to achieve prostate cancer
detection in 2010, but its classification performance was not
outstanding. As the first example of the deep learning method,
Chen et al. [31] proposed a network feeding multi-magnification
images to the shared depth network for semantic segmentation.
The attention mechanism was used to weigh the characteristics
of different magnification image features. Das et al. [32] also
proposed a deep CNN framework, which analyses images from
a random number of regions of the tissue section at multi-
magnification. Diagnosis at the slide level is then processed
using a majority voting-based approach. These researches show
that multi-magnification information is also effective for diag-
nosing the histopathological image, which is more in line with
doctors’ actual diagnostic procedures. However, these studies
are trying to eliminate the effects of different magnification,
which was equivalent to a data augmentation strategy. Research
in the other direction mainly focuses on feature fusion [33],
[34], [35]. Such as the work of Tao et al. [34], which used an

attention-based method to combine the features of multi-
magnification images for prediction. Lin et al. [35] have demon-
strated a multi-magnification architecture called Feature Pyra-
mid Network for constructing high-level semantic feature maps
at all scales. In our previous work [36], a multi-magnification
histopathological image with weakly supervised attention de-
tection framework based on CNN was proposed, in which im-
ages with different magnifications were given different weights.
However, these studies mainly focus on how to utilize multi-
magnification image features. This may cause different mag-
nification images to affect each other when extracting features
and even cause learning in a direction such that the optimization
goal is more challenging to achieve. Moreover, there is no
reasonable explanation for why multi-magnification methods
perform better than multi-scale image and multi-scale features.
Inspired by the work of Sun et al. [27], we further analyze the
above situation by evaluating the similarity of the features of
images at different magnification.

Similarity evaluation is a standard image evaluation method
[37], [38], which can also be applied to medical images [39],
[40], [41]. This framework extracted structural information from
a scene based on the degradation of structural information
to develop a Structural Similarity Index. We first learn local
and global information through a multi-magnification backbone
network, in which the highest-level feature vector output is to
learn the same classification target in a direct way rather than
complex strategies and parameters. The classification results
are obtained by fusing the prediction information at different
magnifications. Since the information functions are different at
various magnifications, similarity is used to evaluate the avail-
ability of information. Our method is validated by quantitative
results in Section IIT and by quantitative and qualitative analysis
in Section IV.

The main contributions of this paper are as follows:

1) We proposed a novel similarity learning approach that
can be useful for the interpretation of multi-magnification
learning framework and easy to visualize feature repre-
sentation from low-dimension (e.g., cell-level) to high-
dimension (e.g., tissue-level), which has overcome the
difficulty of understanding cross-magnification informa-
tion propagation. The similarities of low-dimension and
high-dimensional information at different magnifications
are characterized by similarity theory.

2) The effectiveness of multi-magnification information is
further explained by analyzing the similarity. The statis-
tics of different image pair classification results, espe-
cially their misclassification, can give direct evidence
of how well the use of multi-magnification information
works. Furthermore, the region of interest (ROI) is found
and tracked using multi-magnification images to explain
the working mechanism of multi-magnification informa-
tion learning.

3) The proposed method achieves superior performance
compared with state-of-the-art methods on clinical and
public datasets.

Il. METHOD

This paper proposes a novel framework for histopatholog-
ical image analysis, which is useful for histological diagno-
sis. This section describes the definition and characteristics of
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Fig. 1. Examples of each type of image pair. (a) and (b) refer to multi-
magnification image combinations (marked in red). (a) and (c) refer to
multi-scale image combinations (marked in black).

multi-magnification histopathological images. We then expound
on the proposed framework (DMSL), an improved classification
network, with Inception_v3 [42] as the backbone, and also
describe the two main parts of the framework: the training and
implementation schema. Briefly described, that framework is a
deep CNN based on multi-magnification images, including a
similarity evaluation module to constrain the optimal features
under different magnification images. In order to learn infor-
mation at different magnifications effectively, a specific loss
function is designed. Furthermore, we investigate the behavior
and efficiency of the proposed framework by visualizing what
it has learned from multi-magnification images.

A. Multi-Magnification Histopathological Image

Histopathological images are stored with different magnifica-
tions in a WSI, and these images contain different information
and resolution. Our method is based on the multi-magnification
histopathological image, which is different from multi-scale im-
ages and multi-scale features. In this paper, multi-magnification
images refer to images with different resolutions in the same field
of view (FOV), while multi-scale images have different FOVs
at the same or different resolutions. The method of multi-scale
features [43] is thus different from those of the two we mentioned
earlier. An example of each type of image pair is displayed in
Fig. 1.

After discussion with pathologists from Shenzhen Third Peo-
ple’s Hospital and investigating related papers [44], [45], We can
see that the FOV of the pathologist inspecting at the WSI under
the microscope at different resolutions is relatively fixed. Even if
the FOV of the pathologist changes at different magnifications,
the pathologist usually observes the same area near the center
of the field.

B. Proposed Multi-Magnification Framework

1) Basic Network Architecture: Our basic network is de-
signed based on the Inception_v3 structure, which is widely
used in medical image classification tasks and shows lots of
advantages. It adopts asymmetric decomposition convolution
and convolution substitution, which reduces the amount of cal-
culation and increases the diversity of features. Its Inception
Reduction Module block strengthens the adequate transmission
of information by expanding the filter banks, giving rise to more
accurate classification results.

An overview of the framework is given in Fig. 2. We have
removed the last convolution layer and all subsequent fully
connected layers. Therefore, the remaining structure constitutes
the encoder for feature extraction, which was learnable rather
than fixed parameters.

Two images with different magnifications, magnification 1
and magnification 2, are fed into two separate backbones, respec-
tively. Then, the features obtained are input into two branches.
The first branch is a classifier consisting of fully connected layers
and SoftMax layers to obtain the classification probability of the
current magnification image. Finally, for every tuple of images,
the results of the fusion classifier are obtained according to (1):

Output = Z wmclassifierm(fm) (1)

where fm represents the feature of the magnification m, wm
represents the weight of the classification result of m, and the
sum is one. Another branch is a similarity measurement module
(SIM) which evaluates the extracted features from different
magnification images. The similarity is computed based on the
L1-Norm of the two or more features maximized value on the
channel of feature:

hxw
c c
SIM = Z Z max X7 —max X{| ()
2<i<m,1<j<i [k=1
where sz_ , XJ-C,: represents the feature in location k of channel

C under the magnification m, and where & and w represent the
height and width of the image feature map. In order to calculate
the different magnification features with different shapes, we
changed different features into the target same shape by adaptive
pooling [46].

2) Loss Function: Cross entropy (CE) is a loss function
commonly used in classification tasks. In our training scheme,
for searching the tissue of common concern in different magni-
fications, the SIM is added to the loss function:

Lossarr, = aLosscg + BLosssru 3)

where Lossc gis the CE of the predicted label and ground truth
(GT), Lossgsras is the absolute value of SIM, hyper-parameters,
cand [ , are the weight for each loss and are set by experience.
The optimization objective of the model is the minimum value
of Lossarr,.

C. Network Training and Implement

1) Data Strategy: In the training schema, the diagnostic
model is trained by normalizing and enhancing histopatho-
logical images of each tuple. Usually, observation of various
angles will happen in the pathologists’ diagnosis. We adopted
many augmentation methods to fully consider the visual fea-
tures that pathologists may encounter under the microscope in
the augmentation processing. Meanwhile, we simulate pathol-
ogists’ examination processes and authenticity in the actual
diagnosis, such as color jitter, random rotation, and gray-scale
transformation.

In general, the category of the histopathological image con-
taining cancer is that of the tumor. Considering the actual
training and learning of efficient information, images with a low
proportion of cancer would not be selected. More than 80% of
the images with cancer regions are tumor data, and the images
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Fig. 2. Overview of the proposed DMSL. The part (a) shows our proposed block diagram. WSIs were obtained by scanning and digitizing tissue
samples. Then the different magnification images obtained by cropping and resizing were fed into the similarity learning network (part b). The
obtained feature vector (orange mark) entered the following two branches. One branch flattens the features of different magnification images, and
then aggregates the prediction results through a weighted classifier (vmClassifierm). Another branch constrains the similarity of the features
of different magpnification images (SIM block). The part (b) consisted of low dimensional feature extraction (LD-Feature Extractor,,, the m means
magnification) and high-dimensional feature extraction (HD-Feature Extractor,,,), in which the structure of LD and HD-Feature Extractor are different
parts of the backbone network, inception_v3. The part from input to the first convolution layer was LD-Feature Extractor to learn local similarity such
as morphological feature of cell and nucleus, and the part from the leftover convolution layer to the classifier is HD-Feature Extractor to learn global
similarity such as tissue distribution and spatial pattern. The preliminary similar features obtained from LD-Feature Extractor enter HD-Feature

Extractor to compute the similar features with global scope.

with no cancer regions are normal data. The above is the dataset
selection strategy for different categories.

2) Transfer Learning: One of the most significant benefits
of transfer learning is that researchers can skillfully apply the
knowledge learned before to solve new problems better or
faster [47]. The properties of transferring knowledge between
different tasks and data domains can effectively reduce the
burden for model retraining. In medical image analysis based on
deep learning, it is usually necessary to have enough annotated
data. In practice, medical image annotation is costly and time-
consuming work. Transfer learning can be used in medical image
analysis to reduce the negative impact of insufficient data. Many
studies [47], [48], [49] have shown that the application of transfer
learning in medical image analysis can improve performance to
a certain extent, even if some medical images are different from
natural images in texture and structure. Consequently, transfer
learning has also been added to our training strategy.

D. Visualization of DMSL

A visualization procedure is executed to intuitively verify
whether the proposed DMSL effectively makes it interpretabil-
ity. The intermediate results of multi-magnification related net-
work modules are visualized to help us better understand their
working mechanism. In order to validate whether the depth
network can learn similar essential information in different mag-
nification images, we generate heat maps through the gradient
information in the convolution layer of the low dimension (the
first layer) and high dimension (the last layer) feature stage,
which was inspired by the Grad-CAM [50]. Analogous to the
thermal image generated by thermal imaging equipment using
the infrared principle [51], [52], Grad-CAM firstly obtains the

gradient of the feature map according to the backward direction
of the output vector and obtains the gradient corresponding
to each pixel on each feature map, that is, the gradient map
corresponding to the feature map. The mean of each gradient
graph is then calculated, which corresponds to the weight of
each feature graph. Finally, the final class activation graph can
be obtained through the linear rectification activation function
[53] after the weights are used in a weighted sum with the feature
graph.

[lI. EXPERIMENTS AND RESULTS

This section will comprehensively evaluate the classification
performance of the proposed DMSL in the histopathological
image. The following multi-magnification image experiments
were based on two feature extractors and two classifiers, that is,
there were two networks rather than one common network.

A. Datasets

The following two datasets are used to validate the DMSL
model, of which one is a public dataset, and the other is a clinical
dataset. The reason for choosing these datasets is that there is
a maximum magnification of 40x, which allows us to carry out
various experimental combinations of multi-magnification. In
addition, the combination of public and clinical datasets can
better verify our model performance. The experiment is mainly
performed on the clinical dataset and further tested on the public
dataset as an external dataset.

NPC2020 [54]: This clinical dataset consists of 608 patients,
which are collected in the pathology department of Gaozhou
people’s Hospital and Shenzhen Third People’s hospital.
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TABLE |
DETAIL OF THE NPC2020 DATASET WITH VARIOUS MAGNIFICATION

Training Testing Total
Classes Tumor Lymphoi(':l Inflammation Tumor Lymphoi(':l Inflammation Tumor Lymphoifi Inflammation
hyperplasia hyperplasia hyperplasia
Cases 98 83 231 74 41 81 172 124 312
Slides 470 130 644 312 85 421 782 214 1065
Inflammation refers to chronic nasopharyngeal inflammation.
TABLE Il
DETAIL OF THE BCSS2021 DATASET WITH VARIOUS MAGNIFICATION
Classes Training Testing Total
Tumor 1.47x10* (76) 0.44x10* (24) 1.92x10* (100)
Non-tumor 1.63x10* (74) 0.58x10* (26) 2.21x10* (100)
Data are expressed as n (p), while n means the number of patches and p means the percentage of the total patch number.
TABLE IlI-A
COMPARISON OF OUR MODELS TO EXISTING METHODS ON THE NPC2020 DATASET
NPC2020 dataset (mean + std)

Method Combination Mode PRE REC ACC F1 AUC
Vagl9 20x / 0.854+0.024 0.801+0.014 0.865+0.014 0.827+0.014 0.903+0.025
40x / 0.850+0.032 0.796+0.018 0.854+0.028 0.822+0.015 0.885+0.016
Resnets0 20x / 0.924+0.005 0.820+0.014 0.909+0.009 0.859+0.011 0.9424+0.008
40x / 0.902+0.013 0.821£0.013 0.903+0.012 0.852+0.005 0.937+0.008
Inception v3 20x / 0.843+0.044 0.818+0.011 0.871+0.023 0.827+0.026 0.936+0.006
- 40x / 0.916+0.007 0.812+0.013 0.902+0.006 0.851+0.010 0.937+0.004
Shufflenet v2 20x / 0.877+0.012 0.804+0.009 0.891+0.007 0.834+0.010 0.929+0.007
- 40x / 0.914+0.009 0.827+0.008 0.911+0.005 0.861+0.006 0.943+0.005
Mnasnet 20x / 0.896+0.067 0.816+0.037 0.907+0.205 0.853+0.019 0.936+0.012
40x / 0.894+0.069 0.826+0.104 0.906+0.203 0.862+0.072 0.944+0.022
Regnet 20x / 0.902+0.009 0.801+0.019 0.892+0.010 0.838+0.016 0.936+0.010
40x / 0.893+0.009 0.797+0.012 0.890+0.006 0.833+0.009 0.943+0.008
MSCN 40x+20x MS 0.898+0.012 0.847+0.017 0.904+0.014 0.865+0.016 0.963+0.004
Ours 40x+20x MM 0.956+0.004 0.870+0.015 0.933+0.008 0.90440.010 0.980+0.003
40x+20x SIM 0.943+0.009 0.882+0.012 0.937+0.007 0.909+0.010 0.984+0.004

The best results for each metric are shown in bold, and the second are underlined.

The collection and use of these datasets obtained informed
consent from the Institutional Research Ethics Committee. All
slides collected are divided into three categories: inflammation
(Imf), lymphoid hyperplasia (Lym), and nasopharyngeal car-
cinoma (NPC, Tum) diagnosed as nonkeratinizing carcinoma
according to the histological classification of the World Health
Organization. Specifically, these slides are jointly labelled by
two pathologists with at least fifteen years of experience, and
possible conflicting annotations have been negotiated with-
out consensus. The image patches are separated into training
datasets and testing datasets in a suitable proportion. The details
of dataset division are shown in Table I.

BCSS2021 [55]: This dataset (publicly available at https://
github.com/PathologyDataScience/BCSS) contains 151 hema-
toxylin and eosin-stained WSIs with breast cancer for semantic
segmentation. Together with the original WSI, it comes from
The Cancer Genome Atlas. The annotation information is taken
from the literature. Specifically, a study coordinator, a medical
doctor, selects one representative ROI with a mean size of
1.18mm?, labelling different regional boundaries of tissue and
its category in each slide, such as a tumor, adipose, blood vessels,

etc. It should be noted that not every slide has all-category
labels, but tumor slides do. All images are divided into only
two categories, tumor (Tum) and non-tumor (Oth), considering
the expandability and complexity of the experiment. All slides
were used in our experiment, and the details of dataset division
are shown in Table II. The image patches are also based on the
principle of independence.

B. Implementation Details

A simple general method is used to normalize the image
through mean and variance. As for the way to determine the
patch location in each case, the selected strategy is random, and
the random number is set for tiles. For patches from tiles, the
patches were cropped with 0.25 overlap of patch size. Note that
if the proportion of tumor area is not less than 80%, the category
of the patch is the tumor, while the proportion of tumor area must
be 0% to be judged as non-tumor when judging the category in
the previous step, according to the annotations by pathologists.
Moreover, the patch resolution of 40x is 600 pixels by 600
pixels, and the 20 x image resolution is 300 pixels by 300 pixels.
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TABLE III-B
COMPARISON OF OUR MODELS TO EXISTING METHODS ON THE BCSS2021 DATASET

BCSS2021 dataset (mean + std)

Method Combination Mode PRE REC ACC F1 AUC
20x / 0.8330.010 0.88420.010 0.86940.010 0.8490.010 0.93620.006
Veel? 40x / 0.826:0.069 0.88520.103 0.8670.016 0.85020.017 0.935:0.012
20x / 0.8530.019 0.878£0.021 0.886:0.016 0.863£0.019 0.944£0.010
Resnet30 40x / 0.8530.011 0.873+0.015 0.8860.009 0.861+0.011 0.94120.010
, 20x / 0.863£0.015 0.881£0.009 0.89420.011 0.871£0.012 0.945:£0.004
Inception_v3 40x / 0.858£0.007 0.873+0.008 0.890:£0.004 0.86520.004 0.9440.006
Shufflenct 12 20x / 0.814+0.036 0.850£0.022 0.8440.035 0.821£0.032 0.926£0.018
40x / 0.836:0.008 0.8530.002 0.8700.005 0.84240.009 0.93920.005
20x / 0.816:0.011 0.84520.017 0.85420.021 0.829+0.009 0.9010.018
Mnasnet 40x / 0.83020.010 0.8520.004 0.87120.016 0.84120.008 0.91520.047
Regnet 20x / 0.812£0.015 0.876+0.015 0.8400.021 0.82320.021 0.933£0.007
40x / 0.844+0.019 0.879+0.010 0.879+0.017 0.857+0.019 0.940£0.005
MSCN 40x+20x MS 0.866£0.008 0.888+0.012 0.89740.007 0.875+0.009 0.945£0.002
oo 40x+20x MM 0.877-0.004 0.903£0.008 0.9070.003 0.88820.004 0.956+0.003
40x420x SIM 0.8780.006 0.905::0.008 0.909:£0.005 0.890:£0.007 0.959+0.003

These tables records the results of training the model using the four different strategies seen in the Mode column: MS means the model is trained with
multi-scale images, MM means the model is trained with multi-magnification images, ‘/” means model is trained based on single magnification, and SIM

means the model is trained with multi-magnification images with SIM.

The best results for each metric are shown in bold, and the second are underlined.

TABLE IV
COMPARISON OF EXISTING METHODS USING OUR FRAMEWORK IN TWO DATASETS, WHICH THE MAGNIFICATION COMBINATION USED WAS 20 x +40x

NPC dataset Breast dataset
Experiments Mode ACC Fl1 AUC ACC Fl1 AUC

Vggl9 MM 0.891+0.004 0.865+0.008 0.959+0.005 0.884+0.004 0.865+0.006 0.917+0.005
Resnet50 MM 0.921+0.003 0.886+0.004 0.964+0.007 0.896+0.003 0.877+0.004 0.9460.004
Ours MM 0.933+0.008 0.904+0.010 0.980+0.003 0.907+0.003 0.888+0.004 0.956+0.003
Vggl9 SIM 0.894:0.004 0.867+0.011 0.963+0.004 0.889+0.005 0.867+0.005 0.919+0.006
Resnet50 SIM 0.923+0.005 0.888+0.008 0.971+0.003 0.901::0.002 0.8830.002 0.955+0.003
Ours SIM 0.937+0.007 0.909+0.010 0.984+0.004 0.909+0.005 0.890+0.007 0.959+0.003

The best results for each metric are shown in bold.

Besides, the hyperparameters of weight in (1) were set to 0.5,
respectively, and so are a andf.

All models were implemented using PyTorch (version 1.9.0),
and all training processes were trained on the NVIDIA RTX
A6000 GPU in Linux (version 4.4.0-116-generic). In addition,
all experiments had 5-fold cross-validation. The initial learn-
ing rate, batch size and optimizer are 0.001, 32, and Adam,
respectively.

Precision (PRE), recall (REC), accuracy (ACC), F-score (F1),
and area under curve (AUC) were used to evaluate the perfor-
mance of different models. It should note that the following
statistical metrics are based on patch level because the value
of metrics based on patient-level is almost 1 with no neces-
sity of comparison, especially in the nasopharyngeal carcinoma
dataset.

C. Classification Performance and Comparison Results

In this section, several experiments are performed to prove
the effectiveness of the proposed framework.

Tables III and IV show the quantitative classifications patch-
wise results of our proposed method and other state-of-the-art

methods for 20x and 40x magnifications factors. In this sec-
tion, our results are based on different combinations of 20x
and 40x, including multi-magnifications combined and multi-
magnifications combined with SIM bases on two backbones.
Among the state-of-the-art deep learning models for image
classification, Vggl9 [56], Resnet50 [57], Inception_v3 [42],
Shufflenet_v2 [58], Mnasnet [59] and Regnet [60], which obtain
good experimental results in classification in recent years, are
compared with our DMSL method. Meanwhile, whether it is
close to the depth of the proposed model is the main factor
used to select the number of layers of the network. Furthermore,
according to [61], we reproduced a work on a multi-scale image
classification network called MSCN in our experiment. This
work also uses double branches to extract image features with
different magnification, but the resolution of different magni-
fication images is different. The backbone if MSCN is Vggl6
or Inception_v4 in the original. For the fair comparison, we
use the backbone network used by the proposed framework
to replace the backbone network of MSCN. In the following
experimental results, the experiment on the dataset of NPC2020
is a three-classification task, while the experiment on the dataset
of BCSS2021 is a two-classification task. Therefore, the macro
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method is adopted for the statistical metrics of the first dataset,
which means calculating metrics for each label and finding its
unweighted mean without consideration of label imbalance.

In the testing dataset of NPC2020, the performance of the
proposed DMSL framework outperforms the classical single
magnification models. The improvement rate of AUC goes up
by 3.6% to 9.5% in combinations of 20x and 40x. Specifically,
from Table III, the performances of the DMSL model with
SIM are the best, with the highest evaluation on AUC (0.984),
ACC (0.937), REC (0.882), and F1 (0.909). Compared with
the above state-of-the-art network results, DMSL without SIM
increases by 3.8% to 7.7% on AUC and by 4.5% to 7.7% on
F1 at 20x magnification, and by 3.6% to 9.5% on AUC and
by 4.2% to 8.2% on F1 at 40x magnification. In the single
magnification classification results, the values of each metric of
each model under 40x are higher than those under 20x, except
for Vgg19 and Resnet50, and the values of the state-of-the-art
network generally have low REC values. Our proposed DMSL
increases the REC by 9% on average, which greatly improves the
recognition accuracy of the tumor category. Overall, our method
using multi-magnification has achieved promising results.

For the BCSS2021 dataset, the classification performance of
all models is encapsulated in Table IV in terms of the testing
set. The proposed DMSL also outperforms classical single
magnification model results in which the improvement rate of
each metric is from 1% to 5.8% on average in combinations of
20x and 40x, which indicates the effectiveness of the proposed
method evaluated using an external dataset. Specifically, from
Table III, the performances of the DMSL model with SIM are
best, giving the highest values of AUC (0.959), ACC (0.909),
PRE (0.878), REC (0.905), and F1 (0.890). DMSL without
SIM increases by 1.1% to 5.5% in AUC and 1.7% to 6.7%
on F1 at 20x magnification, and 1.2% to 4.1% in AUC and
2.3% to 4.7% in F1 at 40x magnification. While the recognition
rate of the tumor category is improved, the recognition rate of
the non-tumor category is also greatly improved. Experimental
results show that our method has good robustness, combining
the performance of the previous dataset. Meanwhile, the dataset
volume of this dataset is 5% of that of the previous dataset,
which shows that the proposed framework can also achieve
better performance on a small volume of data.

Compared with MSCN, our method improves AUC by 1.4%-
2.1% in both datasets. The original results of all the above
methods are shown in Table IIT and Table IV. Through further
comparison, it can be found that the effectiveness of multi-
magnification histopathological image fusion is better in both
single backbone and double backbone in different datasets. The
conclusion can be drawn that the combination of 20x and 40x
magnification is instrumental in discriminating tumors. More-
over, it can be seen that there is little difference between the
performance of DMSL and DMSL without SIM, i.e., 0.4%-0.7%
on AUC.

D. Results of Different Backbones

In order to verify the adaptability of our framework, we
use different backbone networks for feature extraction. More
representative Vgg19 and Resnet50 are added as backbone net-
works for experiments. Han et al. [62] achieved the best results
in thyroid pathological image recognition combined with 20x
and 40x. Our experiments also use this combination, including
the experiment in the last section. The results using different

network backbones are shown in Table V. It can be seen that the
classification results using the similarity constraint are improved
to varying degrees. Moreover, our framework makes the standard
deviation smaller, and the performance of that is more stable.
As shown in Table V, the result of using Inception_v3 as the
network backbone is the best. Compared with the other two
feature extraction backbone networks, Inception_v3 has fewer
parameters, a faster learning speed, and requires less memory.
Therefore, Inception_v3 is the backbone network of all experi-
ments.

E. Results of Different Combinations

To evaluate the effectiveness of the proposed method, different
combinations of magnification and different combinations of
the method are carried out on two datasets. As shown in Table
IV, six combinations of different magnifications are applied
to the experiment. They are: 40x + 20x, 40x + 10x, 40x
+ 5%, 20x + 10x, 20x + 5x and 10x + 5x. The mean
and standard deviation of different magnification combinations
intuitively show that DMSL achieved stable performance in
different magnification combinations. No matter which com-
bination is adopted, adding an extra magnification of image
information can significantly improve the single magnification
classification results. It can be seen that the combination of 5x
+ 20x achieved better results in both datasets. In addition, the
significance of adding similarity constraints will be discussed in
the next section, with the combination of 5x + 20x as an object
of further research.

IV. DISCUSSION

In this study, we proposed a novel framework (DMSL) for
classifying histopathological images using a new deep convolu-
tion model based on multi-magnification. Several experiments
were carried out on two different datasets to verify our method,
and we obtained encouraging results. However, the reason for
the effectiveness of the multi-magnification method has not been
discussed in previous work. The following discussion mainly
focuses on the DMSL with multi-magnification images.

The direct function of the multi-magnification image provides
more information, which is conducive to the network learning
more features at each iteration. Generally, high-dimensional
features often represent the essential information of the image in
the classification task. Evaluating the correlation of high-level
features thus becomes feasible. Next, we will analyze the reasons
from several angles based on their similarity.

A. Dataset Volume

In our proposed network structure, a double branch network
extracts image features at different magnifications on each
branch, which means that the input information is doubled for the
whole network framework. A question worth asking is whether
our model performance can reach that of the single magnification
even if the proportion of the training dataset is reduced to half
or less. For that, we experimented with the training data set
screening to verify our idea using two datasets: the experimental
results of the 5x and 20x combination with SIM are shown in
Fig. 3.

When the proportion of the training dataset is reduced to
50%, a very competitive result is still achieved, i.e., the AUC is
only reduced by 0.7% in NPC2020 and by 0. 4% in BCSS2021.
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TABLE V
RESULTS OF DIFFERENT COMBINATION MAGNIFICATION AND WHETHER SIMILARITY CONSTRAINTS WERE USED IN TWO DATASETS

NPC dataset Breast dataset
Experiments Mode ACC Fl1 AUC ACC F1 AUC
20x+40x MM 0.933+0.008 0.904+0.010 0.980+0.003 0.907+0.003 0.888+0.004 0.956+0.003
10x-+40x MM 0.927+0.004 0.895+0.007 0.973+0.005 0.906+0.003 0.887+0.003 0.956+0.003
5x+40x MM 0.930+0.008 0.899+0.013 0.971+0.007 0.908+0.008 0.889+0.009 0.955+0.006
10x+20x MM 0.932+0.006 0.909+0.010 0.985+0.006 0.908+0.003 0.890+0.003 0.955+0.005
5x+20x MM 0.936+0.006 0.911+0.008 0.981+0.008 0.909+0.005 0.892+0.005 0.954+0.003
5x+10x MM 0.923+0.006 0.891+0.007 0.981:+0.004 0.889+0.004 0.867+0.004 0.931+0.007
20x+40x SIM 0.937+0.007 0.909:0.010 0.984+0.004 0.909+0.005 0.890+0.007 0.959+0.003
10x+40x SIM 0.925+0.005 0.891+0.009 0.970+0.008 0.908+0.004 0.890:+0.004 0.960+0.003
5x+40x SIM 0.932+0.006 0.902+0.007 0.977+0.002 0.912+0.003 0.899+0.003 0.963+0.003
10x+20x SIM 0.940+0.005 0.9160.009 0.986+0.003 0.912+0.005 0.895+0.005 0.960+0.003
5x+20x SIM 0.937+0.005 0.914+0.005 0.987%0.004 0.913+0.003 0.898+0.003 0.961+0.002
5x+10x SIM 0.930+005 0.902+0.006 0.963+0.007 0.891+0.009 0.870+0.009 0.929+0.004

The best results for each metric are shown in bold, and the second are underlined.

1.000

0.975 0.977 0.984
0.950 -
0.930, 0.952 0.955 0.959
0.913 0.933
0.900 0.905
—4—NPC2020 —=—BCSS2021
0.850 T T T T

5% 10% 25% 50% 100%

Fig. 3. AUC values for datasets of different proportions in two datasets.
The x-axis represents the training dataset ratio, and the y-axis repre-
sents AUC value.

However, this result may be due to the use of a double branch
network structure by which DMSL has nearly double the number
of parameters to learn the feature of the image. The above ex-
periments cannot directly prove that multi-magnification images
cause it. Therefore, experiments with fewer data are also carried
out. Our model achieves competitive results when the proportion
of training datasets is reduced to 10% compared with some
advanced models based on single magnification. As shown in
Fig. 3, impressive results are also obtained when the proportion
of training datasets is reduced to only 5%.

The preliminary conclusion can be drawn that the multi-
magnification image can effectively improve the learning ability
of the network and the performance of classification.

B. Similarity Statistics

The pathologist zooms in at high magnification after finding
the ROI at low magnification, for which the field of vision is
the same under the microscope. This is the main factor in the
effectiveness of using multi-magnification based on similarity.
From the current experimental results, one can see that the
multi-magnification image improves the performance of the
classification model effectively. However, it cannot be ignored
that the improvement of the model with similarity constraints
is minor. We suspect the reason is that the multi-magnification
model, without increasing the similarity constraint, is actually
learning the similarity of different magnification images.

To prove our assumption, an experiment is designed to sepa-
rately count the similarity of each pair of multi-magnification
images when classifying whether it contains similarity con-
straints in two datasets. Specifically, for each group of exper-
iments, we divide the similarity into different ranges: larger
dissimilarity, smaller dissimilarity, smaller similarity, and larger
similarity. The corresponding similarity pairs were 0-0.25,
0.26-0.5, 0.51-0.75 and 0.76—1. The value of the similarity was
calculated by

1 z—z) 7 (y—7
Stay) = x (LD WD) )
2\l =2 lly -l
where ||z|| = (xTx)l/z, lyl| = (yTy)l/Q, Z and § are the mean

of x and y according to the normalized correlation [63]. The first
step is to calculate the similarity for each pair of multiple mag-
nified images in the test dataset. The second step is to count the
number of images in each similarity interval. It should be added
that in order to ensure the consistency of statistical standards,
the statistical objects were the images correctly classified by the
two models, i.e., TP and TN, no matter what category. As shown
in Fig. 4, larger similarity and smaller similarity images account
for more than 90% in the two datasets, respectively, whether
similarity constraints are used or not.

Moreover, the whole similarity distribution with similarity
constraints and the whole distribution without similarity con-
straints have a relatively high overlap. Compared with the
model without similarity constraints, the model with similarity
constraints can improve the similarity of some low-similarity
multi-magnification image pairs. The results show that the larger
dissimilarity ratio of multi-magnification was no bigger than
3%, whether similarity constraints were used or not in different
datasets.

The above statistical experimental results are based on correct
classification. However, for some images that are not classified
correctly, i.e., FP and FN, the performance of the similarity of
these images also needs to be studied, and relevant experiments
have also been carried out. Fig. 4 shows that the proportion of
larger dissimilarity images and smaller dissimilarity images is
close to 80% in the two datasets, respectively, whether similarity
constraints are used or not. In addition, the overlap between
the whole distribution with similarity constraints and the whole



DIAO et al.: DEEP MULTI-MAGNIFICATION SIMILARITY LEARNING FOR HISTOPATHOLOGICAL IMAGE CLASSIFICATION

1543

a a,

1224V
'With Similarity' ‘
4%
3

%

= Larger Similarity
Smaller Similarity

b, b,

7%

. 13% _ with Similarity s

= Larger Similarity
= Smaller Similarity

5%

30%
0,
37% 16%
43%
51%
S~ Similarity="".
39% %
50%
Fig. 4. Similarity statistics for each pair of multi-magnification images,

where row (a) represents the statistics of correct classification and row
(b) represents the statistics of the wrong classification, subscript 1 repre-
sents the NPC2020 dataset, and subscript 2 represents the BCSS2021
dataset, and the inner pie chart represents a model without similarity
constraints, and outer pie chart represents a model with similarity con-
straints.

distribution without similarity constraints is close. It can be
further concluded that the model mainly learns similar infor-
mation between the two images when learning the information
of multi-magnification images.

C. Visualization

To explain the reason for improvement and how similarity
works in actual network learning, we carried out experiments on
the visualization research of model learning. Precisely, two con-
volution layers in the network, i.e., the convolution layer of low
dimension (the first layer) and high dimension (the last layer),
were calculated for Grad-CAM at different magnifications in
the learning process. Fig. 5 gives examples of heat maps and
their corresponding original image patches generated for three
categories of the NPC2020 dataset. Fig. 6 gives examples of heat
maps and their corresponding original image patches generated
for two categories of the BCSS2021 dataset. For the convenience
of the display, the images were scaled to the same size, although
the image resolution of each magnification was different. It can
be seen that the proposed DMSL was able to apply information
related to different magnifications. On the heat map at the low
to the high stage of DMSL, the prominent areas are gradually
clustered, and the proportion of heat map areas with high mag-
nification is higher, indicating that the areas considered by dif-
ferent magnifications are similar, and more detailed features can
be learned from high magnification images. These visualization
results intuitively show that the proposed network architecture
can use the multi-magnification information of histopathological
images. Furthermore, these visualization results illustrate the

(b) ©

Fig. 5. lllustration of multi-magnification information exploited by the
proposed DMSL method in NPC2020 dataset. (a) original histopatho-
logical image patches. (b), (c), (d), and (e) respectively give heat maps
of (a) generated from the 5x of low dimension, 20x of low dimension, 5x
of high dimension, and 20x of the high dimension of DMSL by utilizing
a visualization technique called Grad-CAM. For the convenience of the
display, the images were scaled to the same size.

Fig. 6. lllustration of multi-magnification information exploited by the
proposed DMSL method in BCSS2021 dataset. (a) original histopatho-
logical image patches. (b), (c), (d), and (e) respectively give heat maps
of (a) generated from the 5x of low dimension, 20x of low dimension, 5x
of high dimension, and 20x of the high dimension of DMSL by utilizing
a visualization technique called Grad-CAM. For the convenience of the
display, the images were scaled to the same size.
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focus points of the model in different stages. The low-
dimensional stage focuses more on cells. And in the high-
dimensional stage, it focuses more on areas composed of multi-
cellular and their microenvironment.

Specific to the performance of NPC2020 in Fig. 5, in the low
dimensional stage of non-tumor regions, the feature regions of
low magnification image learning were relatively concentrated.
In contrast, the regions concerned by high magnification images
were more scattered. Meanwhile, in the low dimensional stage of
tumor regions, the feature of low magnification image learning
was almost the same as that of high magnification image learn-
ing. DMSL focuses on larger areas and gives higher weights,
no matter which category is in the high-dimensional stage. As
for the BCSS2021 in Fig. 6, in the low dimensional stage of
non-tumor, it was interesting that the features learned are very
near to each other, whether at low or high magnification images,
while the area learned at high magnification s still slightly larger.
The distribution trend of the high-dimensional stage and two
stages of the tumor was almost the same as that of the first dataset.
Hence, it can be concluded that the model mainly learns the
similarity information between the two images when learning
the multi-magnification image, and the network can learn more
abundant information in high magnification images than in low
magnification images.

V. CONCLUSION

In summary, we propose a novel deep multi-magnification
similarity learning approach that can be useful for the interpre-
tation of multi-magnification learning framework and easy to
visualize feature representation from low-dimension (e.g., cell-
level) to high-dimension (e.g., tissue-level), which has overcome
the difficulty of understanding cross-magnification information
propagation. Moreover, we explore the reasons why multi-
magnification image fusion is effective. This study showed that
combining multi-magnification image information into the new
artificial intelligence framework for the diagnosis of histopatho-
logical images is a more efficient and interpretable method.
In this framework, the two images of different magnifications
based on similarity are used to determine the classification
results. The similarity is used to evaluate the synergy of the two
images with different magnifications. We used two independent
histopathological datasets to verify the proposed method, which
was processed using the same program. Experimental results
show that this method is effective and superior to the earlier
methods.

However, with the continuous increase in the number of digital
slides, it is important to further reduce the difficulty and time
for pathologists to label annotations. This study is based on the
image patches cropped from WSIs. In a future histopathological
image classification task, we plan to develop a simpler and
more efficient multi-magnification image directly applied to
the framework of WSIs for diagnosis, gradually reducing the
dependence on the pathologists’ diagnostic process under the
microscope and improving the calculation efficiency consid-
ering the current insufficient computing capacity. Therefore,
in future work, we plan to: 1) achieve higher performance
of the algorithm in histopathological diagnosis; 2) Combine
algorithms with clinical devices such as microscopes to achieve
application value. It will allow to promote the development of
artificial intelligence in pathological diagnosis.
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