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Explainable and Robust Deep Forests for
EMG-Force Modeling

Xinyu Jiang, Kianoush Nazarpour*, Senior Member, IEEE, and Chenyun Dai*, Member, IEEE,

Abstract—Machine and deep learning techniques have received
increasing attentions in estimating finger forces from high-
density surface electromyography (HDsEMG), especially for
neural interfacing. However, most machine learning models are
normally employed as block-box modules. Additionally, most
previous models suffer from performance degradation when
dealing with noisy signals. In this work, we propose to employ a
forest ensemble model for HDsEMG-force modeling. Our model
is explainable and robust against noise. Additionally, we explored
the effect of increasing the depth of forest models in EMG-force
modeling problems. We evaluated the performance of deep forests
with a finger force estimation task. Training and testing data
were acquired 3—25 days apart, approximating realistic scenarios.
Results showed that deep forests significantly outperformed other
models. With artificial signal distortion in 20% channels, deep
forests also showed a higher robustness, with the error reduced
from that of the baseline by >50% compared with all other
models. We provided explanations for the proposed model using
the mean decrease impurity (MDI) metric, revealing a strong
correspondence between the model and physiology.

Index Terms—EMG-force modeling, electromyography,
myoelectric control, deep learning, deep forest

I. INTRODUCTION

SURFACE electromyography (sEMG)-force modeling is
essential for a diversity of applications, such as neural

interfacing, EMG-impedance mapping, ergonomic assessment,
control of exoskeletons, and neuroprosthetics [1], [2]. Recent
advancement in flexible electronics and wearable sensing
[3], [4] promote the use of high-density sEMG (HDsEMG)
electrode arrays in diverse EMG decoding applications [5]–[8].
By the use of HDsEMG, one can capture the neural code that
drives motor function with a high spatial resolution, which in
turn can contribute to the estimation of muscle-force mapping.
Arguably, traditional least-squares-based polynomial models [2],
[9] fall short of capturing the complex muscle-force relations
when dealing with a large number of channels. Deep learning
has proved a powerful computational model to extract useful
information with multiple levels of abstraction from the training

Xinyu Jiang and Kianoush Nazarpour are with Edinburgh Neuroprosthetics
Laboratory, School of Informatics, The University of Edinburgh, Edinburgh
EH8 9AB, United Kingdom.

Chenyun Dai is with the Center for Biomedical Engineering, School of
Information Science and Technology, Fudan University, Shanghai 200433,
China.

*Corresponding authors: Kianoush Nazarpour
(kianoush.nazarpour@ed.ac.uk), Chenyun Dai (chenyundai@fudan.edu.cn)

This work is supported in part by National Natural Science Foundation of
China (Grant Number: 62001122) and in part by Natural Science Foundation
of Shanghai (Grant No.20ZR1403400). The work of KN is supported by a
grant from Engineering and Physical Sciences Research Council (EPSRC),
UK (Grant No. EP/R004242/2).

Manuscript received XX XX, XXXX; revised XX XX, XXXX.

data [10]. In recent years, deep learning models have been
widely applied in sEMG-force (kinematics) modeling tasks
[11]–[14].

Most deep neural networks (DNNs), such as convolutional
neural networks (CNNs), employ a model structure built upon
parameterized differentiable non-linear modules, which can
be trained by back-propagation [15]. However, most DNN
structures as well as their training algorithms have many hyper-
parameters and the overall performance is sensitive to the choice
of the hyper-parameters. A deeper model is with a higher model
complexity and hence may capture a more complex mapping
functions between the input and output. However, with a small
data size, models with higher complexity may overfit to certain
biased patterns of the training data. Additionally, deep learning
models are normally employed as block-box modules in a
processing pipeline due to the lack of explainability. Meaningful
explanations of the decision logic are recommended to ensure
safety and uphold research ethics, especially in biomedical
machine learning research [16].

The low robustness of EMG-force models against noises is
another challenge that limits the real world applications. EMG
signals can be contaminated by diverse noises. Previous studies
[17], [18] found that if features extracted from the corrupted
electrodes were not fixed by outlier smoothing filters, the
performance of HDsEMG pattern recognition would be largely
degraded. A series of previous studies [19], [20] also focused
on how to identify or fix those electrodes corrupted by noises.
However, most previous solutions require a separate module to
monitor the real time signal quality in each electrode and fix
the corrupted electrodes, increasing the computational burden
in practical applications. Proposing a new model with inherent
robustness against electrode corruption is therefore essential.
Moreover, during the model training process, the model may
overfit to those random patterns specific to a certain day (e.g.,
the patterns formed by a specific type of noise with a certain
noise power in a group of electrodes, or the patterns formed
by a certain physiological state, which may largely vary on a
second day), leading to significant performance degradation in
cross-day validation. Improving the robustness of models in
cross-day applications is also essential, however challenging.

Decision tree is a transparent model with the logic of the
decision making process clearly illustrated by the decision path
from the root node to the leaf node. Random forest models
built on multiple decision trees also retain the explainable
property. With different decision trees focusing on different
electrodes, those corrupted electrodes would only weaken the
performance of a certain group of decision trees, with the
overall robustness improved as well. However, no previous
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studies have provided a deep insight of forest models in
EMG-force modeling problems, and the relation between the
model explanations and the physiological basis of human
neural systems remains unknown. Additionally, deep forest is a
variant of forest model [21] which may be an alternative deep
learning architecture built on explainable modules. Deep forest
processes the input via a decision tree ensemble in each layer.
Information could be processed layer-by-layer, forming a deep
forest. Zhou et al. [21] have proved that, by cascading multiple
random forest-based modules, the model performance showed
significant improvement. According to the experiments of Zhou
et al., deep forest is also quite robust with the hyperparameter
selection. In the context of EMG-force modeling, deep forest
is also a promising solution with explainability.

In this work, we provided explanations on forest-based
models, by quantifying the importance of all electrodes for
decision trees to make decisions via Mean Decrease Impurity
(MDI) [22]. The effect of increasing the depth of forest
models was also explored. Results demonstrated that increasing
the depth of forest models can further refine the excellent
performance of random forest models. Additionally, according
to the model explanations, the important anatomical areas that
forest models focused on are highly consistent with the spatial
activation patterns of forearm motor neurons. Moreover, another
important finding of our work is the extremely high robustness
of forest models against channel corruption. Compared with
other models, deep forest achieved excellent performance even
when 20% channels were corrupted by noises. We evaluated
the performance of the proposed model in estimation of the
forces from each individual finger, which can be viewed as
one of the most challenging tasks in sEMG-based motion
decoding because our fingers contributed to the most subtle and
dexterous activities in our daily life. In addition, our validations
were performed on data collected over multiple days to take
into account the cross-day variation of sEMG patterns. By
comparing the performance of different models in both one-
day and cross-day validations, we proved the better cross-day
generalization of deep forests. Overall, the contributions of our
work are as below:

We for the first time provide explanations for forest models
in neurophysiological signal analyses and find the consistency
between the model explanations and the physiological basis of
human neural systems.

We explore the effect of increasing the depth of forest models
in EMG-force regression tasks and show that a deeper forest
model can further refine the excellent performance of a random
forest model, outperforming benchmark models.

We demonstrate the high robustness of deep forest models
against sensor noise, especially relevant when dealing with
high-density sensors.

We report better cross-day generalization of deep forest
models, which is an important consideration for practical
applications.

II. MATERIALS

A. Subjects
Twenty subjects (12 males, 8 females, 22-34 years old) took

part in our experiment. The experiment protocol was reviewed

Fig. 1: Electrode placement.

Fig. 2: Visual instruction of force-tracking tasks.

and approved by the ethics committee of Fudan University
(approval number: BE2035).

B. Data Acquisition

Data underpinning this paper was published in our
previous work [23] and are available at the website
(https://doi.org/10.13026/ym7v-bh53). A brief description of
the dataset is presented below.

1) Setup:
Four HDsEMG electrode arrays, each of an 8×8 layout with

10 mm inter-electrode distance, were placed on the forearm.
A Quattrocento amplifier (OT Bioelettronica, Torino, Italy)
acquired 256-channel forearm sEMG signals, as shown in Fig.
1. The signals were amplified with a gain of 150, converted
to digital with a 16-bit resolution, and sampled at 2048 Hz.
The finger force data was collected using five sensor-amplifier
pairs for five fingers (sensor: SAS, Huatran, Shenzhen, China;
amplifier: HSGA, Huatran, Shenzhen, China), and registered
at 100 Hz. Data of each subject was acquired on two separate
days (3 to 25 days apart, 8.5 ± 6 days on average).

2) Maximum Voluntary Contraction (MVC) Measurement:
Before each experiment, we measured the forces at MVC

in an isometric condition for each finger. Subjects performed
the flexion and extension of each finger at MVC successively.
Subjects were allowed to perform MVC at any time within a 10
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s window. The measured MVC forces were used to normalize
the ground truth of finger force.

3) Force-Tracking Tasks:
Subjects performed isometric contraction of each individual

finger within a 25-s trial duration. In each trial, subjects
activated a specific finger with varying forces. The real time
measured force was presented on a screen and used as a
feedback to track a target triangle force trajectory, as shown
in Fig. 2. This target force trajectory ranged from -30% MVC
to 30% MVC. A positive sign denotes finger extension. We
recorded three trials per finger.

III. METHODS

A. Preprocessing of HDsEMG Signals

The acquired HDsEMG signals were filtered with a 10-Hz
Butterworth high-pass filter and a 500-Hz Butterworth low-
pass filter. All filters were zero-phase digital filters processing
the input bidirectionally, with 8th order each direction. The
powerline interference at 50 Hz and its harmonics up to 400 Hz
were removed using a combination of notch filters. The ground
truth force data was low-pass filtered to 10 Hz (zero-phase
digital fingers processing the input bidirectionally, with 8th

order each direction).

B. Feature Extraction

In line with [2], [9], four features namely root mean square
(RMS), waveform length (WL), slope sign change (SSC), and
zero crossing (ZC) were extracted from each 40 continuous
samples (19.5 ms) in each EMG channel. Previous studies [24]
have investigated the effect of window length in sEMG-based
hand gesture classification tasks. In this work, we select this
window length similar with previous studies [9], [23]. Such
selection of window length can provide a real time update of
estimated finger forces in practical applications. The feature
vector corresponding to each 19.5 ms time window consists of
1024 (256 channels × 4 features) elements. Similar to previous
studies, e.g. [18], [25], to reduce the impact of outliers, a
feature value larger than 3× standard deviation away from
the mean of all 64 elements corresponding to each feature in
each electrode array was replaced by the average of features
in its 4 neighbor channels (2 or 3 neighbor channels for vertex
and edge channels). The average force in each 19.5 ms time
window was also calculated as the ground truth force for this
time window. We removed the preprocessed data within the
first and last 2 s of each 25 s task, to account for filter startup
and tail transients (in practical scenarios, all processing steps
can be performed via causal filters, with no need to remove
the startup and tail transients).

C. Least-Squared-based Polynomial Models

Polynomial models were applied to provide one of the
baseline force estimation results for comparison, described
as the following:

y[i] =
V∑

v=1

Q∑
q=0

F∑
f=1

C∑
c=1

θv,q,f,c · xv
f,c[i− q] (1)

where x is the input feature examples, y is the output finger
force, i denotes the index of input examples, V = 1 and V = 2
refer to linear and quadratic models, respectively. Q = 20
denotes the number of time lags (the total number of windows
is Q+1 with both Q time lags and 1 window at the moment).
F = 4 denotes the 4 types of features. C = 256 represents
the number of channels. And θ is the model parameters. The
above polynomial model can also be rewritten in a matrix form
XΘ = Y , or:



x1
1,1[Q+1] ··· xv

f,c[Q+1−q] ··· xV
F,C [1]

...
. . .

...
x1
1,1[i] ··· xv

f,c[i−q] ··· xV
F,C [i−Q]

...
. . .

...
x1
1,1[N ] ··· xv

f,c[N−q] ··· xV
F,C [N−Q]




θ1,0,1,1

...
θv,q,f,c

...
θV,Q,F,C

=


y[Q+1]

...
y[i]

...
y[N ]


(2)

where each row of X represents a specific example, and each
column of X represents a specific feature. The value of N
was determined by the duration of training signals. The total
number of rows in matrix X , or the total number of training
examples is denoted by Nexamples = N −Q.

The least squares (LS)-based model estimation algorithm was
employed to train the polynomial model. The Moore-Penrose
pseudoinverse regularization method [26] was applied to avoid
overfitting, by first performing singular value decomposition
on data matrix X and then discarding those small singular
values, the ratio of which to the largest singular value were
lower than a tolerance parameter. A previous study [27]
investigated the effect of the tolerance parameter on finger
force estimation from HDsEMG, and found that the regression
error gradually converged and reached the minimum with
the tolerance parameter set between 0.08 to 0.12 for cross-
day validations. In this work, the tolerance parameter was
selected as 0.1. The above polynomial models have been widely
applied in estimating muscle forces from sEMG [23], and can
also be applied in applications in estimating other kinematics
information (e.g., finger positions/angles) from sEMG [28],
[29].

For cross-day validation, data acquired on the first and
the second day were used as the training and testing
set, respectively. We also performed one-day validation for
comparison, to evaluate the performance degradation in cross-
day application scenarios. For one-day validation, the leave-
one-trial-out strategy was applied. For each finger, each one
of the three trials acquired on a specific day was used as
testing data, with the other two trials on the same day used as
training data. To ensure that all testing samples were exactly
the same as that in cross-day validation (where data on the
second day were used as testing set), only data in the second
day were used in one-day validation. For least-square based
polynomial models, a tolerance of 0.03 was selected in one-day
validation (the same value suggested by the previous study
[27] which reported that the optimal tolerance parameter in
one-day applications were generally lower than that in cross-
day applications because the effect of overfitting in cross-day
validations is higher). Trial-and-error on data from the first day
(which are independent with testing dataset) also demonstrated
that the selected parameter can yield an excellent performance
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compared with other choices. All other settings in one-day
validation were the same as the cross-day validation.

D. Least Absolute Shrinkage and Selection Operator Models

The least absolute shrinkage and selection operator (Lasso)
model is another widely applied model in estimating motion
information from EMG data [30], [31]. In Lasso regression, the
objective function is similar to the least-squares-based linear
model but an l1-norm of the model parameters was added as
a regularization term, denoted in equation (3),

min
Θ

1

2Nexamples
∥XΘ− Y ∥22 + α∥Θ∥1 (3)

where α is a parameter tuning the effect of model regularization
and ∥Θ∥1 is the l1-norm. In this work, α = 0.005 was
selected via trial-and-error on data from the first day (the testing
dataset on the second day were independent with parameter
selection). Allocation strategies of training and testing data
were completely the same as the counterpart of polynomial
models.

E. Support Vector Regression Models

Support vector regression (SVR) has been proposed as
an effective model for EMG decoding [32]. SVR models
aim to find a function which takes the same form as the
linear model described by equation (1). However, the optimal
model parameters were not obtained based on the least squares
criterion. Instead, the objective function is to minimize the l2-
norm of the model parameters, denoted by the first term in the
first line of equation (4). The regression error was then handled
in the constraint of model optimization, i.e., the second line
of equation (4), where the absolute error was set less than a
margin value, i.e. the maximum error ϵ. The terms involving ξ
introduced slack variables into the model optimization process.
For an example that falls outside the maximum error ϵ, its
deviation from the margin was denoted as ξ.

min
Θ

1

2
∥Θ∥22 + C

N∑
i=Q+1

|ξi|

s.t. |ŷ[i]− y[i]| < ϵ+ |ξi|

(4)

In this work, C = 1 and ϵ = 0.01 were selected via trial-
and-error on data from the first day (the testing dataset on the
second day were independent with parameter selection). The
above SVR model can be further extended with kernel functions,
similar to kernel support vector machine for classification tasks.
In our work, the radial basis function was selected as the kernel
function, the same choice as the previous study [32]. Allocation
strategies of training and testing data were completely the same
as the counterpart of polynomial models.

F. Bayesian Ridge Regression Models

Ridge regression and its variants have also been widely
employed in EMG decoding [33], [34]. Bayesian ridge
regression (BRR) [35], which estimates a probabilistic model
of the regression problem and preserves the advantages of

both ridge regression and Bayesian regression, was employed
as another baseline model. In a general Bayesian regression
problem, the output Y is assumed to be Gaussian distributed
around XΘ, denoted by equation (5),

p(Y |X,Θ, α) = N (Y |XΘ, α) (5)

where α is a random variable to be estimated from the given
data. For BRR models in particular, the prior probability
distribution of model parameters also follows a spherical
Gaussian distribution, as presented by equation (6),

p(Θ|λ) = N (Θ|0, λ−1Id) (6)

where λ is the precision parameter in the Gaussian distribution
and Id is the identity matrix with matrix rank the same as the
length of feature vectors (d). The model parameters Θ, λ and
α were estimated jointly during the model fitting process.

G. CNN Models

CNN models were also applied to provide baseline force
estimation results for comparison. The architecture of CNN
models is presented in Fig. 3. CNN models with 2, 3, 4, and 5
convolutional layers were applied to avoid a large performance
variation with different model depths. For these models, the
input data representations were D ×Nr ×Nc feature tensors
without vectorization, where D = F×(Q+1) = 4×(20+1) =
84 is the number of feature elements corresponding to each
EMG electrode, and Nr = Nc = 16 are size of feature maps
constructed by four 8 × 8 HDsEMG electrode arrays. Mean
square error (MSE) was used as the objective function. Adam
optimizer [36] was used to optimize the model parameters.
Batch normalization was employed to speed up convergence
and avoid gradient vanishing, with the learning rate α set
to 0.001, exponential decay rates for the moment estimates
(β1, β2) set to (0.9, 0.999). Other detailed parameters on the
structure of the employed CNN model (e.g. the kernel size
of the convolutional filters) can be found at Fig. 3. The CNN
parameters were set via trial-and-error on data from the first
day (the testing dataset on the second day were independent
with parameter selection).

Allocation of training and testing data was the same as
the counterpart of polynomial models, except that only 80%
training data were used to update model parameters via
backpropagation, with the other 20% allocated to the validation
set in all cases for CNN. During the model training, the model
performance on the validation set was evaluated after each
epoch. A total of 50 training epochs were performed. The
CNN model with the optimal performance on the validation
set was saved as the final model.

H. Deep Forest Models

The architecture of deep forest is presented in Fig. 4. The
forest ensemble module in each layer contains two estimators to
obtain the primary label estimation in leaf nodes in each layer.
Each estimator contains a random forest and a completely
random forest (distinguished by different colors in Fig. 4).
In a random forest model, within the available feature set
for each decision tree, the feature contributing to the highest
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Fig. 3: CNN model architecture.

Fig. 4: Deep forest model architecture.

impurity decrease at each node would be picked to split
examples in the current node into two branches. However, in
a completely random forest model, the split in each node was
determined in a random way instead of exhaustively evaluating
the quality of a split on all possible features and split values
of features then picking the one with the highest impurity
decrease. The combination of different types of random forests
in each estimator can encourage diversity, as demonstrated in
the previous study [21]. Specifically, for a machine learning
model based on individual learner ensembles, the overall model
performance would be excellent if all individual learners are
accurate and diverse, so that their predictions are reliable and
can complement each other. By constructing both random
forests and completely random forests in each module, different
forests constructed by different rules would increase the
diversity of decision trees. After processing in each layer,
the estimation output of all forest modules can serve as a new
feature vector. The original input feature vectors (4 types of
features × 256 channels × (20+1) time windows = 21504
elements) were then concatenated with the estimation output to
form an augmented feature vector, and then fed to the next layer.
Such simple feature augmentation is beneficial to information
learning in a layer-by-layer way [21]. To train a deep forest
model, the module in the first layer was first trained and then
fixed. With the fixed module in the first layer, the second layer
was then trained. The same training strategy was repeated to
train modules in all layers one by one. When the training

procedure of a new layer was finished, the model performance
on the validation dataset was evaluated. If increasing a new
layer did not contribute to a decrease of regression error by a
threshold (set as 10−5), the new layer was discarded and the
training procedure terminated. In this work, each random forest
generates 100 decision trees. The number of trees in each forest
module was set via trial-and-error on data from the first day
(the testing dataset on the second day were independent with
parameter selection). According to [21], the model performance
is also highly robust with different parameters, and the same
set of parameters can contribute to excellent performance in
different tasks.

For both one-day and cross-day validations, allocation of
training and testing data were completely the same as the
counterpart of polynomial models, but in all cases for deep
forest models, the training data were further divided into two
parts, a growing set (80%) and an estimating (validation) set
(20%). The growing set was used to grow a new cascade and
the estimating set was used to estimate the model performance
each time a new cascade was built to determine if the model
depth should be further increased.

I. Explainability Analysis of Deep Forest via MDI

Decision tree is a highly explainable machine learning
algorithm. The path from the root node to all leaf nodes of the
decision tree explicitly shows the logic of the decision making
procedure. Formed by multiple decision trees via both tree
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ensembling (forming a random forest) and forest cascading
(increasing the depth), deep forest shows its superiority in
explainability. In this work, we calculated the importance of all
input features via MDI [22]. MDI is the criterion that a decision
tree employed to split an existing node into new nodes. The
decrease in impurity of samples from an existing node to new
nodes should be maximized. Sum of squared residuals (SSR)
is a widely used measures of sample impurity for regression
tasks, defined in equation (7).

SSR =
∑

i∈node

(ŷnode − yi)
2

ŷnode =
1

Nnode

∑
i∈node

yi
(7)

where Nnode is the number of samples in a specific node. By
calculating the MDI in the node corresponding to each feature,
we can obtain the importance of different features of all decision
trees. Because the MDI values of different features were with
a large variance, we first logarithmically transformed the MDI
data (via x = log10(x)) as the feature importance, to adapt
the gaps between extremely high and low MDI values. The
average of importance values obtained from all decision trees
was calculated. Considering multiple features were extracted
from each electrode, we can further obtain the global electrode
importance by calculating the average importance (with equal
weights) of features extracted from each electrode. In this way,
we can intuitively see which electrodes the deep forest model
picked in estimating the forces of each finger. Because deep
forest models for different subjects were with different numbers
of layers (which were automatically determined during model
training in a data-dependent way), the importance of features
in the first layer was analyzed.

After obtaining the electrode importance, we further
quantified the locations of those important electrodes related
to each finger. We first normalized the electrode importance of
each finger and each subject to a range of [0,1]. An electrode
was defined as important if its normalized importance value
was higher than a threshold of 0.8. With a low threshold we
cannot select those electrodes which are really important, but
with a too high threshold, many important electrodes would be
ignored in our analyses. The locations of important electrodes
were defined as the weighted average of coordinate values
of all important electrodes. Normalized electrode importance
values were used as location weights. The quantified locations
of important electrodes related to each finger can provide
guidance on electrode optimization for future studies.

J. Robustness Analysis with Different Levels of Signal
Distortion

To evaluate the robustness of each model against noises,
different noise sources were artificially added to the acquired
HDsEMG signals. Following [19], Gaussian white noise and
power line interference were considered. These two types
of noises are the most common ones in sEMG recordings
[37], [38]. The amplitude of Gaussian white noise added to
each channel is set to 10% of the amplitude of sEMG in that
channel. Simulated power line interference was generated as

the summation of components at 50 Hz and its harmonics up
to 400 Hz. The amplitude of power line interference was set
to 5 times of the amplitude of sEMG signal in each channel,
with the phase randomly selected within [0, 2π]. To simulate
different levels of signal distortion, we randomly added noise
to each channel with a certain probability (parameter prob).
Probability was set from 0 to 0.2 with an increment of 0.04. We
assumed that a probability of 0.2 (equivalent to 256×0.2=51.2
corrupted channels) would lead to an extremely high level of
signal distortion. Note that we only artificially distorted the
signals in testing set because signal quality during testing phase
cannot be controlled but acquisition of training data can be
well-supervised to avoid extremely low-quality signals.

K. Evaluation Metrics

Root mean square error (RMSE), Pearson correlation
coefficient (COR), and coefficient of determination (also known
as R2) were used as the performance evaluation metrics, defined
as follows,

RMSE =

√√√√ 1

N

N∑
i=1

(y[i]− ŷ[i])2 (8)

COR =

∑N
i=1(y[i]− ȳ)(ŷ[i]− ¯̂y)√∑N

i=1(y[i]− ȳ)2
√∑N

i=1(ŷ[i]− ¯̂y)2
(9)

R2 = 1−
∑N

i=1(y[i]− ŷ[i])2∑N
i=1(y[i]− ȳ)2

(10)

where N is the number of testing examples.

L. Statistical Analysis

The Shapiro-Wilk test was first performed to verify the
normality of data. Because the result data obtained by different
models did not consistently follow a normal distribution, we
performed the Friedman test, a non-parametric alternative
to the repeated measures analysis of variance, to test the
overall significance of the performance difference among
all models. Then we further compared the performance of
each pair of models. If the metric data obtained by the two
models followed the normal distribution, the paired-sample
t-test was performed. Otherwise, the non-parametric Wilcoxon
signed-rank test was performed. Bonferroni correction was also
performed (if applicable) to avoid the multi-comparison error.
Significant difference was claimed if p < 0.05 was observed.

IV. RESULTS

A. Comparison of Different Models in One-Day Validation

Results yielded by different models in one-day validation
were presented in Table I. RMSE, COR, and R2 metrics were
all reported. For LS-based polynomial models, linear models
significantly outperformed quadratic models evaluated by all
three metrics (p < 0.01 for all metrics). In all following
analyses, the performance of linear model was selected to
represent the performance LS-based polynomial models. When
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TABLE I: Results of different models in one-day validation.
Red color represents the optimal results.

Models RMSE
(%MVC) COR (%) R2 (%)

LS-
Polynomial

Linear 4.6±1.9 94.8±5.7 83.1±14.1
Quadratic 6.5±1.9 89.6±7.3 73.9±13.6

Lasso 4.7±1.6 95.1±4.6 85.2±10.9
SVR 4.6±1.6 95.1±4.8 86.2±10.6

Bayesian 4.5±2.0 95.6±5.5 84.8±14.8

CNN

2 Layers 4.9±1.8 94.9±5.3 84.0±13.3
3 Layers 5.0±1.8 94.5±5.7 83.4±13.7
4 Layers 5.0±1.9 94.4±5.8 83.4±14.3
5 Layers 5.1±2.0 93.8±6.4 82.0±15.2

Deep Forest (2.9±0.4 Layers) 4.6±1.7 95.2±5.1 86.6±10.5

TABLE II: Results of different models in cross-day validation.
Red color represents the optimal results

Models RMSE
(%MVC) COR (%) R2 (%)

LS-
Polynomial

Linear 10.0±2.9 87.1±10.4 25.7±40.3
Quadratic 21.0±17.6 64.9±22.0 -661±1588

Lasso 8.7±2.1 89.8±9.0 54.2±19.9
SVR 9.9±2.8 82.4±11.3 45.0±20.1

Bayesian 10.6±3.5 83.2±13.6 28.3±38.3

CNN

2 Layers 8.6±2.6 89.8±9.1 52.9±25.2
3 Layers 8.8±3.0 88.6±9.2 51.9±27.0
4 Layers 8.9±3.0 88.3±9.5 49.8±32.1
5 Layers 9.0±2.9 87.4±9.7 48.8±29.2

Deep Forest (2.6±0.7 Layers) 8.0±2.3 90.0±10.1 63.1±17.2

comparing the performance of CNN models with different
numbers of layers, statistical significance on RMSE and R2

metrics were found only in comparison between 2-layer and
5-layer CNN (p = 0.028 for RMSE and p < 0.01 for R2),
with 2-layer CNN achieving better performance. For the COR
metric, significant differences were found for comparison
between 2-layer CNN and CNN with all other numbers of
layers (p = 0.014, p = 0.032 and p < 0.01 compared with 3-
layer, 4-layer and 5-layer CNN, respectively). In all following
analyses, the performance of 2-layer CNN was selected to
represent the performance of CNN models. The Friedman test
also demonstrated an overall significance when comparing the
performance of different models (p < 0.01 for all of RMSE,
COR and R2 metrics). Comparisons between deep forest and
each of the other models were also performed. Specifically,
if evaluated by RMSE and R2, significantly difference was
found only in comparison with CNN models (p = 0.047 and
p = 0.047 for RMSE and R2 metrics, respectively), with deep
forest models achieved better performance. If measured by
COR, significantly difference was found only in comparison
between deep forests and Bayesian models (p = 0.014), with
Bayesian models achieved better performance. Overall, deep
forest and other models with the optimal settings all contribute
to relative low regression error in one-day validations.

B. Comparison of Different Models in Cross-Day Validation

Results yielded by different models in cross-day validation
were presented in Table II. For LS-based polynomial models,
linear models significantly outperformed quadratic models
evaluated by all three metrics (p < 0.01 for all metrics). For
CNN models, we found no significant performance differences

between 2-layer CNN and all other CNN models with different
numbers of layers evaluated by RMSE and R2. When evaluated
by COR, significant performance differences were found in
comparison between 2-layer CNN and 4-layer CNN, and in
comparison between 2-layer CNN and 5-layer CNN (p = 0.015
and p < 0.01, respectively). In all following analyses, the
performance of linear model was selected to represent the
performance LS-based polynomial models, and the performance
of 2-layer CNN was selected to represent the performance
of CNN models. The Friedman test likewise demonstrated
an overall significance when comparing the performance of
different models (p < 0.01 for all of RMSE, COR and R2

metrics). Comparisons between deep forest and each of the
other models were also performed. Specifically, when evaluated
by RMSE, significant differences were found when comparing
deep forest models with LS-linear models, Lasso models, SVR
models and Bayesian models (p < 0.01, p = 0.026, p < 0.01,
p < 0.01, respectively). When evaluated by COR, we found
significant differences when comparing the performance of
deep forest models with LS-linear models and SVR models
(p = 0.032 and p < 0.01, respectively), and found a near
significant difference when comparing the performance of
deep forest models with Bayesian models (p = 0.060). When
evaluated by R2, deep forest models outperformed all other
models (p < 0.01, p = 0.013, p < 0.01,p < 0.01 and
p = 0.045 compared with LS-linear models, Lasso models,
SVR models, Bayesian models and 2-layer CNN models,
respectively). In all, the relatively comparable performance
of different models in one-day validation and the overall better
performance of deep forest models in cross-day validation
demonstrated the high cross-day generalization ability of deep
forest on sEMG-force modeling task.

C. Comparison of Deep Forest Models and 1-Layer Forest
Ensemble Models.

To prove the necessity of using deep models, we compared
the performance of deep forest models with fewer-layer forest
models. The number of layers of the deep forest model for each
subject was determined automatically during model training
in a data-dependent way, and an average of 2.9 layers and 2.6
layers across all subjects were finally determined in one-day
and cross-day validations, respectively. Considering the trained
deep forest models for several subjects were only with 2 layers,
to investigate the effect of model depth, here we only compared
the performance of the final deep forests and the counterpart
with the number of layers reduced to 1. Quantitative results of
1-layer forest ensemble and deep forest models in one-day and
cross-day validations are presented in Table III and Table IV,
respectively. When increasing the number of layers, models for
all subjects achieved improved R2 in one-day validations, and
models for 15 out of 20 subjects achieved improved R2 in cross-
day validations, with an overall statistical significance observed
in both one-day and cross-day validations and evaluated by all
of RMSE, COR and R2 metrics.
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TABLE III: Comparison between 1-layer forest ensemble and
deep forest models in one-day validation.

Models RMSE
(%MVC) COR (%) R2 (%)

1-Layer Forest Ensemble 4.7±1.8 95.0±5.3 86.0±10.7
Deep Forest (2.9±0.4 Layers) 4.6±1.7 95.2±5.1 86.6±10.5

TABLE IV: Comparison between 1-layer forest ensemble and
deep forest models in cross-day validation.

Models RMSE
(%MVC) COR (%) R2 (%)

1-Layer Forest Ensemble 8.1±2.3 89.8±10.1 62.5±17.1
Deep Forest (2.6±0.7 Layers) 8.0±2.3 90.0±10.1 63.1±17.2

D. Comparison of Different Models with Artificial Signal
Distortion

Regression results with increasing levels of signal distortion
(different values of parameter prob) in both one-day and
cross-day validations were presented in Fig. 5. In one-day
validations, although all models achieved excellent performance
with a good signal quality, the regression errors of all models
except deep forest models dramatically increased with a higher
level of signal distortion, as demonstrated in Fig. 5a. We
calculated the increase in regression errors from prob = 0 to
prob = 0.2. The increase in regression errors of deep forest
models was significantly lower than those of all other models
(p < 0.01 in all cases) in one-day validations. In cross-day
validations, deep forest models likewise achieved significantly
lower error increments with signal distortion (from prob = 0
to prob = 0.2) compared with all other models (p < 0.01 in
all cases). Overall, deep forest models showed a highly robust
performance with increasing levels of signal distortion.

E. Explainability of Deep Forest via MDI

The electrode importance maps for all fingers were presented
in Fig. 6. According to Fig. 6, for each finger, the electrode
importance maps of RMS, WL, SSC and ZC features shared
a relatively similar pattern. The global important electrodes
clustered together within a local area. When estimating the
forces of different fingers, deep forest focused on electrodes
distributed in different locations of subjects’ forearm.

Quantification results on the locations of important electrodes
were presented in Fig. 7. When comparing Fig. 7a with Fig. 7b,
we can intuitively find that the location difference of important
electrodes was more obvious in proximal–distal direction (Fig.
7b). Statistical analyses also support this claim. Specifically, the
locations of important electrodes of each pair of fingers showed
no significant difference in the medial–lateral direction. By
contrast, significant differences between locations of important
electrodes in the proximal–distal direction were found in
comparisons between thumb-middle fingers (p = 1.9× 10−5),
thumb-ring fingers (p = 3.9 × 10−5), index-middle fingers
(p = 3.8× 10−5), index-ring fingers (p = 1.9× 10−5), middle-
ring fingers (p = 0.0085), middle-little fingers (p = 3.8×10−5)
and ring-little fingers (p = 2.2 × 10−5). The important
electrodes of middle, ring, little, thumb and index fingers were
successively distributed along the direction from the proximal

(a) Results of one-day validation.

(b) Results of cross-day validation.

Fig. 5: Performance degradation with increasing levels of signal
distortion. CNN models were with 2 convolutional layers.

end to the distal end of the forearm. These findings are in line
with the physiological basics of spatial activation locations
of motor units in forearm, which will be discussed in the
following section.

According to Fig. 6, the important electrodes were mainly
located at extensor muscles. We then evaluated the finger
force estimation performance of models using 128 electrodes
from only extensor or flexor muscles separately, with results
presented in Table V. Using electrodes from only extensor
muscles contributed to a significantly better performance
compared with the counterpart of flexor muscles (p < 0.01).
The results of comparison between EMG amplitudes in extensor
and flexor muscles when subjects performing extension and
flexion forces were presented in Fig. 8. According to Fig. 8,
the amplitudes of EMG from extensor muscles are constantly
high during finger extension and flexion, while the amplitudes
of EMG from flexor muscles are relatively low during finger
extension. Statistical analysis showed that the amplitudes of
EMG from flexor muscles under finger extension (“flexor-
extension” in Fig. 8) are significantly lower (p < 0.01) than
the other three cases (the other three cases did not show
significant differences with each other). This finding may
contribute to future human-machine interfaces concurrently
estimating extension and flexion forces using fewer electrodes
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(a) Thumb finger. (b) Index finger. (c) Middle finger.

(d) Ring finger. (e) Little finger.

Fig. 6: Electrode importance maps in estimating forces of five fingers. Note that all maps are presenting importance values
instead of feature values. Bright pixels refer to important electrodes. The original 16× 16 importance maps were up-sampled to
160× 160 via bicubic interpolation for better visualization.

(a) Locations of important electrodes in
medial–lateral direction.

(b) Locations of important electrodes in
proximal–distal direction.

Fig. 7: Quantification results of electrode importance maps.

from only one muscle (extensor).

V. DISCUSSION

In this work, we proposed a deep forest model for HDsEMG-
based finger force estimation. Compared with other benchmark

models, deep forest models contributed to a lower error and a
higher robustness against noises. The success of DNN models
has proved the power of layer-by-layer information processing
mechanism, which has been believed as a crucial factor for
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TABLE V: Comparison between deep forest models using
electrodes from only extensor or flexor muscles (in cross-day
validation).

Models RMSE
(%MVC) COR (%) R2 (%)

Electrodes from Extensor Muscles 8.2±2.3 85.6±12.1 57.3±19.3
Electrodes from Flexor Muscles 10.0±2.3 75.5±13.6 40.0±20.1

*Note that in these analyses, we first calculated the number of extension
and flexion samples. The number of extension and flexion samples was kelp
completely the same by randomly down-sampling the samples with higher
sample number. Samples were defined as extension or flexion samples if
the force values were >3% MVC or <-3% MVC, respectively. In this
way, the comparison between electrodes from extensor and flexor muscles
would not be biased by different sample numbers.

Fig. 8: EMG amplitudes in extensor and flexor muscles
corresponding to extension and flexion samples. A total of four
muscle-direction pairs were compared. For example, “Extensor-
Flexion” refers to the amplitudes of EMG collected from the
extensor muscle side of forearm during finger flexion.

the high ability of representation learning for deep learning
techniques [21]. Highly abstract and informative features
gradually emerge when the models go deeper. In our work, we
provide another evidence that such layer-by-layer processing
mechanism is also powerful for non-differentiable module
(forest-based module) in the context of EMG-based finger
force estimation.

Most DNN models are known to be black-box models that
lack explainability. However, such DNN (e.g. CNN) models
have achieved a remarkable success in many areas, especially
in computer vision applications [39]. A series of variants of
DNN and CNN have also showed excellent performance [40],
[41]. Therefore, researchers all over the world have proposed
diverse useful tools to provide explanations on the decision
making process of deep learning models, to enhance users’
trust on such powerful models in real world applications. For
example, Li et al. proposed a nonnegative matrix factorization
(NMF)-based algorithm to learn image representations with
physical meaning and theoretical interpretations [42] and a
weakly supervised deep matrix factorization algorithm via a
DNN architecture to enhance social image understanding [43].
Gu et al. recently proposed a comprehensive attention-based

CNN to provide explanations in medical image analyses [44].
In the area of EMG decoding, a very recent study [45] proposed
an encoder-decoder DNN with an attention mechanism which
is explainable by analyzing the attention matrix. The above
previous studies made tremendous contributions to open the
black-box of the decision making process in diverse areas.
However, the ultimate goal of explainable machine learning is
to provide a completely transparent decision making process
and maintain an excellent model performance at the same time.
According to [16], existing recognized interpretable models
mainly include decision tree, rules, and linear models [46]–
[48]. Specifically, decision tree-based models are inherently
explainable because the flowchart-like structure of each decision
tree clearly explains which feature was taken into consideration
to make the current decision in a branch. Forest models built
on multiple decision trees are also completely transparent.
The frequency of occurrence of different features in different
paths, together with their contributions to the information gain
provide the global importance of different features. Moreover,
by analyzing the specific decision path each example passes,
the decision making logic for a single example can also be
analyzed. The decision path from the root node to a leaf node
clearly demonstrates the logic in making the final decision.

Moreover, in our work, we quantified the importance map
of all electrodes for each finger, and found the locations of
important electrodes are highly consistent with the spatial
activation areas of motor neurons in forearm muscles reported
in a previous study [49]. In our explainability analyses, we
found that spatial distributions of important electrodes for
different fingers showed no significant differences in medial–
lateral direction, but was highly distinguishable in proximal–
distal direction. These findings are in line with the conclusions
of the previous study [49] that the activation locations of motor
units related to different fingers were more distinguishable
in proximal-distal direction. The previous study [49] also
reported that, the activation locations of motor units related
to middle, ring, little, and index fingers were distributed in
order along the direction from the proximal end to the distal
end of forearm (the thumb finger was not investigated in
the previous study [49]), with motor units related to the
middle finger activated the most proximal end and motor units
related to the index finger activated the most distal end of the
forearm. The physiological basis of motor unit activation is
highly consistent with the locations of important electrodes
for different fingers (as presented in Fig. 7b). All these results
showed that, the importance maps of electrodes for different
fingers obtained via explainability analyses demonstrated the
underlying physiological basis. Overall, when estimating the
forces of different fingers, deep forest models focused more on
those electrodes located at the activation areas of motor units
which are highly relevant to each finger.

Our results also demonstrated that, EMG signals from
extensor muscles contain useful information (high amplitudes)
during both finger extension and finger flexion. By contrast,
EMG signals from flexor muscles are only relevant to
finger flexion. Using EMG from extensor muscles alone
achieved significantly better performance compared with flexor
muscles. When applying finger force estimation models in
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real world human-machine interface applications with limited
computational or electrode resources, more electrodes should
be put on the side of extensor muscle. More specifically, the
electrode positions can be further optimized by the explanation
results presented in Fig.6.

The high robustness of deep forest against channel corruption
may be due to the fact that, the module in each layer is built
upon the ensemble of decision trees. Each corrupted channel
only influences a small proportion of decision trees instead
of the whole model. With a large number of decision trees
in all layers to give the final decision together, the negative
biased influence of corrupted channels was greatly reduced
by the statistical power of all decision trees. By contrast,
other benchmark models performed worse with respect to
the robustness against noises, because each corrupted channel
influences the optimal estimation of all other parameters which
are dependent with each other, increasing the destructive power
of noises on model performance.

Improving the robustness of EMG-force models against
noises is a longstanding challenge, especially with HDsEMG.
Previous studies mainly focused on designing a descriptor
to measure the quality of acquired EMG signals and then
removing or smoothing the corrupted channels [17], [19], [50]–
[52]. In this work, we provide an alternative perspective to
address the issue of channels corrupted by noises. By using
deep forest models, the obtained model has inherently gained
the robustness against noise during model training due to the
decision tree ensemble architecture in each layer.

Human-machine interfacing has been an important research
direction for decades. However, several main problems limit
the applications of current models. First, most currently applied
proportional force control models focus on estimation of grip
force [53]. Proportional estimation of finger forces might be one
of the most challenging tasks in EMG-force modeling because
the control of fingers can be viewed as most dexterous control
of the human body, which contributes to hand dexterity during
manipulation of objects in our daily life. Studies on proportional
estimation of finger forces are relatively few compared with grip
forces. Even fewer studies have ever validated the performance
of finger force estimation models in a more realistic cross-day
validation protocol. Models trained and tested on the same
day can be viewed as single-use models. However, in practical
use, such sEMG-force models are required to be highly robust
when tested on a second day. In this case, the risks of model
overfitting to training data may lead to a greatly degraded
model performance in cross-day validation because training
and testing data acquired on separate days normally show
largely different data (feature) distributions. In this work, we
validated our deep forest models on finger force estimation
tasks in a cross-day validation, taking realistic issues into
consideration. The deep forest models have been proved to be
more powerful than currently widely applied models in such
realistic and rigorous validation protocol.

VI. CONCLUSIONS

In this work, we proposed a deep forest model for the
estimation of finger forces from HDsEMG measurements.

The complexity of deep forest model can be determined
automatically during model training, minimizing the efforts
in tuning hyperparameters. We evaluated the excellent
performance and many interesting properties of deep forest
models in finger-force estimation tasks under a realistic and
rigorous cross-day validation without any model calibration on
the second day. Through our validations and above discussions,
we demonstrated that deep forest is a promising new solution for
EMG-force modeling with inherent explainability, robustness
against sensor noises, and better cross-day generalization ability,
outperforming other benchmark models. Our work can broaden
the horizons of methodologies in human-machine interfacing
fields as well as more general deep learning related applications.
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