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Reconstruction-driven Dynamic Refinement
based Unsupervised Domain Adaptation for

Joint Optic Disc and Cup Segmentation
Ziyang Chen, Yongsheng Pan, Member, IEEE , and Yong Xia, Member, IEEE

Abstract— Glaucoma is one of the leading causes of
irreversible blindness. Segmentation of optic disc (OD)
and optic cup (OC) on fundus images is a crucial step in
glaucoma screening. Although many deep learning models
have been constructed for this task, it remains challeng-
ing to train an OD/OC segmentation model that could be
deployed successfully to different healthcare centers. The
difficulties mainly comes from the domain shift issue, i.e.,
the fundus images collected at these centers usually vary
greatly in the tone, contrast, and brightness. To address
this issue, in this paper, we propose a novel unsupervised
domain adaptation (UDA) method called Reconstruction-
driven Dynamic Refinement Network (RDR-Net), where we
employ a due-path segmentation backbone for simultane-
ous edge detection and region prediction and design three
modules to alleviate the domain gap. The reconstruction
alignment (RA) module uses a variational auto-encoder
(VAE) to reconstruct the input image and thus boosts
the image representation ability of the network in a self-
supervised way. It also uses a style-consistency constraint
to force the network to retain more domain-invariant in-
formation. The low-level feature refinement (LFR) module
employs input-specific dynamic convolutions to suppress
the domain-variant information in the obtained low-level
features. The prediction-map alignment (PMA) module elab-
orates the entropy-driven adversarial learning to encour-
age the network to generate source-like boundaries and
regions. We evaluated our RDR-Net against state-of-the-art
solutions on four public fundus image datasets. Our results
indicate that RDR-Net is superior to competing models in
both segmentation performance and generalization ability.

Index Terms— Joint optic disc and optic cup segmen-
tation, fundus images, dynamic convolution, unsupervised
domain adaption

This work was supported in part by National Natural Science Foun-
dation of China under Grant 62171377, in part by China Postdoctoral
Science Foundation under Grant BX2021333 and 2021M703340, in part
by the Ningbo Clinical Research Center for Medical Imaging under Grant
2021L003 (Open Project 2022LYKFZD06), and in part by the Natural
Science Foundation of Ningbo City, China, under Grant 2021J052. (Z.
Chen and Y. Pan contributed equally to this work. Corresponding author:
Y. Xia)

Z. Chen, Y. Xia are with the National Engineering Laboratory for
Integrated Aero-Space-Ground-Ocean Big Data Application Technology,
School of Computer Science and Engineering, Northwestern Polytech-
nical University, Xi’an 710072 China. Y. Xia is also with the Ningbo In-
stitute of Northwestern Polytechnical University, Ningbo 315048, China
(e-mail:zychen@mail.nwpu.edu.cn; yxia@nwpu.edu.cn).

Y. Pan is with the School of Biomedical and Engineering,
ShanghaiTech University, Shanghai 201210, China (e-
mail:yspan@mail.nwpu.edu.cn).

I. INTRODUCTION

GLAUCOMA is a leading cause of irreversible blindness
in the world, and therefore is regarded as a growing

global health concern. Early screening for glaucoma plays an
essential role in timely treatment. In glaucoma screening, the
segmentation of the optic disc (OD) and optic cup (OC) on
fundus images is a crucial step, since the ratio of vertical cup
diameter to vertical disc diameter, known as the cup-disc-ratio
(CDR), is an important indicator used by ophthalmologists for
the optic nerve head evaluation [1].

To bypass the time-consuming, laborious, and highly sub-
jective manual segmentation, automated OD/OC segmenta-
tion has been extensively studied. Traditionally, this task is
performed by extracting manually-designed features followed
by pixel classification [2]–[4]. These traditional approaches,
however, usually have limited performance, largely due to the
insufficient representation ability of manual features. Recent
years have witnessed the application of deep learning models
to OD/OC segmentation [5]–[8], [56], aiming to address the
difficulties such as insufficient training samples and low target-
background contrast. Unfortunately, there remains a major
hurdle on the path between training an OD/OC segmentation
model in the lab and applying it to clinical practices. This is
the domain shift issue caused by the variations among multiple
image domains. The fundus images collected at different
healthcare centers usually vary greatly in the tone, contrast,
and brightness and this relates to the diversity in imaging
instruments, lighting conditions, operators, and patients. Due
to this issue, the representations learned by a segmentation
network on the source domain can hardly be applied to the
target domain effectively, resulting in worse performance than
the one trained on the same (target) domain (see the top and
middle rows in Fig 1).

A trivial solution to domain shift is to train the network
on both source and target domains, which requires the anno-
tations of target domain data for training and is difficult to
popularize. Alternatively, the unsupervised domain adaptation
(UDA) emerges to be a promising paradigm that is able to
achieve competitive performance without using target domain
annotations [9]–[16]. To alleviate the domain shift, many
UDA methods use adversarial learning to perform feature
alignment, aiming to enable the segmentation network to focus
on domain-invariant features. However, due to the lack of
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Fig. 1. Illustration of domain shift issue for OD/OC segmentation. The
source domain (REFUGE) and target domain (Drishti-GS) are denoted
by Ds and Dt, respectively. The segmentation network trained on Ds

performs worse on the target domain image (middle row) than the one
trained on Dt (top row), with a decrease of the Dice coefficient from
0.98/0.93 to 0.93/0.84 for OC (black) / OD (gray). The proposed RDR-
Net is also trained on Ds, but is able to achieve substantially improved
performance on the target domain image (bottom row), boosting the
Dice coefficient from 0.93/0.84 to 0.97/0.91.

target domain annotations, the unsupervised representation
learning on the target domain cannot provide precise guidance
to the network and leads to a poor representation ability.
Inspired by the image reconstruction-based self-supervision
methods [17], [18], we introduce a reconstruction branch to
the network, forcing the network to learn the representations
on the target domain in this self-supervised way.

Meanwhile, the low-level features extracted by the shallow
layers of a network are also seriously affected by the domain
shift [19], [20], due to the existence of both domain-invariant
and domain-variant information in these features. However,
we shall not neglect these features since they are beneficial to
semantic segmentation [21], [22]. Since high-level features are
commonly recognized to contain more abstract and semantic
information and are less domain-variant [23], we advocate
using the high-level features extracted by deep layers to refine
low-level features for improved robustness to the domain shift.

Moreover, the low-level feature refinement should ideally
be conducted in an input-specific way, since low-level features
depends largely on the input image. Unfortunately, mainstream
feature alignment methods [11], [12] are based on traditional
convolutions and not competent for this task, due to their
frozen parameters in the inference phase. The recent advances
in dynamic convolutions [24]–[27] enable a neural network to
adapt its parameters to different input samples in the inference
phase, and thus boost the generalization of the network. For
example, Zhang et al. [27] presented a dynamic on-demand
segmentation head, in which convolutional parameters are
determined by a controller on condition of the task coder and
the features of input image. Thus the network can adaptively
segment different organs and tumors and the parameters in the

dynamic head can be adjusted in the inference stage. Prompted
by such successful applications, we argue that the dynamic
convolution could be a promising tool for our input-specific
low-level feature refinement.

In this paper, we propose a novel UDA method called
Reconstruction-driven Dynamic Refinement Network (RDR-
Net) to overcome the domain shift issue for joint OD/OC
segmentation on fundus images. RDR-Net is composed of a
due-path segmentation backbone, a reconstruction alignment
(RA) module, a low-level feature refinement (LFR) module,
and a prediction-map alignment (PMA) module. The seg-
mentation backbone has one encoder and two decoders. The
encoder is used to extract low-level features (by shallow
layers) and high-level features (by deep layers). While the
decoders are used for edge detection and region prediction,
respectively. The RA module uses a variational auto-encoder
(VAE) [28] to reconstruct the input image and thus boosts the
image representation ability of the network in a self-supervised
way. Moreover, a style-consistency constraint is added to the
RA module to force the network to retain more structure
information, which is domain-invariant. The LFR module uses
input-specific dynamic convolution to suppress the domain-
variant information in the obtained low-level features. The
parameters in those convolutions are generated based on the
data distribution estimated by the RA module and the structure
information in the high-level features. We also adopt the
entropy-driven adversarial learning [11] to construct the PMA
module, which is used to further encourage the network to
generate source-like boundaries and region predictions.

The uniqueness of our RDR-Net is that it addresses the
domain shift issue from three aspects simultaneously. First,
it employs VAE to perform input image reconstruction, en-
abling the model to learn image representations on the target
domain in a self-supervised way. Second, it uses dynamic
convolutions to suppress the domain-variant information in
low-level features. Third, it adopts the adversarial learning
to align the boundaries and regions obtained on the source
domain and target domain. We evaluated the proposed RDR-
Net against several state-of-the-art methods on four public
fundus image datasets. Our results suggest the effectiveness
of each proposed module, and also indicate that the OD/OC
segmentation performance and generalization ability of RDR-
Net are superior to those of competing methods.

II. RELATED WORK

A. Joint OD/OC Segmentation

Joint OD/OC segmentation on fundus images has been
thoroughly studied. Fu et al. [5] employed the image pyramid
input to extract multi-scale features and utilized the polar
transformation to balance the proportion between OD and OC.
Liu et al. [7] adopted depthwise separable convolutional layers
to construct the dense depthwise separable convolutional block
for improved segmentation accuracy. Besides these pixel-wise
dense prediction methods, there are combined solutions in
which the region proposal network (RPN) is incorporated
into the segmentation framework [6], [8]. Jiang et al. [8]
designed the OD PRN and OC RPN for localization and
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employed the attention mechanism to guide the localization
of OC. Yin et al. [6] proposed a segmentation based RPN
and a pyramid RoI Align module to improve the accuracy of
proposals and aggregate the multi-level information. Despite
these solutions, the accurate segmentation of OD and OC,
particularly OC, remains a challenging task, since the OD-
OC contrast is low and the edge of OC is blurry. In this work,
we employed the edge adversarial learning to use the edge
information for accurate segmentation and explored UDA for
better generalization on test data.

B. UDA Methods

Domain adaptation aims to refine the deep network when
faced with the distribution shift between source (training) and
target (test) domains [29], [30]. Although several metrics,
such as the maximum mean discrepancy (MMD) with various
kernels [16], have been proposed to characterize the domain
discrepancy, these metrics usually suffer from limited expres-
siveness [15]. Recently, UDA methods, which do not need
the manual annotations of target domain samples for training,
have drawn increasing research attention, particularly in the
field of medical image analysis [9]–[14], [31]–[34]. The most
commonly used strategies for UDA can be roughly categorized
into feature alignment and image synthesis.

It is acknowledged that there are domain-invariant features
such as the shape and structure of the regions of interest
(RoIs), which do not vary a lot across domains. The first group
of UDA methods are based on the idea of using adversarial
learning to minimize the distribution discrepancy between the
features or segmentation results obtained by different domains.
Hoffman et al. [34] presented the first UDA method for seman-
tic image segmentation, which combines global and category
specific adaptation using adversarial training. Kamnitsas et
al. [13] proposed a multi-connected domain discriminator for
improved adversarial learning and forced the segmentation
network to extract domain-invariant features by adversarial
training. Javanmardi et al. [14] utilized a domain classifier
in an adversarial setting to learn a cross-domain loss and thus
alleviated the domain shift. Wang et al. [10] designed an effec-
tive morphology-aware segmentation loss and a patch-based
discriminator to obtain local structure information. Wang et
al. [11] incorporated adversarial learning into the network to
produce low-entropy and stable predictions. Zhang et al. [9]
introduced the attention mechanism and adopted adversarial
learning of attention maps and feature maps to locate and
extract domain-invariant features across different datasets.
However, these methods overlook the low-level features, which
are important for the semantic segmentation task. Refining
low-level features can enhance the final performance [35].

Since generative adversarial networks (GANs) [31], [36]
can perform cross-domain image translation based on un-
paired images, image synthesis has been widely used in UDA
to reduce the domain gap via mapping the samples from
different domains into an intermediate latent space. Huo et
al. [32] designed an end-to-end segmentation network, which
can perform cross-modality image synthesis and supervised
image segmentation. Kamnitsas et al. [13] incorporated the

edge structure into cycle-consistency GAN (CycleGAN) to
generate high-quality images for domain adaptation. Zhang et
al. [33] proposed another variant of CycleGAN for pixel-level
translation and utilized a pre-trained module to enforce the
segmentation consistency between different domains. Lei et
al. [12] utilized a variant of CycleGAN to generate target-like
query images, and adopted both style-consistency constraint
and content consistency constraint to alleviate the domain
shift. Although these methods have achieved performance
gains, they still suffer from the high computational complexity
and troublesome training of the generative network.

Similar to these methods, our RDR-Net also adopts adver-
sarial learning for the feature-level alignment. However, to
reduce the complexity and difficulty of training, we replace
CycleGAN with a VAE branch for image synthesis. Moreover,
existing methods may overlook the low-level features and do
not learn the image representation in a reconstruction-based
way. By contrast, our RDR-Net uses VAE for representation
learning and constructs dynamic convolutions to refine the
low-level features. Consequently, our RDR-Net can be trained
in an end-to-end manner and the encoded latent variable
obtained by VAE can be used as a heuristic to guide the
segmentation network.

C. Application of Dynamic Convolution
Dynamic convolution is able to adaptively adjust its convo-

lutional parameters according to the input image, and hence
is a far more flexible operation with strong self-adaptability
than its static counterpart [24]–[27]. Jia et al. [24] developed
a dynamic filter network to increase the flexibility of network
by generating convolutional kernels dynamically conditioned
on the input image. Yang et al. [25] designed a conditionally
parameterized network called CondConv, whose inference
capacity is increased by learning specialized convolutional
kernels for each input image. Chen et al [26] proposed
the dynamic convolution, which is a linear mixture of mul-
tiple convolutional layers whose parameters are calculated
according to the input-related attention. Generally, dynamic
convolutions have distinct advantages over traditional ones,
such as improving the network flexibility without excessively
increasing parameters [24], incorporating the attention mech-
anism into convolutional kernels [26], and increasing the
generalization and adaptation to an assigned task [25], [27].
However, dynamic convolutions are mostly designed to adapt
the network to an input image, instead of a new domain. In
our RDR-Net, we employ VAE to obtain the data distributions
of input images, which is then used to generate dynamic filters
based on the corresponding domain for domain adaptation.

III. METHODOLOGY

Let a set of source domain images be denoted by Ds =
{Xs

i , Y
s
i }

Ns

i=1, where Xs
i ∈ NH×W×3 is an image and Y si ∈

RH×W is the corresponding segmentation ground truth. The
edge map of Xs

i , denoted by Bsi ∈ RH×W , is obtained
by applying the Sobel operator and Gaussian filter to Y si .
Similarly, a set of unlabeled target domain images is denoted
by Dt = {Xt

i}
Nt

i=1. The proposed RDR-Net is trained on
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{Ds,Dt} and tested on Dt. RDR-Net consists of a two-
decoder segmentation backbone, a RA module, an LFR mod-
ule, and a PMA module. Feeding an image X from either Ds
or Dt into the encoder, we obtain the low-level features Fl
and high-level features Fh. Then, we feed both Fl and Fh
into the VAE branch to estimate the data distribution z and
perform image reconstruction. The reconstructed image R is
not only used to calculate the reconstruction loss using Eq. (6),
but also fed into a style encoder to extract its style features,
which is used to calculate the style-consistency loss using
Eq. (10). Next, the data distribution z and high-level features
Fh are processed and utilized to generate the parameters of
the dynamic convolutional layers. The dynamic convolutional
layers convert Fl into the refined low-level features Fr, which
are concatenated with Fh to form the fusion feature Fs. We
feed Fs into the edge decoder to predict an edge map, and
the concatenation of Fs and the edge map is fed into the
region decoder to predict a region map. The supervised losses
shown in Eq. (1) and (4) are used to optimize the network.
We also construct two discriminators and use the adversarial
losses calculated by Eq. (14) and (16) to further improve the
learning process. The diagram of RDR-Net is shown in Fig. 2.
We now delve into the details of each part.

A. Backbone

The segmentation backbone consists of a shared encoder for
feature extraction, a decoder for edge detection, and a decoder
for region prediction [11]. The encoder E is constructed
based on DeepLabv3+ [38] with a pre-trained MobileNetV2
backbone [39] and hence has a lightweight architecture. The
edge decoder Pe consists of three convolutional layers with
256, 256, and 1 channels, respectively [11]. Each of the first
two layers is followed by the ReLU activation and batch
normalization, and the last layer is followed by the sigmoid
activation. Since the edge structure can be regarded as a
domain-invariant feature, the object boundaries generated by
Pe provide valuable guidance for object region prediction. The
region decoder Pr contains only one convolutional layer that
is followed by sigmoid activation [11].

Feeding an image X , which is from either Ds or Dt, to the
backbone, we define the output of the second bottleneck of E
as the low-level feature Fl, which has 24 channels, and define
the final output of E as the high-level feature Fh, which has
320 channels. Then, Fl is converted into the refined low-level
feature Fr by the LFR module (in Section III-C). And Fh
is first up-sampled using the bilinear interpolation, and then
concatenated with Fr to form the fused feature Fs. Based on
Fs, the edge decoder Pe predicts an edge map B̂ ∈ RH

4 ×
W
4 .

Taking both Fs and B̂ as its input, the region decoder Pr
produces a predicted region map Ŷ ∈ RH

4 ×
W
4 . Then, the B̂

and Ŷ are up-sampled to the size of input images using the
bilinear interpolation.

We train the backbone on source domain data in a super-
vised way. Given the predicted region map Ŷ si and correspond-
ing ground truth Y si , the region prediction loss is defined as

Lr(Ŷ s, Y s) = Lce(Ŷ s, Y s) + Lgdl(Ŷ s, Y s). (1)

where Lce is the cross-entropy loss, and Lgdl is the generalized
Dice loss (GDL), which is calculated as [40]

Lgdl(Ŷ s, Y s) = 1− 2

∑2
l=1 wl

∑
Ŷ sl Y

s
l∑2

l=1 wl
∑(

Ŷ sl + Y sl

) , (2)

where wl denotes the weight for category l. We have two
foreground categories, i.e., OC and OD. Since OC always lies
within OD in normal eyes, we define the weights {w1, w2} as
follows to balance the contributions of both categories

wl = 1−
∑
Y sl∑2

l=1

∑
Y sl

. (3)

Meanwhile, although OC and OD have similar structures,
the edge between them is blurred and hard to identify. To op-
timize the network towards producing the accurate boundaries
of OC and OD, we also define the following edge loss [11]
for edge prediction

Le(B̂s, Bs) =
1

M
‖Bs − B̂s‖22, (4)

where M = H ×W is the number of pixels.

B. RA Module
In the RA module, we employ VAE [28] (see Fig. 3)

to perform reconstruction and feature alignment. Since VAE
explores the distribution of inputs more explicitly than GANs,
our VAE branch can provide the way of regularization aiming
to force the network to enhance the representation ability and
learn the domain invariant features.

Specifically, we assume each image can be represented
by a D-dimensional feature, which follows a component-
independent Gaussian distribution N (µ, σ2). We empirically
set D to 128 for this study. For each input X , the low-level
features Fl are first down-sampled by an average pooling layer
and then concatenated with the high-level features Fh along
the channel-axis. The concatenated features are dimension-
reduced by a convolutional layer, flatten into a vector, and
further transformed by a fully-connected layer to a 2D-
dimensional vector, which represents the concatenation of the
mean µ and log σ2. Note that, since the variance is non-
negative, we replace it with log σ2 for the simplicity of
estimation.

In the decoding process, we first sample a vector ε from the
standard Gaussian distributionN (0, 1). Then the latent feature
vector z that follows the Gaussian distribution N (µ, σ2) can
be obtained as [28]

z = µ+ σ � ε, (5)

where � means element-wise multiplication. Next, we feed
z to a fully connected layer, which is followed by the ReLU
activation, and reshape the output into a feature map of size
H
16 ×

W
16 × 16. Finally, this feature map is feed to the decoder

that has four convolutional blocks and one convolutional layer
followed by the sigmoid activation, resulting in a reconstructed
image R ∈ RH×W×3.

The reconstruction loss is defined as

Lre = Lkl + Lmse, (6)
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Fig. 2. Overview of the proposed RDR-Net, which consists of a backbone network, an RA module, a LFR module, and a PMA module. The
backbone uses an encoder for feature extraction and two decoders for edge detection and region prediction, respectively. It is trained on source
domain by minimizing the edge loss Le and region prediction loss Lr . The RA module uses VAE for image reconstruction via minimizing the
reconstruction loss Ls

re and Lt
re. This module also contains a style encoder Es with a style-consistency loss Lsty for features alignment. The

LFR module uses a dynamic convolution (DyConv) block to refine the low-level features. The parameters in DyConv are generated based on the
distribution information given by VAE and the semantic information from high-level features. The PMA module uses two discriminators (De and
Dr), which are trained by optimizing the cross-entropy loss (LDr and LDe ), to align the distributions of edge predictions and region predictions
via minimizing the adversarial loss (Ladv

e and Ladv
r ). The dotted line indicates that the gradient will not propagate back, and ⊕ denotes the

concatenate operation.

where the KL divergence error [28], [41]

Lkl =
1

D
‖µ2 + σ2 − log σ2 − 1‖1, (7)

is a standard VAE penalty term to ensure the generation
capability of the network, and the mean absolute error [42]

Lmse =
1

M
‖R−X‖22, (8)

is a common reconstruction loss for VAE. Herein, we denote
the reconstruction losses for a source or a target image as Lsre
and Ltre, respectively.

High-level
features

Low-level
features𝜇𝜇

𝑙𝑙𝑙𝑙𝑙𝑙𝜎𝜎2

𝜀𝜀 𝑁𝑁 0,1

AP

𝑧𝑧 ©

=

=

= Conv 1×1 = =

3 128 2566432

2561286432

16

Conv 3×3, stride 2 Fully connected layer

Conv 1×1 BI IN ReLU

Conv 3×3 IN ReLU Conv 3×3 IN ReLU

VAE

Data Distribution
(No gradient)

Fig. 3. Diagram of VAE branch. AP: Average pooling; IN: Instance
normalization; and BI: Bilinear interpolation for 2× 2 up-sampling.

Moreover, we also utilize a style encoder Es to extract the
style features of reconstructed images, and then impose a style-
consistency constraint on style features, aiming to enforce the
network to filter out domain-variant information without being
affected by different image styles. After that, the VAE branch
can provide the latent feature vector z, which is domain-
invariant, to the LFR module to refine the low-level features.
We use the first four convolutional layers of VGG19 [43] that
has been pre-trained on ImageNet as Es [44], and do not

update its parameters during training. Let the style features of a
reconstructed image be denoted by Fi = (Fi1, Fi2, · · · , FiC),
where C is the number of channels. The Gram matrix of Fi
is

Gi = (~F>ij
~Fik)j,k∈{1,··· ,C}, (9)

where ~∗ means vectoring the matrix ∗. Then, we define the
style-consistency loss as

Lsty =
1

4C2M2
‖ ~Gs − ~Gt‖22. (10)

C. LFR module

The cross-domain generalization ability of the segmentation
network depends heavily on the low-level feature Fl, which
is expected to be domain-invariant. Therefore, we devise the
dynamic convolution (DyConv) block (see Fig. 4) to retain
most domain-invariant information in Fl while removing the
noise.

Traditional convolutional layers update learnable parameters
during training but freeze them during inference. This is a main
reason for the performance degradation caused by training the
network on one domain and testing it on another domain.
To address this issue, we attempt to generate convolutional
parameters dynamically and thus adapt those convolutions
better to the input images from different domains. Specifically,
we design three 1× 1 dynamic convolutional layers with 12,
12, and 24 channels, respectively, each being followed by the
ReLU activation. The structure of these layers is similar to the
Bottleneck block in ResNet [45], and the parameters in them
are denoted by ω = {ω1, ω2, ω3}, where ω1 has 300 elements,
ω2 has 156 elements, and ω3 has 312 elements. Using these
dynamic convolutional layers, the refined low-level feature Fr
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can be computed as

Fr = f (f (f (Fl ∗ ω1) ∗ ω2) ∗ ω3) , (11)

where ∗ indicates the convolutional operation, and f is the
ReLU activation.

To generate ω dynamically, we utilized a traditional convo-
lutional layer as the dynamic parameter generator. The input
of this generator is the concatenation of two parts. One is the
high-level feature Fh pooled by GAP, and the other is the
latent feature vector z processed by a three-layer multi-layer
perception (MLP). The MLP has 128, 64, and 64 neurons in
three layers, and each of the first two layers is followed by
the GeLU activation.

Conv Layer Weights Bias

1 24×12 12

2 12×12 12

3 12×24 24

Total 768

GAP

Dynamic Layer

Low-level 
Features

Refined
Low-level
Features

(a) Dynamic Convolution (DyConv) (b) Dynamic Parameters

High-level 
Features

Data 
Distribution MLP

DPG

Fig. 4. Illustration of DyConv block: (a) Architecture of DyConv block
and (b) Number of parameters in each dynamic convolutional layer.
GAP: Global Average pooling; MLP: Multi-Layer Perceptron; and DPG:
Dynamic Parameter Generator that is a single 1×1 convolutional layer.
The parameters in three dynamic convolutional layers are conditioned
on the high-level semantic information (highlighted in orange) and the
distribution of input images (highlighted in green).

D. PMA module

Besides supervised learning, adversarial learning is also
used during training, aiming to align the domain-related fea-
tures and thus encourage the network to generate source-like
segmentation results on the target domain.

Based on the discriminator presented in Ref. [11], we
construct our region discriminator Dr and edge discriminator
De for adversarial learning, which consists of five 4 × 4
convolutional layers with channels [64, 128, 256, 512, 1], and
each layer is followed by the Leaky ReLU activation except
the last one [46]. Although Dr and De have the same structure,
their parameters are not shared. Due to the domain gap, the
predictions on the target domain are prone to be uncertain
and hence high-entropy [47]. We employ the entropy-driven
adversarial learning [11] to suppress uncertain predictions.
The region discriminator Dr is trained to judge whether the
predicted region map Ŷ is from the source domain or target
domain by minimizing the following cross-entropy loss

LDr
(Ŷ s, Ŷ t) = Lce

(
Dr

(
E
(
Ŷ s
))

, 1
)
+

Lce
(
Dr

(
E
(
Ŷ t
)
, 0
))

,
(12)

where the label is set to 1 for the source domain and 0 for the
target domain, and the entropy map E is calculated as

E
(
Ŷ
)
= −Ŷ log

(
Ŷ
)
. (13)

On the other hand, the network is encouraged to produce the
source-like predicted region map on the target domain to cheat
the discriminator so that it can generalize well on the target
domain. To this end, we also use the following adversarial loss

Ladvr (Ŷ t) = Lce
(
Dr

(
E
(
Ŷ t
))

, 1
)
. (14)

For the predicted edge map B̂, we employ the edge ad-
versarial learning [11] and train the edge discriminator De

to determine whether B̂ is from the source domain or target
domain. Similarly, we have the following edge cross-entropy
loss

LDe(B̂
s, B̂t) = Lce

(
De

(
B̂s
)
, 1
)
+ Lce

(
De

(
B̂t
)
, 0
)
.

(15)
The edge adversarial loss

Ladve (êt) = Lce
(
De

(
B̂t
)
, 1
)
, (16)

is used to optimize the network so as to further align the
distribution of predicted edge map on different domains.

In summary, the overall objective of the whole segmentation
network is

L =Lr + Le + λ1
(
Lsre + Ltre

)
+ λ2Lsty+

λ3
(
Ladvr + Ladve

)
,

(17)

where λ1, λ2 and λ3 are different weighting coefficients. For
this study, we empirically set λ1 to 0.1 [42], λ2 to 0.001 [54]
and λ3 to 0.05 [55].

E. Implementation Details
Due to the obvious physiological characteristics of OD [10],

it is easy to locate OD on a fundus image. We focused only on
the segmentation of OD and OC in the cropped ROI. Given
a fundus image, we first cropped a ROI of size 512 × 512
around OD and resized it to 256 × 256 for computational
efficiency [12]. Considering the limited number of training
samples, we resorted common data augmentation strategies,
including random scaling, random rotation, random flip, elastic
transformation, adding salt-pepper noise, random erasing, and
brightness adjustment [10], to diversify the training set. Our
RDR-Net and all competing methods used the same set of
augmentation strategies without the help of any extra post-
processing. We implemented RDR-Net using the PyTorch
framework on a workstation with one NVIDIA 1080Ti GPU.

On the training phase, we optimized the segmentation
network and discriminators in a two-step iterative way. We
adopted the Adam optimizer for the network and the SGD
optimizer for the discriminators. We set the batch size to 8,
the learning rate of the network to 0.001 with a decay of 0.1
for every 100 epochs during the 200 epochs, and the learning
rate of discriminators to 2.5e−5 without a decay.

F. Evaluation Metrics
For this study, the performance of OD segmentation and OC

segmentation was measured separately by the Dice coefficient
(Dice), mean Intersection over Union (mIoU), and pixel-wise
Accuracy (Acc). A higher value of Dice, mIoU, or Acc
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means better performance. The performance of interactive
segmentation between OD and OC was evaluated by the
mean absolute error of CDR, which is commonly used in
clinic practice to measure the optic abnormality. Let {d̂c, d̂d}
and {dc, dd} denote the vertical cup diameter and vertical
disc diameter obtained on a segmentation result and the
corresponding ground truth, respectively. The CDR, denoted
by δ, is calculated as

δ =

∣∣∣∣∣ d̂cd̂d − dc
dd

∣∣∣∣∣ . (18)

A lower value of δ means better segmentation performance.

IV. EXPERIMENTS

A. Dataset
Four public fundus image datasets were used for this

study, including the Drishti-GS dataset [48], RIM-ONE-r3
dataset [49], REFUGE dataset (only training set) [50] and
ORIGA dataset [51]. The statistics of these datasets were
listed in Table I. To ensure a fair comparison, we followed
the experimental settings used in [10]–[12]. Due to the lack
of an official split of the ORIGA dataset, we sorted the images
by their file names from small to large and chose the first 500
images for training and the rest for test [12].

B. Results
First, we used the training set of REFUGE as the source

domain and used Drishti-GS and RIM-ONE-r3 as the target
domain, respectively. We compared the proposed RDR-Net
with five domain adaptation methods and two baseline set-
tings: ’No Adapt’ (i.e., training only on the source domain
and test on the target domain), ’Upper bound’ (i.e., training
and test on the same target domain). The UDA method
proposed by Hoffman et al. [34] uses the global domain
alignment. The method proposed by Javanmardi et al. [52]
adopts adversarial learning to alleviate the domain shift issue.
ρOSAL [10], BEAL [11], and ISFA [12] are three state-of-
the-arts UDA methods for joint OD and OC segmentation on
fundus images. All of them employ adversarial learning to
align features, and ISFA also uses an additional CycleGAN
to transfer images from the source domain to the target
domain. The segmentation performance of these methods was
reported in Table II. Among them, the performance of five
completing methods were adopted from [12]. The best results
were highlighted in bold. It shows that ISFA and our RDR-
Net, which jointly use image reconstruction and adversarial
learning, substantially outperform BEAL and ρOSAL, which
only use adversarial learning. This observation confirms that
using image reconstruction to shorten the distribution distance
between the images from different domains can improve the
segmentation performance. It also shows that, due to the larger
domain discrepancy between the REFUGE training set and
RIM-ONE-r3, all the methods perform worse on RIM-ONE-
r3 than on Drishti-GS. Nevertheless, our RDR-Net achieves
similar results to ISFA on Drishti-GS, but gains 1.0% and
1.8% Dice improvement for disc and cup segmentation on
RIM-ONE-r3. These results suggest that our RDR-Net is able

to gain advantages from refining the low-level features, be-
coming particularly effective in handling domain discrepancy.

Second, to evaluate the performance of our model trained
on a small source dataset, we used either Drishti-GS or RIM-
ONE-r3 as the source domain and used the other one and
ORIGA as the target domain, respectively. The performance
of our RDR-Net and three state-of-the-art UDA methods (i.e.,
ρOSAL, BEAL, and ISFA) was given in Table III. The best
results were highlighted in bold. Note that the performance of
ISFA is directly adopted from [12], where the experimental
settings are the same to those used for this study. The results
of ρOSAL and BEAL were obtained by reproducing the codes.

It reveals that our RDR-Net is substantially superior to
ρOSAL and BEAL in most cases, especially when the target
dataset is large (e.g., ORIGA). It can be attributed to the
fact that the reconstruction alignment can provide more self-
supervised guidance from a large number of images [53].
Comparing to ISFA, RDR-Net achieves competitive perfor-
mance in OD segmentation and superior performance in OC
segmentation. Since both ISFA and RDR-Net jointly use
image reconstruction and adversarial learning, we believe that
the performance gain of RDR-Net stems from the dynamic
convolution-based low-level feature refinement. We also con-
ducted statistical tests on the mean value of DiceOD and
DiceOC , and reported the p-values. All p-values are smaller
than 0.05, suggesting that the performance gain of our RDR-
Net over each competing method is statistically significant.
Moreover, Fig. 5 gives the visualization of some results
on the RIM-ONE-r3 dataset while using Drishti-GS as the
source domain. It shows that our RDR-Net can produce more
accurate segmentation results than other methods, particularly
on difficult examples (see the 1st and 4th column).

C. Ablation Study

We designed three key modules (i.e., RA, LFR, and
PMA) to enable our RDR-Net to address the domain gap
issue for better OD/OC segmentation. To evaluate the ef-
fectiveness of each module, we performed ablation studies,
in which REFUGE was used as the source domain and
Drishti-GS and RIM-ONE-r3 were used as two target do-
mains. We compared the performance of the baseline (w/o
UDA), baseline+RA, baseline+LFR, baseline+PMA, base-
line+RA+PMA, baseline+LFR+PMA, baseline+RA+LFR, and
baseline+RA+LFR+PMA (i.e., our RDR-Net). Note that
“baseline+LFR” only utilizes the high-level features Fh com-
pressed by GAP to refine the low-level features Fl without
using the distribution information produced by RA. The results
were reported in Table IV. It shows that adding each of RA,
LFR, and PMA to the baseline can improve the performance
of OC/OD segmentation on both target domains. Particularly,
the performance gain caused by RA or LFR is much larger
than that caused by PMA, suggesting that learning feature
representations on the target domain via reconstruction-based
self-supervised learning and refining Fl with the knowledge
from Fh are more effective in UDA than using adversarial
learning. Meanwhile, it also reveals that jointly using any
two modules further improves the segmentation performance
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TABLE I
STATISTICS OF FOUR FUNDUS IMAGE DATASETS USED FOR THIS STUDY.

Datasets Drishti-GS RIM-ONE-r3 REFUGE (Train) ORIGA
Resolution 2047×1760 1072×1424 2124×2056 3072×2048

Camera device unknown Canon EOS 5D Zeiss Viscucam 50 unknown
Number of images 50 Train + 51 Test 99 Train + 60 Test 400 Train + 0 Test 500 Train + 150 Test

Year of Release 2014 2015 2018 2017
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Fig. 5. Visualization of OD (green) and OC (blue) segmentation results obtained on RIM-ONE-r3 test set when using Drishti-GS as source domain.
From top to bottom: Ground truth of OD and OC (1st row), and segmentation results of ρOSAL (2nd row), BEAL (3rd row) and our RDR-Net (4th
row).

TABLE II
PERFORMANCE OF TWO BASELINE SETTINGS, FIVE UDA METHODS

AND OUR RDR-NET IN OD/OC SEGMENTATION, WHEN USING

REFUGE TRAINING SET AS SOURCE DOMAIN AND USING DRISHTI-GS
AND RIM-ONE-R3 AS TARGET DOMAIN, RESPECTIVELY.

Method Drishti-GS RIM-ONE-r3
DiceOD DiceOC δ DiceOD DiceOC δ

No Adapt 0.952 0.842 0.105 0.855 0.769 0.086

Upper bound 0.977 0.910 0.039 0.969 0.877 0.041

Hoffman et al. [34] 0.959 0.851 0.093 0.852 0.755 0.082

Javanmardi et al. [52] 0.961 0.849 0.091 0.853 0.779 0.085

ρOSAL [10] 0.965 0.858 0.082 0.865 0.787 0.081

BEAL [11] 0.961 0.862 - 0.898 0.810 -
ISFA [12] 0.966 0.892 - 0.908 0.822 -

Ours 0.971 0.893 0.062 0.918 0.840 0.059

and using the combination of all three modules leads to the
best performance. Moreover, although LFR alone is inferior

to RA, the combination of LFR and PMA is superior to the
combination of RA and PMA. It can be attributed that the
high-level features benefit from PMA a lot and thus provide
better guidance for the LFR module. To verify the significance,
we also conducted the Wilcoxon rank-sum test on the mean
value of OC Dice and OD Dice obtained by our RDR-Net
and each of other combinations. It shows that the p-values are
all less than 0.05. The results of our ablation studies indicate
that each of the RA, LFR, and PMA modules is effective and
the performance gain caused by each module is statistically
significant.

D. Performance Stability

We chose the REFUGE training set as the source domain
and ORIGA as the target domain and used this setting as a case
study to evaluate the stability of our RDR-Net against BEAL
and ρOSAL. The boxplots of the Dice scores obtained by three
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TABLE III
PERFORMANCE OF THREE UDA METHODS AND OUR RDR-NET IN OD/OC SEGMENTATION, WHEN USING EITHER DRISHTI-GS OR RIM-ONE-R3
AS SOURCE DOMAIN AND USING OTHERS AS TARGET DOMAINS. THE P-VALUES WERE CALCULATED BASED ON THE MEAN DICE OF RDR-NET AND

EACH COMPLETING MODEL.

Source Target Method DiceOD DiceOC mIoUOD mIoUOC AccOD AccOC δ p-value

Drishti-GS

RIM-ONE-r3

ρOSAL [10] 0.9153 0.8159 0.8957 0.8383 0.9564 0.9790 0.0692 0.004

BEAL [11] 0.9208 0.8001 0.9003 0.8345 0.9591 0.9788 0.0753 < 0.001

ISFA [12] 0.9252 0.8220 0.9059 0.8471 0.9616 0.9804 \ \
Ours 0.9215 0.8282 0.9028 0.8512 0.9607 0.9820 0.0566 \

ORIGA

ρOSAL [10] 0.9445 0.8498 0.9186 0.8508 0.9540 0.9568 0.0843 < 0.001

BEAL [11] 0.9490 0.8524 0.9204 0.8525 0.9564 0.9580 0.0810 < 0.001

ISFA [12] 0.9587 0.8728 0.9339 0.8676 0.9674 0.9616 \ \
Ours 0.9684 0.8834 0.9494 0.8792 0.9755 0.9656 0.0775 \

RIM-ONE-r3

Drishti-GS

ρOSAL [10] 0.9096 0.8303 0.8614 0.8325 0.9294 0.9497 0.0761 0.001

BEAL [11] 0.9293 0.8054 0.8927 0.8116 0.9478 0.9435 0.0878 0.001

ISFA [12] 0.9324 0.8385 0.8961 0.8413 0.9492 0.9549 \ \
Ours 0.9434 0.8430 0.9124 0.8455 0.9575 0.9552 0.0638 \

ORIGA

ρOSAL [10] 0.9072 0.8068 0.8740 0.8135 0.9361 0.9489 0.0885 < 0.001

BEAL [11] 0.9369 0.8378 0.9040 0.8398 0.9528 0.9546 0.0938 0.005

ISFA [12] 0.9481 0.8449 0.9192 0.8439 0.9604 0.9558 \ \
Ours 0.9521 0.8463 0.9256 0.8516 0.9635 0.9608 0.0806 \

TABLE IV
ABLATION STUDY ON DIFFERENT COMPONENTS. THE P-VALUES WERE CALCULATED BASED ON THE MEAN DICE OF RDR-NET (i.e., THE BASELINE

WITH ALL COMPONENTS) AND EACH VARIANT MODEL.

Target Domain Baseline RA LFR PMA DiceOD DiceOC mIoUOD mIoUOC AccOD AccOC p-value
X 0.8549 0.7690 0.8551 0.8148 0.9293 0.9684 < 0.001

X X 0.9033 0.8289 0.8786 0.8511 0.9490 0.9783 < 0.001

RIM-ONE-r3

X X 0.8990 0.8262 0.8731 0.8509 0.9460 0.9786 < 0.001

X X 0.8984 0.8150 0.8723 0.8435 0.9455 0.9765 < 0.001

X X X 0.9064 0.8315 0.8816 0.8518 0.9499 0.9787 < 0.001

X X X 0.9067 0.8325 0.8824 0.8521 0.9506 0.9789 0.001

X X X 0.9110 0.8346 0.8918 0.8536 0.9559 0.9792 0.003

X X X X 0.9179 0.8402 0.9098 0.8587 0.9641 0.9810 \
X 0.9521 0.8423 0.9204 0.8416 0.9602 0.9442 < 0.001

X X 0.9615 0.8807 0.9414 0.8771 0.9693 0.9612 < 0.001

Drishti-GS

X X 0.9596 0.8790 0.9401 0.8715 0.9679 0.9603 < 0.001

X X 0.9604 0.8683 0.9366 0.8622 0.9675 0.9573 < 0.001

X X X 0.9628 0.8821 0.9418 0.8803 0.9704 0.9614 < 0.001

X X X 0.9635 0.8847 0.9429 0.8828 0.9713 0.9619 < 0.001

X X X 0.9651 0.8884 0.9452 0.8878 0.9723 0.9630 0.004

X X X X 0.9712 0.8934 0.9520 0.8930 0.9765 0.9694 \

Fig. 6. Boxplot of Dice scores of BEAL, ρOSAL, and our RDR-Net when using REFUGE training set as source domain and ORIGA as target
domain.
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TABLE V
COMPARISON ON REFINING LOW- OR HIGH-LEVEL FEATURES.

LFR Concat Drishti-GS RIM-ONE-r3
DiceOD DiceOC DiceOD DiceOC

Low 0.9665 0.8822 0.8942 0.8220

Low X 0.9712 0.8934 0.9179 0.8402

High 0.9639 0.8708 0.8910 0.8178

High X 0.9673 0.8871 0.8955 0.8268

TABLE VI
COMPARISON ON DIFFERENT VALUES OF WEIGHTING COEFFICIENT λ1 ,

λ2 AND λ3 .

λ1

RIM-ONE-r3
λ2

RIM-ONE-r3
λ3

RIM-ONE-r3
λ2=0.001, λ3=0.05 λ1=0.1, λ3=0.05 λ1=0.1, λ2=0.001
OD OC OD OC OD OC

0 .9120 .8307 0.00001 .9139 .8354 0.001 .9104 .8369

0.01 .9149 .8360 0.0001 .9161 .8373 0.01 .9131 .8413

0.1 .9179 .8402 0.001 .9179 .8402 0.05 .9179 .8402

1.0 .9099 .8251 0.01 .9124 .8377 0.1 .9087 .8339

10.0 .9068 .8231 0.01 .9043 .8306 1.0 .8967 .8242

1The values are Dice scores, and each “0” in “0.” is omitted.

models were displayed in Fig 6. It shows that our RDR-Net
has the largest median and smallest quartile, indicating better
performance stability of RDR-Net. Moreover, the outliers of
RDR-Net have higher Dice scores than those of other two
networks, suggesting the effectiveness of our RDR-Net on hard
samples.

Fig. 7. Comparison of different loss functions of segmentation.

V. DISCUSSION

A. Low- or High-level Feature Refinement
In the LFR module, we employed dynamic convolutions to

refine low-level features Fl, aiming to suppress the domain-
variant information in them. Since the high-level features
Fh contain more semantic information which are domain-
invariant, refining Fh in the same way is not cost-effective.
To validate this, we performed the first experiment again to
test the performance of our RDR-Net with either the low-
level feature refinement or high-level feature refinement. We
also evaluated the contributions made by concatenating the
low-level and high-level features for segmentation. The results
were reported in Table V. It shows that, no matter using
feature concatenation or not, the model with low-level feature
refinement outperforms the one with high-level feature refine-
ment. As expected, the highest Dice values were achieved

TABLE VII
NUMBER OF PARAMETERS, GFLOPS, TRAINING TIME, AND INFERENCE

TIME (ON ONE SAMPLE) OF DIFFERENT MODELS.

Models
Parameters

GFLOPs
Training Inference

(×106) Time (h) Time (s)
ρOSAL 5.81 6.64 1.25 0.021

BEAL 5.81 6.64 2.51 0.021

Ours 6.45 6.64 3.32 0.023

when using both low-level feature refinement and low- and
high-level feature concatenation. Our results suggest that the
proposed feature refinement should be applied to low-level
features.

B. GDL vs. Dice Loss
The proposed RDR-Net was designed to segment both OD

and OC on fundus images, where OC is always located inside
OD and is, of course, smaller than OD. To make use of
this prior knowledge, we replaced the traditional Dice loss
with its generalized version, i.e., GDL, which controls the
contribution that each class makes to the loss by weighting
classes by the inverse size of the expected region [40]. We
minimized the sum of cross-entropy loss and GDL to optimize
the segmentation backbone. To validate the effectiveness of
GDL, we attempted to use the Dice loss and re-performed
the first experiment. The results were displayed in Fig. 7. It
shows that using the combination of cross-entropy loss and
GDL leads to better segmentation performance than using the
combination of cross-entropy loss and Dice loss, particularly
in OC segmentation. Our results suggesting that GDL is more
suitable than its traditional counterpart for this imbalanced
segmentation task.

C. Value of Weighting Coefficients
As shown in Eq. (17), the weighting coefficients λ1, λ2 and

λ3 control the contributions made by the image reconstruc-
tion, style-consistency constraint, and adversarial learning,
respectively. To investigate the settings of three weighting
coefficients, we repeated the experiments on the REFUGE
training set (source) and RIM-ONE-r3 (target) and reported
the performance of our RDR-Net with different parameter
settings in Table VI. It reveals that RDR-Net achieves the most
accurate segmentation of both OD and OC when setting λ1 to
0.1, λ2 to 0.001, and λ3 to 0.05.

D. Complexity
The proposed RDR-Net contains a dual-path backbone and

three modules. To evaluate its complexity, we chose the
REFUGE training set as the source domain and Drishti-GS
as the target domain and used this setting as a case study.
Table VII gives the number of parameters, GFLOPs, training
time, and inference time (on one 256 × 256 sample) of our
RDR-Net, ρOSAL, and BEAL. Note that, when calculating
the number of parameters, GFLOPs, and inference time, only
the first convolutional layer and fully connected layer in the
VAE branch of RDR-Net are taken into account, since other
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(a) Low-level Features (b) Refined Low-level Features

Fig. 8. Visualization of low-level features before (left) and after (right)
being refined by the LFR module using 2D t-SNE. The points in red
and blue represent the samples from the source and target domains,
respectively.

layers in the VAE branch do not work in the inference phase.
It shows that, although RDR-Net contains more parameters, it
has similar GFLOPs, training time, and inference time with the
other two models. The efficiency mainly comes from that (1)
the employed part of the VAE branch is operated only on the
low-resolution feature maps, and (2) the dynamic convolutions
are light-weighted. In summary, our RDR-Net is a little bit
more complex than ρOSAL and BEAL, but its training time
(less than 4 hours) is still acceptable and its inference speed
is very fast (less than 0.05 seconds per image).

E. Generalization Analysis of LFR

To verify the ability of our LFR module to filter the
domain-variant information, we chose the model trained on
the REFUGE training set (source domain) and RIM-ONE-r3
(target domain) as a case study. The low-level features before
and after being refined by LFR were visualized using 2D t-
SNE in Fig. 8. It reveals that the low-level features from two
domains are largely separated from each other before being
refined (see Fig. 8(a)) and become indistinguishable after being
refined (see Fig. 8(b)). The visualization suggests that our
LFR module can filter domain-variant information and can
be generalizable to the target domain.

VI. CONCLUSION

In this paper, we propose a UDA model called RDR-Net for
OD/OC segmentation on fundus images. It addresses the do-
main shift issue by jointly using three strategies, including the
VAE-based reconstruction alignment, dynamic convolution-
based low-level feature refinement, and prediction-map align-
ment. The results obtained on four fundus datasets suggest
that the proposed RDR-Net outperforms several UDA models
on this medical image segmentation task and each strategy we
developed is effective in delivering performance gains.

However, the proposed RDR-Net still has two limitations.
First, it is designed for single-source UDA tasks, i.e., it can
only use the data from a single source domain for training.
When trained on multi-source datasets, the performance of
RDR-Net may drop due to its inability to handle the domain
gap within training data. Second, VAE is beneficial to training,

but not used in the inference phase, except for providing
data distributions to the LFR module. Indeed, VAE-based
image reconstruction provides the way to narrow down the
domain gap at the image level. In our future work, we plan to
incorporate such VAE-based image alignment into the UDA
framework, aiming to address the domain gap issue from the
image level, feature level, and decision level simultaneously.
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APPENDIX

Analysis of Style-Consistency Loss
Recall that the style-consistency loss Lsty and reconstruc-

tion loss Lre are adversarial, we set a small weight for the for-
mer to limit its impact on the latter. To verify the effectiveness
of Lsty , we compared the performance of “baseline+RA” with
and without Lsty in Table A1. It reveals that the RA module
with Lsty outperforms the one without Lsty , indicating the
effectiveness of Lsty .

TABLE A1
ABLATION STUDY ON THE STYLE-CONSISTENCY LOSS, WHEN USING

REFUGE TRAINING SET AS SOURCE DOMAIN AND USING DRISHTI-GS
AND RIM-ONE-R3 AS TARGET DOMAINS, RESPECTIVELY.

Method Drishti-GS RIM-ONE-r3
DiceOD DiceOC DiceOD DiceOC

baseline+RA (w/o Lsty ) 0.9521 0.8718 0.8939 0.8233

baseline+RA (w Lsty ) 0.9615 0.8807 0.9033 0.8289

Experiments on Large Datasets
We chose the REFUGE training set as source domain and

ORIGA as target domain and used this setting as a case study
to verify the performance of our RDR-Net on large datasets.
Two state-of-the-art methods (i.e., ρOSAL and BEAL) are
used for comparison, which are both open sources. The results
are listed in Table A2. It shows that our RDR-Net achieves
superior performance over not only the baseline but also other
two competing methods, which demonstrates the effectiveness
of RDR-Net on large dataset setting.

TABLE A2
PERFORMANCE OF TWO BASELINE SETTINGS, TWO UDA METHODS,

AND OUR RDR-NET IN OD/OC SEGMENTATION, WHEN USING

REFUGE TRAINING SET AS SOURCE DOMAIN AND ORIGA AS TARGET

DOMAIN.

Method DiceOD DiceOC

No Adapt 0.9381 0.7892

Upper bound 0.9761 0.8982

ρOSAL 0.9412 0.8484

BEAL 0.9499 0.8521

Ours 0.9614 0.8837

Experiments on Other Dataset Setting
We also chose the model trained on the ORIGA (source) and

Drishti-GS/RIM-ONE-r3 (target) as a case study to evaluate
our RDR-Net against two open-source competing methods for
completeness, and listed the results in Table A3. It reveal
that our RDR-Net outperforms other two competing methods,
which is consistent with the conclusions we drew in other
settings.

Statistics of Dice Score
In Table III, we compared our RDR-Net with other three

UDA methods using either Drishti-GS or RIM-ONE-r3 as
source domain and using other one and ORIGA as target

TABLE A3
PERFORMANCE OF TWO UDA METHODS AND OUR RDR-NET IN

OD/OC SEGMENTATION, WHEN USING ORIGA AS SOURCE DOMAIN

AND USING DRISHTI-GS AND RIM-ONE-R3 AS TARGET DOMAINS,
RESPECTIVELY.

Method Drishti-GS RIM-ONE-r3
DiceOC DiceOD DiceOD DiceOC

ρOSAL 0.9718 0.8686 0.8885 0.7754

BEAL 0.9714 0.8736 0.9159 0.7919

Ours 0.9757 0.8863 0.9387 0.8206

domains, respectively. To verify the stability of RDR-Net, we
also provided the mean and standard deviation values of OC
Dice, OD Dice, and mean Dice in Table A4. Note that the
results of ISFA are obtained by inheritance, which are not
listed in Table A4 due to the lack of standard deviation. It
shows that our RDR-Net has the best mean and standard
deviation values on all scenarios, indicating better performance
stability of RDR-Net.

TABLE A4
PERFORMANCE (MEAN±STANDARD DEVIATION) OF TWO UDA

METHODS AND OUR RDR-NET IN OD/OC SEGMENTATION, WHEN

USING EITHER DRISHTI-GS OR RIM-ONE-R3 AS SOURCE DOMAIN AND

USING OTHER ONE AND ORIGA AS TARGET DOMAINS, RESPECTIVELY.

Source Target Method DiceOD DiceOC Mean Dice

Drishti-GS

RIM-ONE-r3

ρOSAL 0.9153±
0.0327

0.8159±
0.1682

0.8656±
0.0909

BEAL 0.9208±
0.0349

0.8001±
0.1200

0.8605±
0.0663

Ours 0.9215±
0.0302

0.8282±
0.0890

0.8749±
0.0386

ORIGA

ρOSAL 0.9445±
0.0709

0.8498±
0.0950

0.8972±
0.0607

BEAL 0.9490±
0.0266

0.8524±
0.0879

0.9007±
0.0445

Ours 0.9684±
0.0177

0.8834±
0.0767

0.9259±
0.0418

RIM-ONE-r3

Drishti-GS

ρOSAL 0.9096±
0.0200

0.8303±
0.1163

0.8700±
0.0625

BEAL 0.9293±
0.0188

0.8054±
0.1133

0.8674±
0.0598

Ours 0.9434±
0.0209

0.8430±
0.1009

0.8932±
0.0563

ORIGA

ρOSAL 0.9072±
0.0255

0.8068±
0.0985

0.8570±
0.0542

BEAL 0.9369±
0.0228

0.8378±
0.1093

0.8874±
0.0583

Ours 0.9521±
0.0385

0.8463±
0.0809

0.8992±
0.0501


