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Abstract—Precise segmentation is a vital first step to analyze
semantic information of cardiac cycle and capture anomaly with
cardiovascular signals. However, in the field of deep semantic
segmentation, inference is often unilaterally confounded by the
individual attribute of data. Towards cardiovascular signals,
quasi-periodicity is the essential characteristic to be learned,
regarded as the synthesize of the attributes of morphology (Am)
and rhythm (Ar). Our key insight is to suppress the over-
dependence on Am or Ar while the generation process of deep
representations. To address this issue, we establish a structural
causal model as the foundation to customize the intervention
approaches on Am and Ar , respectively. In this paper, we
propose contrastive causal intervention (CCI) to form a novel
training paradigm under a frame-level contrastive framework.
The intervention can eliminate the implicit statistical bias brought
by the single attribute and lead to more objective representations.
We conduct comprehensive experiments with the controlled
condition for QRS location and heart sound segmentation. The
final results indicate that our approach can evidently improve the
performance by up to 0.41% for QRS location and 2.73% for
heart sound segmentation. The efficiency of the proposed method
is generalized to multiple databases and noisy signals.

Index Terms—cardiovascular signal, semantic segmentation,
QRS-complex, heart sound, representation learning, causal in-
tervention.

I. INTRODUCTION

The cardiovascular signals implicate rich information about
heart circulation system, including electrocardiograph (ECG),
phonocardiogram (PCG) and photoplethysmographic (PPG),
etc., commonly used as non-invasive means for monitoring
cardiovascular system and diagnosis of organic heart disease
and cardiac electrophysiological abnormalities. For paroxys-
mal arrhythmia and various invisible heart diseases, long-term
dynamic monitoring has become an indispensable supplement
to conventional test. Automatic analysis with these signals is
crucial to alleviate workload for cardiologists, especially for

Manuscript received February 13, 2022. This research was funded by
the National Natural Science Foundation of China (62001111, 62171123,
62071241 and 81871444), the National Key Research and Development
Program of China (2019YFE0113800) and the Natural Science Foundation
of Jiangsu Province (BK20200364, BK20190014 and BK20192004). (Corre-
sponding authors: Xianghong Cheng; Chengyu Liu.)

Xingyao Wang, Yuwen Li, Hongxiang Gao, Xianghong Cheng, Jian-
qing Li and Chengyu Liu are with the School of Instrument Sci-
ence and Engineering, Southeast University, Nanjing, 210096, China.
Xingyao Wang and Chengyu Liu are also with State Key Labora-
tory of Bioelectronics, Southeast University, Nanjing 210096, China
(e-mails: xingyao@seu.edu.cn; liyuwen@seu.edu.cn; hx gao@seu.edu.cn;
xhcheng@seu.edu.cn; ljq@seu.edu.cn; chengyu@seu.edu.cn).

Fig. 1. Examples of QRS-complex location using deep learning method
to illustrate how morphology and rhythm confound the model inference.
(a) shows an ECG episode with noise contamination and the detection of
QRS-complex is confused by the partial noisy waveforms. (c) is an ECG
episode with III auriculo-ventricular block, which expresses unrelated rhythm
of atrium (P wave) and ventricular (QRS-complex). Obviously, the segmented
QRS-complex is misled by the atrial rhythm.

long-term dynamic monitoring, such as Holter or wearable
ECG. The first and most critical step for automatic diagnosis
is high-precision semantic segmentation of the physiological
signal, since the error will be counted up to the subsequent
stages.

In clinical applications, peculiarly in dynamic environment,
the temporal physiological signals are susceptible to inter-
ference from noise and individual variability. Due to the
low dominant frequency of the target components, the state
identification is always confused by intra-bandpass noise. In
the past, the researchers concentrated on the preprocessing
and feature extraction of such physiological signal to improve
the segmentation performance [1]–[3]. The essence of these
methods is to amplify the inter-state difference and discrep-
ancy between target signals and noises, such as calculating
the slope change and wavelet transforming to locate the QRS-
complex and P waves in ECGs [4], [5] and fundamental
heart sounds in PCGs [6], [7], modeling PPGs with Gaussian
functions [8], [9], etc.. Nonetheless, these classic methods
can only deal with static scenes with single-source noise and
non-severe variations. The recent researches indicate that the
supervised machine learning methods are capable of signif-
icantly improving the segmentation performance for peudo-
periodic physiological signals, and are more robust in dynamic
databases [10], [11].

Pseudo-periodic is an exclusive characteristics of
cardiovascular signals, which are epitomized to two attributes,
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attribute of rhythm (Ar) and attribute of morphology Am, as
follows:
Am: A signal segment of a state needs to own the general
morphological characteristics of that state in all cardiovascular
signals.
Ar: A signal segment of a state needs to obey a repetitive
pattern of that state in the same cardiovascular signal.

In most cases, the cardiovascular signals naturally contain
these two attributes and they are mutual independent. How-
ever, due to the abnormalities in electrophysiological activity,
such as cardiac arrest, ventricular tachycardia, atrioventricular
block, etc., or noise disturbances, such as leads failing, motion
artefacts, etc., Ar and Am would be modified. In Fig. 1, we
respectively list two scenarios in QRS-complex location that
Am and Ar hijacks the inference of the segmentation model,
respectively.

Assuming Z the deep representation of an ECG episode,
Am and Ar should be joint dependencies of Z, yet are they
highly coupled in the latent space, causing over-dependence
of Z on the onefold attribute. In this work, we propose a
solution to eliminate the individual effect from Am and Ar
and the intuitive thought is to intervene the attributes in latent
space.

In [12], the Independent Causal Mechanisms (ICM) Princi-
ple was proposed as follows: The causal generative process of
a system’s variables is composed of autonomous modules that
do not inform or influence each other. In the probabilistic case,
this means that the conditional distribution of each variable
given its causes (i.e., its mechanism) does not inform or
influence the other mechanisms. Applied to the segmentation
of cardiovascular signals, this principle tells us that knowing
one of P (Z|Ar) and P (Z|Am) does not give any information
about the other.

In this paper, we propose a novel contrastive learning
framework combined with frame-level causal intervention for
semantic segmentation of cardiovascular signals, contrastive
causal intervention (CCI). There are four main contributions
in this paper:
1) We establish a causal structural model to depict the implicit
dependency relationship between abstracted attributes and the
latent representations.
2) A frame-level contrastive training strategy based on the pro-
posed CCI is designed to implement the intervention paradigm
on Am and Ar.
3) We evaluate CCI on two classic tasks of cardiovascular
signal segmentation, QRS location and heart sound segmen-
tation, and comprehensive experiments for measuring the
segmentation performance are implemented on a large number
of independent test sets.
4) Additional analytical results including a real-world noise
stress test and visualization of latent distributions are presented
to illustrate how and why CCI improves robustness and
generalization of the segmentation model.

II. RELATED WORK

Time Series Semantic Segmentation. The common
Encoder-Decoder architecture for segmentation task ensures

the inherent tension between semantics and location in the
training process, which allows researchers to develop different
variants of the Encoder structures [13]–[16] for more efficient
feature fusion. According to existing researches, fully convolu-
tional network (FCN) has been proved a superior performance
in semantic segmentation task [17] with controllable compu-
tational cost. Subject to the receptive fields, the performance
bottleneck has been raised due to the lack of capability for
learning long-range dependency information in unconstrained
scene images [18] and particularly in time series [19]. To
address the limited learning ability of contextual information,
DeepLab and Dilation [20] introduce the dilated convolution to
enlarge the receptive field. Alternatively, context modeling is
the focus of PSPNet [21] and DeepLabV2 [16]. Decomposed
large kernels [22] are also utilized for context capturing. In
temporal segmentation, to expand multi-scale receptive fields
and leverage the inherent temporal relation, a reasonable
approach is to disassemble the network into multi-branches
to expand multi-scale receptive fields [11] or distribute sub-
networks at each time step [23]–[25]. For multi-state segmen-
tation in pseudo-periodic signal, variants of recurrent neural
network (RNN) [26], [27] and dynamic inference [10], [28]
are utilized for learning state transition probability.

Causal Representation Learning. Although methods for
learning causal structure from observations exist [29]–[31],
variables in a causal graph may be unobserved or unquantifi-
able (i.e. NN representations), which can make causal infer-
ence particularly challenging. It is inevitable to arise statistical
dependence caused by internal causal relations so that destruct
performance of current machine learning methods, since the
i.i.d. assumption is violated. There has been a growing amount
of efforts in performing appropriate interventions in several
tasks, including image classification [32], visual dialog [33]
and scene segmentation [34]. Another dilemma is the entan-
gled factorizations in the latent space, inducing the indecom-
posable causal mechanisms. Disentanglement of causal effects
is crucial for introduction of structural causal models. Recent
works are concentrated on disentangled factorization in the
latent space while changing background conditions [35], [36],
on the basis of the invariance criterion of causal structure.

Mutual Information Estimation To obtain differentiable
and scalable MI estimation, recent approaches utilize deep
neural networks to construct varitional MI estimators. Barber-
Agakov (BA) bound for MI [37] firstly propose to approach the
difficulty of computing MI by using a variational distribution.
Most of these estimators focus on MI maximization problems
through providing MI lower bound. A mainstream method is
to treat MI as the Kullback-Leiber (KL) divergence between
the joint and marginal distribution and convert it into the dual
representation. Based on this kernel, great efforts have been
paid to explore more appropriate transformations and critics
using neural networks [38]–[40]. Instead of MI maximization,
in this paper we explicitly use MI upper bound for MI
minimization. Most existing MI upper bounds for I(x; y)
require the conditional distribution p(y|x) or P (x|y) to be
known. Since it is unpractical in most machine learning tasks,
multi variational upper bounds were explored [41], also with
a Monte Carlo approximation [42].
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(a) Am and Ar work in a ideal
causal relationship.

(b) Am and Ar work as con-
founding factors.

Fig. 2. The assumed causal structural model. (a) shows the essential causal
mechanism for the attributes of morphology (Am) and rhythm (Ar) acting
on the representation Zτ of the deep segmentation model. The dotted arrows
from Aτm and Ar to Zτ in (b) are spurious relationships as they are not the
direct dependencies.

III. METHOD

A. Notations

Let X = {x0, x1, ..., xτ , ..., xT } be a cardiovascular signal
instance with T frames and Z = {zo, z1, ..., zτ , ..., zT }
be the corresponding latent feature space, where zτ =
{zτ0 , zτ1 , ..., zτd} is a feature vector with d dimensions. In this
paper, we focus on solving the bias problem induced by the
two attributes Ar and Am. A prior hypothesis is proposed as
that Am is distilled from the short-term frame xτ and Ar from
the global distribution P (X).

To better understand the causal mechanism and the con-
founding source, we choose to insert a mediation Amr which
defined as follows:
Amr: The morphology pattern of each type of state recurs
within the same episode and obeys the data distribution of the
state-specific waveform family.
As all the attributions are constructed in the cognitive space,
we assume the ultimate Zτ for each frame is yielded by
f(Aτrm, Ui), where Ui is noise, not providing any information
in the latent space. As shown in the proposed structural causal
model (SCM) (Fig. 2), Aτm and Ar are the parent nodes of
Aτrm, the only dependence of the representation of the τ th
frame, Zτ .

In Sec. 3B, we intervene on Am and Ar frame by frame
respectively to estimate and constrain their direct effect on
zτ . Thus for each parent attribute, the do-operation will
generate a signal set with T variants. Since the perturba-
tion is adopted on each frame, we define the do-variant as
Xτ
do =

{
x0, x1, ..., xτdo, ..., x

T
}

, representing the intervention
is on the τ th frame. According to the previous definition, Am
represents the local semantic information of a specific state and
Ar indicates the global morphology information of a recurring
pattern among an episode.

B. Causal Formulation

1) Causal Structural Model: In Fig. 2, we show the gener-
ation process of the frame-level representation Zτ generated

by the segmentation model for cardiovascular signals from the
perspective of causal inference. For most cases, Ar and Am
refined from biased distribution would have the probability
degrade the performance of segmentation in signals that are in-
consistent with the training distribution. In the proposed SCM,
we can clearly see how Aτm confounds Zτ and Aτrm via the
backdoor paths, zτ ← Aτm → Aτrm. Similar causal mechanism
exists for Ar via another backdoor path zτ ← Ar → Aτrm.
We expect to cut off the direct causal links, Aτm → zτ and
Ar → zτ . However, Ar and Aτm are highly coupled in the
latent space while the fitting process, and decoupling out
Ar and Aτm from representations is expensive. Therefore, we
choose to perform a constraint while fitting process to reduce
the straight influence from Ar and Aτm to Zτ , and the first step
is to measure or estimate what degree the model discriminates
by Ar and Aτm in the generation process of Z.

2) Causal Intervention Formulation: It is unsteady to do
condition on Aτmr as the Aτmr → Zτ is confounded by Ar
and Aτm, thus a more reasonable manner is to intervene on
it. We show a case study for estimating the direct effect of
Aτm → Zτ in the following content (the same goes for Ar →
Zτ relation). According to the ICM principle, there are two
sides of conceptions when observe whether the causal link
Aτm → Zτ exist, which are shown as follows:
a. The statistical distribution of zτ should not be varying with
the change of Aτm while holding Aτrm steady.
b. The statistical distributions of zτ with mutual independent
Aτmr should be irrelevant even with a steady Aτm.

For a, we can fabric the conditional distribution of Zτ

through changing Aτm from aτm to aτ ′m, which is defined as:

P
do(Am)
θ = Pθ (Zτ | do(Aτm = am), do(Aτmr = amr)) , (1)

P
do(A′

m)
θ = Pθ (Zτ | do(Aτm = a′m), do(Aτmr = amr)) . (2)

Since there is no backdoor path from Aτm to zτ and Ar is
another confounder for Aτmr → zτ , we can block the other
backdoor path through adjusting Ar, which gives:

P
do(Am)
θ =∫
ar

Pθ (Zτ | Aτm = am, A
τ
mr = amr, Ar = ar)P (Ar = ar) ,

(3)

P
do(A′

m)
θ =∫
ar

Pθ (Zτ | Aτm = a′m, A
τ
mr = amr, Ar = ar)P (Ar = ar) .

(4)

According to a, P do(Am)
θ and P do(A

′
m)

θ should be consistent,
inducing the objective function:

Lm = min
θ
DKL

(
P
do(Am)
θ , P

do(A′
m)

θ

)
. (5)

Unfortunately, Ar is an abstract attribute with an infinite
distribution and there is no feasible way to traverse the whole
Ar space. Thus adjusting Ar to block zτ ← Ar → Aτmr is
unprocurable. Conception b provides an inverse logic to hold
Aτm steady instead of Aτmr, that is the statistical characteristics
of Zτ depend only on Aτmr regardless of whether Am changes.
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(a) An instance of intervention on Am. (b) An instance of intervention on Ar . (c) Framework for contrastive causal intervention (CCI).

Fig. 3. Illustration of the intervention schemes for two attributes and the implementation method based on a frame-level contrastive framework.

Intuitively speaking, Aτm provides no direct information for
Zτ .

If we choose to intervene on Aτm, since there is no backdoor
path from Aτm to Zτ in the model, hence we can replace
do(am) with simply conditioning on am. The conditional
distributions of Zτ are given as follows:

P
do(Am)
θ = Pθ (Zτ | do(Aτm = am), Aτmr = amr)

= Pθ (Zτ | Aτm = am, A
τ
mr = amr, Ar = ar) ,

(6)

P
do(A′

m)
θ = Pθ (Zτ | do(Aτm = am), Aτmr = a′mr)

= Pθ (Zτ | Aτm = am, A
τ
mr = a′mr, Ar = a′r) .

(7)

We expect the representation of the target frame with
different Aτmr should not derive correlation induced by the
invariant Aτm. Here MI is adopted to measure the degree of
correlation of the two representations and minimized as a
constraint on training. The object function is defined as:

Lm = min
θ
I(P

do(Am)
θ , P

do(A′
m)

θ ). (8)

Symmetrically, we can draw the paradigms for intervention
on Ar and the corresponding object function as:

P
do(Ar)
θ = Pθ (Zτ | Ar = ar, A

τ
mr = amr, A

τ
m = am) , (9)

P
do(A′

r)
θ = Pθ (Zτ | Ar = ar, A

τ
mr = a′mr, A

τ
m = a′m) ,

(10)

Lr = min
θ
I(P

do(Ar)
θ , P

do(A′
r)

θ ). (11)

3) Intervention Scheme: In this section, we take scenarios
of QRS location in an ECG episode to illustrate how to
intervene on the two attributes, Am and Ar. The first step
is to define the associated physical transformation with the
controlled do-operations. As previously mentioned, Aτm indi-
cates the state distribution of the local waveform morphology
and Ar the global recurring pattern distribution.

For do-operation on Am, according to Eqn.7, we need to
solve out how to maintain the subordinate state properties of
the local morphology while changing Ar and Aτmr. Here we
conduct a straightforward manner of reversing phase (ampli-
tude inversion) on the target frame (as shown in Fig.3(a)).
Ar is a global attribute, representing how the contextual

morphology pattern influence the target frame. Reversing the
QRS-complex morphology on the target frame will definitely
affect Ar accordingly.

For do(Ar), According to Eqn.10, we wish to alternate
the state of the target frame while not changing the global
recurring pattern. Here we perform a handy intervention, that
is zero setting on the chosen target frame. As shown in
Fig.3(b), we simply erase the morphology information of the
target frame, not introducing extraneous signals. Since no
additional morphological information is introduced, Ar can
be approximately regarded as invariant as Am altered.

In practical operation, for the same cardiovascular signal,
we performed the above intervention in units of a frame with
fixed length. Assuming the signal owns T frames, given binary
masks xmask with T dimensions, x ⊗ xmask [τ ] indicates
that the τ th frame is set to zeros. Then we have do(Ar) (x) =
{x⊗ xmask [τ ]} |Tτ=1 and do(Am) (x) = {x⊗ xmask [τ ]} −
x⊗ (1− xmask [τ ])|Tτ=1

C. Contrastive Framework for Causal Intervention

In the previous sections, we have confirmed to utilize MI
modeling the causal interventions and the specific operations.
In this section we will establish the framework so that the
intervention of the target frame can form effective constraint
while training. Here we adopt the contrastive architecture with
a shared-weights Encoder (E) and a Decoder (D), where we
should learn representations from E to separate (contrast) orig-
inal samples and intervened samples. The designed temporal
contrastive learning module is shown in Fig.3(c).

The general contrastive loss is designed to learn feature
representation for positive pairs to be similar, while pushing
features from the randomly sampled negative pairs apart.
Unlike the conventional contrastive paradigm, the proposed
contrastive method should weaken the relevance between
representations before and after the intervention, namely the
negative pairs in the classic contrastive conception. According
to the assumed attributes and causal inference, the frames
beside the intervened target frame share the same attribute
Amr and should own the consistent distributions in the latent
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space. Thus we deemed these pairs of untreated frames as the
positive pairs. The ultimate contrastive paradigm should be:

min
E,D
LSeg+λ1I

(
zτ , z

do
τ

)
−λ2

1

T − 1

T∑
i=0,i6=τ

I
(
zi, z

do
i

)
(12)

Suppose the optimal representations of the frames with the
same Aτmr should be completely consistent, i.e., P (Zi =
Zdoi ) = 1, then maximizing the MI between these frames can
be substituted by cosine similarity distance:

max
E

I
(
zi, z

do
i

)
⇐⇒ max

E

zi
‖zi‖2

· zdoi∥∥zdoi ∥∥2 (13)

D. Mutual Information Upper Bound Estimation

Denote PE(Z|X) the distribution of the encoded representa-
tion for the original signal, and PE(Z|Xdo) the representation
for the intervened signal. For convenience, we apply P (Z)
and P (Zdo) representing PE(Z|X) and PE(Z|Xdo), respec-
tively. The proposed approach to estimate MI upper bound
follows Contrastive Log-ratio Upper Bound (CLUB) [41],
which estimates MI through narrowing the gap of conditional
probabilities between positive and negative sample pairs.

Difference exists that the intervention is operated frame by
frame. For the whole do-operations of the same attribute of
a signal episode, the conditional distributions P (Z | Zdo)
should be uniformed since they are homogeneous. According
to CLUB, a certified unbiased MI upper bound estimation is
proposed with N sample pairs (zi, z

do
i )

N

i=1 and T frames for
each zi as follows:

ICCI =
1

N

1

T

N∑
i=1

T∑
τ=1

[
log p

(
ziτ | zdoiτ

)
− log p

(
zk′iτ | z

do
iτ

)]
.

(14)
Unfortunately, p(zi | zdoi ) is unknown so that a variational

approximation of the distribution is given as qθ(zi | zdoi ). Thus,
we have the variational upper bound estimation for ICCI :

IvCCI =
1

N

1

T

N∑
i=1

T∑
τ=1

[
log qθ

(
ziτ | zdoiτ

)
− log qθ

(
zk′iτ | z

do
iτ

)]
.

(15)
The prerequisite for the establishment of I(Z;Zdo) ≤

IvCCI is proved to be:

KL
(
p(zi, z

do
i )‖qθ(zi, zdoi )

)
≤ KL

(
p(zi)p(z

do
i )‖qθ(zi, zdoi )

)
,

(16)
where qθ(zi, z

do
i ) = qθ(zi | zdoi )p(zdoi ) is the varia-

tional joint distribution induced by qθ(zi | zdoi ). And
KL

(
p(zi, z

do
i )‖qθ(zi, zdoi )

)
can be minimized by maximizing

the log-likelihood of qθ
(
zi | zdoi

)
. For IvCCI , it is a cross-

frame function Lq(θq) := 1
N

1
T

∑N
i=1

∑T
τ=1 log qθ

(
ziτ | zdoiτ

)
.

A prior Gaussian distribution is provided to solve
qθ(zi | zdoi ). Here we assume that qθ(z | zdo) =

N
(
z | µ(zdo), σ2(zdo)

)
. For Give samples (zi, z

do
i )

N

i=1, we
denote µiτ = µ(zdoiτ ) and σiτ = σ(zdoiτ ). Then we have

qθ
(
zj | zdoi

)
=

1

T

T∑
τ=1

(
2πσ2

iτ

)−1/2
exp

{
− (zj − µiτ )2

2σ2
iτ

}
.

(17)

Thus the upper bound of the MI between the origin and
intervened representation can be solved while training, which
is shown in Algorithm 1 in detail.

Algorithm 1 Training Procedure for CCI
Require: D: training set
Require: α, β, λ1, λ2, N : batch size, T : number of frames

1: Initialization: θe, θd, θq
2: while not converge do
3: Sample {xi, yi}Ni=1 from D
4: zi ← fθe (xi)
5: ŷi ← gθd (zi)
6: for τ ← 1 to T do
7: xdoiτ ← do(xiτ )
8: zdoiτ ← f

(
xdoiτ | θe

)
9: Log-likelihood

Lq(θq) = 1
N

1
T

∑N
i=1

∑T
τ=1 log qθ

(
ziτ | zdoiτ

)
10: Update θ′q ← θq − α∇θqLq (θq)
11: for all i do
12: Sampling k′i uniformly from {1, 2, ..., N}
13: Uiτ = log qθ

(
ziτ | zdoiτ

)
− log qθ

(
zk′iτ | z

do
iτ

)
14: end for
15: IvCCI = 1

N
1
T

∑N
i=1

∑T
τ=1 Uiτ

16: LSeg = 1
N

∑N
i=1DCE (yi, ŷi)

17: LSim = 1
N

1
T−1

∑N
i=1

∑T
j=1,j 6=τ I

(
zij , z

do
ij

)
18: L = IvCCI − LSim
19: Update θ′e ← θe − β∇θeL (θe)
20: Update θ′d ← θd − β∇θdLSeg (θd)
21: end for
22: end while

IV. EXPERIMENTS AND ANALYSIS

In this section, we conduct comprehensive experiments
with the aim of answering the following three key questions.
Q1: What is the role of the proposed intervention approach
on each attribution of cardiovascular signals (i.e., the ablation
studies of our CCI)?
Q2: In what domain does the proposed method improve
the segmentation performance (i.e., data with physiological
variation and noise contamination )?
Q3: How does the proposed contrastive causal intervention
influences the generation process of latent representations?

A. Experiment Setups

1) Database:
a) QRS location: We use CPSC2019-Train database

[43] for training and five other independent QRS-location
benchmarks in the experiments, including CPSC2019-Test,
MIT-BIH Arrhythmia Database (MITDB) [44], QT Database
(QTDB) [45], INCART 12-lead Arrhythmia Database (IN-
CART) [46].

b) Heart sound segmentation: We selected 100 record-
ings randomly from training-a in PhysioNet/CinC Challenge
2016 [47] and slice them into 5-second samples for training.
The remaining recordings in training-a and other data sets
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including training-b˜f and hidden test sets (Test-b˜e, Test-g
and Test-i) from Challenge 2016 are utilized for testing. The
test recordings are restructured into Set-A˜H according to the
index of the data sets.

c) Noise Stress Test: Expect for the artificial intra-band
Gaussian noise, two main noise databases are utilized in
our experiments. For QRS location, MIT-BIH Noise Stress
Database [48] is chosen to test the method’s robustness when
facing the real-world ECG noise, including baseline wander
(bw), muscle (EMG) artifact (ma), and electrode motion
artifact (em). For heart sound segmentation, we focus on
the influence brought by lung sounds recorded from the
electronic stethoscope simultaneously. The lung sound samples
are extracted randomly from the database constructed in [49].

2) Pre-procession and Post-procession: The pre- and post-
procession in the experiments is designed to be plain and
unified for the backbone model training with and without CCI
proposed in this paper.

a) QRS location: Considering the energy of QRS-
complex is mainly concentrated at 8-50 Hz [50], we perform
band-pass filtering from 0.5-50 Hz as well as mean filtering on
each 10-second episode. Since the magnitudes are not uniform
across databases, standardization is conducted on ECG records
after filtering and the input episodes are re-sampled at 250 Hz.
The ultimate outputs of the segmentation model are activated
by Sigmoid function, approximated to the probability of the
corresponding time step belonging to the QRS-complex. Thus
the decision of QRS-complex is to find candidate intervals
with consecutive probabilities over a fixed threshold of 0.5.
Referring to the effective refractory period in ECGs, some of
the intervals will be excluded if they are less than 200 ms.

b) Heart sound segmentation: The majority of the fre-
quency content in S1 and S2 sounds is below 150 Hz, usually
with a peak around 50 Hz [51], and murmur is around 400 Hz.
Thus, all the heart sound recordings were downsampled into
800 Hz. Moreover, different digital stethoscopes vary widely
in response of heart sound and noise. Therefore, we adopted an
adaptive local Wiener filter proposed in [10] to suppress the in-
band noise from system and increase the amplitude resolution
of alternate segments between heart sound states. The outputs
of the models are functioned by the Softmax activation and the
the time step is assigned the state with the maximal probability.
We only determine the onsets of S1, systole, S2 and diastole
by positioning the alternating time steps.

3) Evaluation Metrics: For evaluation, Sensitivity (Se),
positive predictive rate (P+), error rate (Er) and F1 are
calculate in all databases. These metrics are defined as follows:

Se =
TP

TP + FN
× 100%, (18)

P+ =
TP

TP + FP
× 100%, (19)

Er =
FP + FN

TP + FP + FN
× 100%, (20)

F1 =
2× SE × P+

SE + P+
× 100%, (21)

where TP is true positive, FP is false positive and FN is
false negative. The standard grace period of 150 ms is used

for beat-by-beat comparison in QRS location [52] and 100 ms
for state-by-state comparison in heart sound segmentation [6].

4) Implementation Details: In this work, the Decoders for
the two tasks are fixed with two-layer dense block. For En-
coder, we compare various baseline networks with 1D convo-
lution, including DenseNet [53], TCN [54] and SE-TCN [55].
Meanwhile, a multi-branch 1D convolutional neural network
(MBCNN) architecture is adopted as the backbone method
to comprehensively analyze CCI’s performance. MBCNN can
distribute varying receptive fields into different braches as
necessary to merge the full contextual information and avoid
bloating due to long sequence inputs.

We implement all the methods on TensorFlow 2. The
training set was sliced into 5 folds for training and evaluation.
The network and the basic training settings, including the
optimizer (Adam), LSeg (cross entropy) and the batch size, are
unified for each task. The λ1 and λ2 in the loss function, Eqn.
12 are set to 0.1 and 1, respectively. For training, an early-
stopping strategy was adopted as follows: when the model
failed to achieve the best validation accuracy in 20 consecutive
epochs, the training is terminated.

B. Q1: Ablation Studies for Causal Intervention

To understand the assumed causal mechanisms and the
respective effects of interventions on Ar and Am in Eqn.5
and Eqn.11 while fitting process, we conduct ablation studies
on the two pseudo-periodic segmentation tasks, QRS-complex
location and heart sound segmentation. For the multi-lead ECG
records in the test sets, each lead is deemed as a single-lead
ECG, sharing the ground truth of QRS locations while testing.

For the both tasks, we firstly conduct ablation studies on
the attributes with the backbone Encoder, MBCNN. Then we
implement densenet, TCN and SE-TCN as different Encoders
to evaluate the adaption of CCI. The corresponding results are
shown in Table II

Fig. 4. The visualization results for QRS-complex location from the model
trained with and without CCI.

1) Main Results:
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TABLE I
ABLATION RESULTS (%) FOR QRS LOCATION WITH MBCNN AS THE

BACKBONE ENCODER. THE RESULTS ARE AVERAGE OF FIVE SUB MODELS
UNDER 5-FOLD CROSS VALIDATION AND THE BETTER RESULTS ARE

BOLD-FACED.

Database Method Se P+ F1

CPSC2019-Test
MBCNN 98.79 99.09 98.94
MBCNN+CCI (Am) 99.32 99.31 99.31
MBCNN+CCI (Ar) 99.28 99.37 99.32
MBCNN+CCI (Am & Ar) 99.26 99.45 99.35

MITDB
MBCNN 99.20 99.44 99.32
MBCNN+CCI (Am) 99.37 99.49 99.43
MBCNN+CCI (Ar) 99.41 99.50 99.45
MBCNN+CCI (Am & Ar) 99.38 99.56 99.47

INCART
MBCNN 99.35 99.13 99.24
MBCNN+CCI (Am) 99.45 99.28 99.37
MBCNN+CCI (Ar) 99.48 99.23 99.35
MBCNN+CCI (Am & Ar) 99.45 99.32 99.39

QT
MBCNN 99.93 99.90 99.92
MBCNN+CCI (Am) 99.97 99.93 99.95
MBCNN+CCI (Ar) 99.98 99.92 99.95
MBCNN+CCI (Am & Ar) 99.95 99.95 99.95

TABLE II
THE F1 RESULTS OF COMMON NETWORKS USED AS ENCODERS WITH AND

WITHOUT CCI FOR QRS LOCATION. THE BETTER RESULTS ARE
BOLD-FACED.

Database CPSC2019-Test MITDB INCART QT
DenseNet 98.86 99.22 99.10 99.80

DenseNet+CCI 99.11 99.36 99.28 99.93
TCN 99.04 99.44 99.22 99.85

TCN+CCI 99.20 99.47 99.37 99.91
SE-TCN 99.09 99.47 99.36 99.88

SE-TCN+CCI 99.31 99.51 99.44 99.93

a) Results for QRS location: Table I represents the
performance of the same model training with CCI on each
attribute (Ar or Am) and both attributes. Here we evaluated
the proposed assumption on the four independent and clas-
sic databases, CPSC2019-Test, MITDB, INCART and QT.
According to the results of the ablation study, intervention
on the morphology attribute (Am) and the rhythm attribute
(Ar) in the latent space is effective and superimposed, which
confirms our assumption on SCM with abstract attributes.
We see steady gains when training model with CCI. The
backbone model has reached a bottleneck in performance on
most databases, yet for long-term ECGs, improvement of 0.1%
on F1 may be equivalent to reducing hundreds or thousands
of FP s and FNs. This can immensely alleviate the workload
of cardiologists and reduce the cumulative burden of errors
in subsequent diagnostics. The improvement of performance
brought by CCI is mainly reflected in complex ECGs.

We show four typical examples with severe pathological
variation and noise contamination in Fig. 5. It is apparent to
see that the model trained with CCI can significantly reduce
errors when recognizing variant QRS-complex or QRSized
noise. Meanwhile, CCI can also weaken the response to
the repeated P wave pattern for ECGs with severe auriculo-
ventricular block, in which the relative position of the P wave
and QRS-complex is unfixed.

Table II summarizes the performance gain brought by CCI
for different Encoders for QRS location. From these results, it

can be seen that CCI is effective for the common network
architectures, which is consistent with the tendency when
using MBCNN as the Encoder. However, we also noticed that
the performance gain is not sufficient when the Encoder is not
ideally fitted.

TABLE III
ABLATION RESULTS (%) FOR HEART SOUND SEGMENTATION WITH

MBCNN AS THE BACKBONE ENCODER. THE RESULTS ARE AVERAGE OF
FIVE SUB MODELS UNDER 5-FOLD CROSS VALIDATION AND THE BETTER

RESULTS ARE BOLD-FACED.

Database Method Se P+ F1

Set-A
MBCNN 95.76 94.39 95.07
MBCNN+CCI (Am) 96.24 95.71 95.97
MBCNN+CCI (Ar) 95.92 95.59 95.76
MBCNN+CCI (Am & Ar) 96.10 95.96 96.03

Set-B
MBCNN 87.91 88.28 88.09
MBCNN+CCI (Am) 89.32 90.22 89.77
MBCNN+CCI (Ar) 88.58 89.99 89.28
MBCNN+CCI (Am & Ar) 89.20 90.72 89.96

Set-C
MBCNN 91.39 89.41 90.39
MBCNN+CCI (Am) 92.10 91.03 91.56
MBCNN+CCI (Ar) 91.86 91.03 91.45
MBCNN+CCI (Am & Ar) 92.37 91.72 92.04

Set-D
MBCNN 95.80 94.20 94.99
MBCNN+CCI (Am) 96.07 94.93 95.49
MBCNN+CCI (Ar) 95.94 94.89 95.41
MBCNN+CCI (Am & Ar) 95.93 94.99 95.45

Set-E
MBCNN 91.45 94.28 92.84
MBCNN+CCI (Am) 92.76 95.62 94.17
MBCNN+CCI (Ar) 92.57 95.61 94.07
MBCNN+CCI (Am & Ar) 92.65 96.11 94.34

Set-F
MBCNN 84.90 83.78 84.33
MBCNN+CCI (Am) 84.13 85.74 84.93
MBCNN+CCI (Ar) 85.38 87.40 86.38
MBCNN+CCI (Am & Ar) 85.58 88.58 87.06

Set-G
MBCNN 89.66 88.93 89.29
MBCNN+CCI (Am) 90.11 90.71 90.41
MBCNN+CCI (Ar) 89.51 90.26 89.88
MBCNN+CCI (Am & Ar) 89.92 91.30 90.60

Set-H
MBCNN 92.29 90.14 92.17
MBCNN+CCI (Am) 94.15 91.54 92.82
MBCNN+CCI (Ar) 93.41 91.66 92.53
MBCNN+CCI (Am & Ar) 94.36 92.36 93.35

b) Results of heart sound segmentation: We reports the
evaluation metrics of the model training with and without CCI
on databases from PhysioNet/CinC Challenge 2016 in Table
III. Similar observations to QRS location can be obtained. For
heart sound segmentation, the improvement of F1 induced by
CCI is more significant. On all the sub databases, the model
training with CCI outperforms the backbone method by at least
1.0% on most databases, even 2.73% on Set-F. Moreover, CCI
causes a more consistent F1 performance when segmenting
different states. Also we can conclude that on the whole
sub databases, the performance is further improved when
we implement CCI with both attributes, Ar and Am expect
for Set-D. Such as on Set-F, intervention on both attributes
improves the F1 by 0.5%˜2% compared to intervention on Ar
and Am solely.
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(a) Baseline wander (b) Electronic motion

(c) Muscle artifact (d) Intra-band Gaussian noise

Fig. 5. The results of noise stress test (nst) for CCI in QRS location task.

2) Q2: Test with SNR controllered samples: In this section,
we mainly analyze the changes brought by CCI as a constraint
while training for the robustness of segmenting cardiovascular
signals. A noise stress test with typical noises of ambulatory
ECG records for QRS location and lung sounds for heart
sound segmentation is conducted, also with different degrees
of intra-band Gaussian noise for both tasks. We tested all
the sub-models from 5-fold evaluation under different noise
types and signal-to-noise ratios (SNR), and calculated the
mean and standard deviation of the corresponding error rates.
Test examples were generated from database CPSC2019-Test
for QRS location and Training-a (other than the records for
training) for heart sound segmentation by adding different
types of noise globally with controlled SNR.

a) Main Results: Fig. 5 and Fig. 6 shows the error rates
at different SNR for the segmentation model training with
and without CCI. It is evident that the model training with
CCI has the highest performance in all noise levels. CCI
also results in the slowest performance decay compared to
the backbone method. Among all the noise categories, muscle
artifact (ma) and intra-band Gaussian noise have the greatest
influence on QRS location performance. Especially intra-band
Gaussian noise causes nearly 50% increase in Er at 0dB
SNR. Regardless of noise type, the model training with CCI
maintains the lowest Er and the most stable performance
in the comparison of backbone method. Expect for intra-
band Gaussian noise, CCI steadily reduces the Er by 2%-5%
while noise stress testing. Since intra-band Gaussian noise is
more likely to induce morphological interference in ECGs and
heart sounds, CCI only reduces the Er by about 1%. This
also illustrates the importance of Am in the segmentation of
cardiovascular signals.

(a) Lung sound (b) Intra-band Gaussian noise

Fig. 6. The results of noise stress test (nst) for CCI in heart sound
segmentation task.

C. Q3: Visualization of Feature Density

According to the previous assumption, CCI should eliminate
the implicit statistical bias brought by the single attribute and
lead to more objective representations. For the conventional
training, Am and Ar may confounding the Encoder in dis-
tilling the intrinsic factors for state discrimination. Therefore,
the feature representation learned with CCI ought to be more
concentrated. To empirically verify this, we compress the
deep features encoded by MBCNN to the unit hypersphere
to visualize the latent distribution of different states. The
representations of each state are grouped by frames with
interval of 16ms for QRS location and 100ms for heart sound
segmentation. A Gaussian kernel with bandwidth estimated by
Scott’s Rule [56] is applied to estimate the probability density
function of the generated representations after dimensional-
ity reduction with principle component analysis (PCA) and
normalization. Darker areas have more concentrated features,
and if the feature space (the 2-dim sphere) is covered by dark
areas, it has more diversely placed features.

The visualization results are shown in Fig. 7 and Fig.
8. It can be observed that, with CCI, the deep features of
different states form more tight and concentrated clusters.
Intuitively, they are potentially more separable from each
other. In contrast, features learned without CCI are distributed
in clusters that have more overlapped parts. The evident dis-
crepancy occurs in non-QRS representations for QRS location
and S2 representations for heart sound segmentation. This
demonstrate why CCI improves the segmentation performance
to a certain extent.

V. DISCUSSION AND CONCLUSION

In this work, we introduce a contrastive causal interven-
tion scheme (CCI) for learning semantic representations of
cardiovascular signals. CCI is a frame-level constraint for the
training process to eliminate the implicit confounding factors
induced by Am and Ar. We show that training with CCI can
effectively improve the segmentation performance and adapt
to other independent databases and various networks. Further-
more, the proposed method is considerably efficient to train
a segmentation model generalizing to noisy cardiovascular
signals. According to the visualization results of the latent
distribution encoded with and without CCI, it is sensible to



9

(a) Representations generated by MBCNN trained without CCI.

(b) Representations generated by MBCNN trained with CCI.

Fig. 7. Representation diversity of training set for QRS-complex location in R2 with Gaussian kernel density estimation (KDE).

(a) Representations generated by MBCNN trained without CCI.

(b) Representations generated by MBCNN trained with CCI.

Fig. 8. Representation diversity of training set for heart sound segmentation in R2 with Gaussian kernel density estimation (KDE).

attribute the performance gain to a more separable and state-
concentrated deep feature space brought by CCI.

Contrastive learning has been out-standingly successful for
CV and NLP, especially in self-supervised tasks. However,
the existing work of contrastive learning in CV and NLP
seems inappropriate to be applied for cardiovascular signals.
For example, in CV and NLP, masking a part of the data and
aligning the representation of the masked area with the original
representation is a common framework. Yet for event-based
analysis of cardiovascular signals, the disappearance of heart-

beats may correspond to cardiac arrest, not a noise masking.
In this work, we propose a contrastive learning framework
based on the causal attributes of cardiovascular signals, and
summarize several suggestions for further exploring.

1) If it is effective to construct a causal graph of the
inner attributes of the data, how can we explore the in-
trinsic causality of more complex task with cardiovascular
signals? Our assumption of causal intervention on rhythm
and morphology attribution was based on a prior intuition,
corresponding to the cognition when we identify each state in a
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cardiac cycle. However, except for semantic segmentation, the
classification of cardiovascular signals requires the abstracted
causal mechanism more detailed. One possible direction is to
establish the preliminary research on the binary classification
task, like diagnosis of atrial fibrillation. Other attribute such
as Markov chain of state transition is also a critical causal
dependency when we doing deep representation learning for
cardiovascular signals.

2) Excluding the interference of confounders in a spe-
cific task, should a better concentrated representation be
obtained? In [57], the researchers have presented a connection
between contrastive loss and the alignment and uniformity
properties. The analysis is set in image classification and
unsupervised learning. In the visualization results of this work,
we have found out that when utilizing CCI in training process,
the generated representations of different states are more
aligned, less uniformed. As the organizer of CPSC2019 and
the trimmer of PhysioNet/CinC Challenge 2016, we under-
stand that the annotations of the training data from CPSC2019
and Training-a can be 100% confident through contextual
information. Therefore, it is reasonable to have more concen-
trated representations when we reduce the confounding impact.
Nonetheless, the cardiovascular signals own low frequency
band and are always highly uncertain while testing due to
variation and noise contamination. The research of whether
the introduction of representation uniformity can measure and
distinguish the uncertain state is a worthy investment.
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