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Affinity Feature Strengthening for Accurate,
Complete and Robust Vessel Segmentation

Tianyi Shi, Xiaohuan Ding, Wei Zhou, Feng Pan, Zengqiang Yan, Xiang Bai and Xin Yang, Member, IEEE

Abstract— Vessel segmentation is crucial in many med-
ical image applications, such as detecting coronary
stenoses, retinal vessel diseases and brain aneurysms.
However, achieving high pixel-wise accuracy, complete
topology structure and robustness to various contrast vari-
ations are critical and challenging, and most existing meth-
ods focus only on achieving one or two of these aspects.
In this paper, we present a novel approach, the affinity
feature strengthening network (AFN), which jointly mod-
els geometry and refines pixel-wise segmentation features
using a contrast-insensitive, multiscale affinity approach.
Specifically, we compute a multiscale affinity field for each
pixel, capturing its semantic relationships with neighbor-
ing pixels in the predicted mask image. This field repre-
sents the local geometry of vessel segments of different
sizes, allowing us to learn spatial- and scale-aware adaptive
weights to strengthen vessel features. We evaluate our
AFN on four different types of vascular datasets: X-ray
angiography coronary vessel dataset (XCAD), portal vein
dataset (PV), digital subtraction angiography cerebrovascu-
lar vessel dataset (DSA) and retinal vessel dataset (DRIVE).
Extensive experimental results demonstrate that our AFN
outperforms the state-of-the-art methods in terms of both
higher accuracy and topological metrics, while also being
more robust to various contrast changes. The source code
of this work is available at https://github.com/TY-Shi/AFN.

Index Terms— affinity feature learning, vessel segmen-
tation, topology-preserving, contrast-insensitive, general-
izability

I. INTRODUCTION

VESSEL segmentation, which aims to obtain both accu-
rate delineations of vessel boundaries (i.e., pixel-wise

accurate) and complete vascular structures (i.e., topology-
preserving), is critical for many medical applications. For
instance, accurately delineating vessel boundaries from an-
giography images can help detect coronary stenoses [2] and
cerebral aneurysms [3], [4], and hemodynamic analysis [5],
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Fig. 1. (a) original images (columns 1 to 3 are XCAD images with
varying contrast, and the last column is retinal vessel images). (b)-(d)
segmentation result of the state-of-the-art method [1], our method and
ground truth respectively. Our method produces more accurate pixel-
level results, complete topology structure and is insensitive to contrast
variations.

and Alzheimer’s disease diagnosis [6], and generating com-
putational anatomical [7], and assist interventional operation
planning [8]. Obtaining a complete topology of vessels from
retinal images can facilitate early detection of several retinal
diseases, such as diabetic retinopathy [9] and age-related
macular degeneration [10]. Meanwhile, given large variations
present in medical images due to different acquisition equip-
ment and imaging procedures, we desire our method can be
invariant to large contrast changes to ensure consistently high
performance for a wide range of medical images.

Despite substantial research in the literature, concur-
rently achieving pixel-wise accurate, topology-preserving and
contrast-insensitive vessel segmentation remains highly chal-
lenging due to highly complex vascular structures, blurred
boundaries in particular for thin vessels and large quality
variations in practical medical images, as shown in Fig. 1.
There are several studies [1], [11]–[15] aiming at preserving
the complete topology of curvilinear structures. For instance,
Topoloss [11] designs an explicit topology loss based on holes
and connected components. However, Topoloss optimizes only
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limited pixels for topology and thus is sensitive to complex
backgrounds. Mosinska et al. [12] assume features produced
by pre-trained VGG naturally encode topology information.
Such an assumption may not hold in practice and thus greatly
limits performance. Tan et al. [15] propose a skeleton fitting
module to capture and preserve the morphology of vessels.
However, they only use skeletons as additional supervision
constraints which may fail to derive explicit geometric struc-
ture representations for vessels. JTFN [1] designs a two-stream
network to jointly learn boundary detection and semantic
segmentation. The learned boundary features are treated as
geometric constraints to refine the vessel features of the
semantic segmentation stream. However, geometric structures
such as boundaries and skeletons lack clear semantic informa-
tion, which limits the performance improvement for obtaining
complete topology.

Most existing vessel segmentation methods [16]–[20], [20]–
[22] adopt convolutional neural networks (CNNs) which uti-
lize pixel-wise loss functions [23] to learn multiscale features
for vessels of different sizes. As the number of pixels for
thin vessels is typically much smaller than that of thick ones,
learning a CNN via pixel-wise losses inevitably biases to
accurately segmenting thick vessels yet ignoring thin vessels,
degrading the completeness of the vascular topology. To
address this issue, Yan et al. [24] propose a three-stage deep
learning model to learn distinctive features for thick and thin
vessels separately at different stages. The segmentation results
of thick and thin vessels are then merged at the last stage.
Several other researchers [14], [25] propose to train a CNN
via both pixel-wise and topology-wise losses. For instance,
Yan et al. [25] train a CNN using both the segment-level
and pixel-wise losses to balance the segmentation performance
of thick and thin vessels. Shit et al. [14] introduce the
centerline dice loss based on center-line matching to improve
topological completeness. However, the above methods cannot
concurrently handle topology for vessels of different scales.
Moreover, vessel features they learned purely rely on image
intensities and in turn could be sensitive to contrast changes.

To improve the robustness of segmentation models to il-
lumination and/or contrast changes, which widely exist in
medical images, existing methods exploit data augmentation
[26] or some dedicated approaches. For instance, in [27] the
authors propose a convex-regional-based gradient model which
computes the differences between the intensity summation in
the symmetrical pixel intervals. Their method can reduce the
sensitivity to contrast by constructing relative differences be-
tween pixel intensities. Shi et al. [28] design a pre-processing
approach that converts image intensities to relative pixel
difference representations to counteract contrast changes. To
sum up, to confront illumination and contrast changes, it is
inspiring to study how to utilize relative information among
pixels and reduce the reliance on absolute intensities to model
topological structures and refine vessel features.

In this paper, we propose an affinity feature strengthening
network (AFN), as shown in Fig. 2, towards a vessel seg-
mentation model that can concurrently achieve high pixel-
level accuracy, complete topology and robustness to contrast
changes. The core of our AFN is a novel supervised multi-

scale affinity feature strengthening module (SMAFS) which
learns a set of affinity fields from the predicted segmentation
mask to capture the semantic relations among pixels. Such
semantic relationships can well reflect the geometric structure
(as shown in Fig. 3) and in turn implicitly model the topol-
ogy of a vascular tree. The affinity fields are then used to
strengthen and refine segmentation-related image features for
vessels with different sizes. As the ground-truth affinity field
is only available for the full-size image, we learn the full-size
affinity field explicitly under the guidance of an affinity cosine
distance (ACD) loss between the predicted multi-scale affinity
fields and its ground truth. For affinity fields of intermediate
layers, we learn the affinity implicitly via the unsupervised
affinity feature strengthening module (UAFS). To encode pixel
relations for vessels of different sizes, we calculate multi-scale
affinity fields and establish the affinity relationship at multiple
layers. That is, we compute affinity fields of pixels within
different-scales and learn spatial- and scale-aware adaptive
weights for affinity fields to better enhance vessel features
at different scales. As the affinity considers only the relative
classification labels of neighboring pixels, it captures the
intrinsic geometric and contextual information of an object
and is robust to contrast variations.

We evaluate our method on two public datasets, i.e., the
X-ray angiography coronary vessel dataset (XACD) [29], the
retinal vessel dataset (DRIVE) [30], and two in-house datasets,
i.e., a digital subtraction angiography cerebrovascular vessel
dataset (DSA) and a portal vein dataset (PV). Extensive
experimental results demonstrate the superiority of our AFN
to the state-of-the-art methods [1], [11], [31], [32].

II. RELATED WORKS

A. Vessel segmentation

The goal of vessel segmentation is to obtain both accu-
rate delineations of vessel boundaries and complete vascular
structures. Towards this goal, existing methods can be roughly
classified into three classes: 1) semantic segmentation which
focuses on achieving high pixel-level accuracy, 2) topology
preserving methods which aim to obtain complete topology
and 3) hybrid methods.

Methods rely on semantic segmentation mainly adopt a U-
Net structure as the backbone and focus on integrating context
features [17], [19], [31], [33]–[35] and/or feature enhancement
[16], [18], [36] methods to improve their ability for capturing
representative tubular structure of vessels. Specifically, [17],
[19], [34], [37], [38] extract context semantic information from
larger receptive fields (e.g., dilated convolution) and learn
different position/region pixels’ correlation and difference.
[17], [19] apply various dilated convolutions to enlarge fields.
In [34], authors exploit a non-local-like module to obtain a
global attention map that models the relationship among all
pixels for vessel segmentation. CS2Net [31], [33] introduces
spatial and channel attention to integrate local features with
their global dependencies. Yan et al. [24] propose a deep
learning model to learn discriminative features for different
size vessel regions, and utilize joint segment-level and pixel-
wise losses [25] to reduce the imbalanced pixel ratio between
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thick and thin vessels. Feature enhancement methods utilize
various kinds of geometric structural information. [16] learns
centerline-level segmentation map to represent complex geo-
metric structures for vessel feature enhancement. [18] and [36]
propose to extract boundaries as structure priors to improve
the representation ability of vessel features. However, these
methods primarily focus on pixel-wise prediction accuracy
and are intrinsically topology-agnostic. It is inspiring to study
better geometric structure information to effectively model the
topology of vessels for segmentation feature enhancement.

Topology-preserving methods aim to achieve high com-
pleteness of vascular trees. Existing topology-preserving meth-
ods can be categorized into two groups: implicit [12], [14],
[39] and explicit [11], [13], [22]. Mosinska et al. [12] rely
on the pre-trained VGG to implicitly encode the topology of
objects, resulting in limited performance improvement. Gur et
al. [39] integrate the active contour model and a learning-based
model to get the vessel structure. The authors in [14] propose
a centerline loss which measures the similarity between the
predicted vessel centerlines and the ground truth centerlines
to implicitly preserve topology. In Topoloss [11], the authors
learn the local topology explicitly based on detected holes
and connected components. Damseh et al. [22] propose a ge-
ometry contraction algorithm for segmentation result as post-
processing to refine the topology structure. In this work, we
aim to model topology for feature enhancement yet improves
the robustness of the topology-preserving solution to contrast
variations.

In the literature, several methods [1], [15] focus on achiev-
ing both pixel-level and topology-level accuracy. For instance,
JTFN [1] develops a two-stream network that leverages a
boundary detection branch to establish the relationship be-
tween topology and boundary connectivity and then uses the
topology information to enhance segmentation-related fea-
tures. Tan et al. [15] propose a skeleton fitting module to
capture the morphology of the vessels and utilizes such mor-
phological information as additional constraints in training.
Motivated by these methods, in this work we try to construct
relationships between affinity fields and topology, and utilize
affinity fields to enhance segmentation-related features.

B. Affinity Field Feature learning

Affinity fields, explicitly encoding the semantic relation-
ships among neighboring pixels (i.e. whether or not a pixel
is from the same category with its neighboring pixels), can
implicitly represent the local topology of objects [40], [41]
as shown in Fig. 3. Compared to existing methods which
encode topology using skeletons [15] and boundaries [1], [18],
the affinity fields rely on intrinsic semantic label relationship
instead of the absolute pixel intensity and thus are insensitive
to illumination/contrast changes. In addition, affinity fields
which encode semantic guidance are more instructive than the
attention methods [16], [31], [33], [36], [42]–[44] for feature
enhancement. In general semantic segmentation tasks, existing
methods based on affinity field feature learning either establish
the semantic relationship between pixels to refine segmentation
results [40], [45]–[47], or introduce additional loss constraints

[32], [48]. For instance, [45] utilizes a learned affinity pyramid
to gradually refine the segmentation results from coarse to fine.
AffinityNet [47] considers pixel-wise affinity to learn compre-
hensive semantic information for refining initial segmentation
pseudo labels. AFA [40] also learns affinity fields to refine
the initial pseudo labels for segmentation with Transformers.
Several other researchers [32], [48] characterize the geometric
structures by affinity field loss constraints. For example, AAF
[32] proposes an adaptive affinity field loss function (AAF)
to capture the semantic relations between neighboring pixels
in the label space. Zhang et al. [48] further improve AAF
with different region weights to learn reliable relationships
for weakly supervised semantic segmentation. Different from
existing methods which use affinity fields to refine or constrain
segmentation results, our AFN leverages affinity fields to
enhance intermediate features at different layers in the feature
space. We demonstrate that our AFN can make full use
of the affinity fields to establish semantic correlation and
encode geometric structure between pixel features, and in
turn achieve promising performance in terms of pixel-level
accuracy, topological completeness, and robustness to contrast
changes.

C. Contrast-insensitive feature learning

To improve the robustness of segmentation models to con-
trast changes, existing methods mainly utilize data augmen-
tation [26], contrast-invariant handcrafted features [27], [49],
and image preprocessing approaches [28]. Sun et al. [28] pro-
pose two new data augmentation modules, i.e., channel-wise
random gamma correction and random vessel augmentation,
to improve the robustness of vessel segmentation. Li et al.
[27] propose a new convex-regional-based gradient feature
to describe the differences between the intensity summation
in the symmetrical intervals to reduce the contrast sensitiv-
ity in a near-infrared image. [49] combines several kinds
of handcrafted features (intensity, orientation and curvature,
etc.) and U-Net regression prediction results to improve the
segmentation robustness. LIOT [28] proposes a local intensity
order transformation approach to improve the generalizability.
Inspire by these methods, we model the topology information
without reliance on raw intensities to improve the robustness
to contrast variations.

III. METHOD

In this section, we present in detail the AFN architecture,
which consists of a supervised multi-scale affinity feature
strengthening (SMAFS) module and three unsupervised affin-
ity feature strengthening (UAFS) modules, as illustrated in
Fig. 2. Details of each module are discussed in the following.

A. Overview

AFN is designed in a U-Net like shape, where the en-
coder is defined as [1] consisting of the first five layers of
VGG16 [50] to capture five hierarchical CNN features for an
input image and the decoder consisting of a four-layer two-
branch structure to reconstruct pixel-wise semantic features
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Fig. 2. The pipeline of Affinity Feature Strengthening Network (AFN). (a) The overview of AFN. (b) The process of multi-scale affinity field
enhancement.

and affinity fields respectively as shown in Fig. 2(a). Between
the segmentation and affinity branches, we introduce one
SMAFS module and three UAFS modules to learn the affinity
relationship of neighboring pixels and then utilize the affinity
information as geometric and context guidance to enhance the
segmentation features. To learn different size spatial structures
of a vascular tree, we propose SMAFS to adapt various vessels
and backgrounds by learning multi-scale full-size affinity
fields explicitly. In this way, vessel segments of different
scales can be well captured by SMAFS. In addition, SMAFS
also enhances the segmentation features under affinity fields
guidance to encode multi-scale structural relations for better
topology-level performance. As the affinity field ground truth
of features is not available due to the inability to accurately
obtain the affinity relationship between the features, we further
propose UAFS to learn affinity fields implicitly at intermediate
layers. SMAFS and UAFS both operate on the segmentation
relations instead of the absolute pixel’s features to capture the
intrinsic semantic relationships regardless of visual appearance
variations. Therefore, SMAFS and UAFS can better preserve
the geometric structure and achieve high pixel-level accuracy
while being robust to contrast variations. In addition, to
mitigate the spatial loss of encoders arising from pooling
operations, we add skip connections between each encoding
and the corresponding decoding layers. In this step, we follow
[1] to embed a gated attentive unit in each skip connection to
integrate both context- and spatial-aware predictions for better
feature fusion and refinement.

B. Supervised Multi-scale Affinity Feature Strengthening

Affinity fields capture the relationship between two pixels
belonging to the same category, providing a pixel-centric
description of semantic relations in the space. Prior work in
[32], [40], [41] has demonstrated the effectiveness of affinity
fields in characterizing semantic label correlations, which can
be integrated into learning as geometric and context guidance.

However, a single-scale affinity field which considers only
semantic relationships among pixels within a single fixed range
cannot fit all vessel structures. To handle vessels of different
sizes (e.g., thick vessels and thin vessels), we calculate multi-
scale affinity fields to strengthen the segmentation features for
different-sized vessels and backgrounds. Specifically, multi-
scale affinity fields are defined as follows. Given a pixel x
in the semantic label image Gs ∈ RH×W , N (x) is the set
of the eight neighboring locations of x. Let xl denote one of
the eight neighboring pixels in N (x), i.e., at the left, right,
top, bottom, left top, left bottom, right top and right bottom
location l of the pixel x as shown the by red and blue pixels in
Fig. 3. The red grids indicate pixels that belong to the same
category as the central pixel, while the blue grids represent
pixels that belong to a different category. From Fig. 3, we
could observe that a small-scale affinity field cannot cover
the thick vessels, and the large-scale affinity field cannot well
represent the adjacent semantic relationship of thin vessels
well. Comparatively, jointly utilizing multi-scale affinity fields
can represent pixel-centric descriptions of semantic relations at
different scales effectively. Thus, we set three different affinity
field sizes, including 3×3, 9×9, 15×15 with the corresponding
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adaptive weights for each scale affinity field per pixel, for
different object sizes as shown in Fig. 2(a). We denote the
ground-true affinity fields GA(x) =

(
g1x, · · · , gNx

)
as the

corresponding N relative location affinity vectors of x as
shown in Fig. 3. If pixels x and xl belong to the same category,
we define the direction of l affinity glx as 1. Then, the affinity
glx for each relative location l of x is given by Eq. (1)

glx =

{
1 Gs(x)=Gs(xl).

0 otherwise.
(1)

For explicit affinity field learning, we utilize a binary cross-
entropy loss (BCE) and propose an affinity field cosine dis-
tance (ACD) loss to produce a clean affinity field, defined as:

LACD (GA) = 1−
1

|GA|
∑

x∈GA

YA(x) ·GA(x)

‖YA(x)‖ ‖GA(x)‖
(2)

LBCE(Gs) =−
1

|Gs|
∑

x∈Gs

[Gs(x) · log (Ys(x))]

+ (1−Gs(x)) · log (1−Ys(x))

(3)

LBCE(GA) =−
1

|GA|
∑

x∈GA

[GA(x) · log (YA(x))]

+ (1−GA(x)) · log (1−YA(x))

(4)

Lt = LBCE (Ys,Gs) + LBCE (YA,GA) + λbLACD (YA,GA) (5)

where Ys(x) and Gs(x) are the predicted segmentation map
and the segmentation ground truth of x respectively. And we
denote the predicted affinity fields YA(x) =

(
y1x, · · · , yNx

)
as

the corresponding N relative location predicted affinity vectors
of x. |∗| is the size measure, ||∗|| is the magnitude of the vector,
and λb is a balancing hyper-parameter. Minimizing LACD

encourages the model to extract better multi-scale semantic
relations for different-size vessels and backgrounds.

For feature enhancement as shown in Fig. 2(b), we first cal-
culate the mean predicted affinity field µ of the corresponding
N relative location predicted affinity vectors

(
y1x, · · · , yNx

)
of

x, as a reference for segmentation feature selection in Fig. 2.
The mean affinity field represents the overall state of the
semantic relations of its neighbors, defined as

µ(x) =
1

N

∑
l∈N (x)

ylx (6)

where N is the total number of neighbors of x. Under the
guidance of the mean affinity field µ, any relative position l
affinity ylx greater than µ would be more likely to have similar
semantic information with x. Then, feature strengthening is
accomplished by grouping/selecting the features that are more
likely to be the same category. To this end, we denote the
similar category location affinity field DA(x) =

(
d1x, · · · , dNx

)
as the corresponding N relative location affinity vectors of x
by comparing each of its eight-channel location affinity fields
ylx and the mean affinity field µ to select the positions with
similar category as x, defined as

dlx =

{
1 ylx − µ(x) ≥ 0

0 otherwise
(7)

Fig. 3. Different scale affinity fields for vessels of different sizes. The
green rectangular blocks indicate different local zoom regions. The red
grid indicates the pixel is the same category with the central pixel, and
the blue grid indicates the pixel is the different category with the central
pixel. The second row shows the ground truth, 13×13, 5×5, and 3×3
scale affinity fields in the right direction respectively (These three scales
are just for easy affinity field visualization-the actual scales of affinity
fields affinity applied to XCAD is 3×3, 9×9, 15×15).

Given the selected positions l, the segmentation features
fseg(x) of x are enhanced according to

fs(x) =
∑
M∈S

∑
l∈N(x)

WM (x) · dlx · fseg (xl) + fseg(x) (8)

where fseg(xl) represents the segmentation features corre-
sponding to l, WM (x) represents the multi-scale adaptive
weights of different S and S denotes set of scales(e.g. 3×3,
9×9, 15×15). For these three different affinity field sizes, N
is set as 24 to include more affinity relative location. WM (x)
are weights learned by one convolution layer after the affinity
decoder. We utilize WM together with the multi-scale affinity
fields, to capture the semantic relationships with cross-scale
neighbors. According to the exemplar results of WM in Fig. 4,
the 3×3 weight map focuses more on the boundary and detailed
information as these regions have stronger affinity associations
with their neighboring regions. As the scale of the affinity
field increases, more large-scale structural information would
be taken into consideration. As a result, the 9×9 weight map
focuses on more vessel main branches and the 15×15 weight
map contains more global information for each pixel. Given
vessels with various thicknesses, jointly utilizing the multi-
scale affinity relationships as context and geometric guidance
surely is helpful.

It is noteworthy that SMAFS relies on the intrinsic semantic
label relationship instead of the absolute pixel feature intensity,
which is more robust to visual appearance variations across
images.

C. Unsupervised Affinity Feature Strengthening
Though the small objects have been claimed to own low

responses at lower resolution features [45], enforcing unsu-
pervised affinity feature strengthening (UAFS) may also be
helpful. As the affinity field ground truth corresponding to the
down-sampled features is unavailable, UAFS is deployed to
predict affinity relationships among pixels in different layers
for feature enhancement in an implicit way. In this way, UAFS
enhances segmentation features in different resolution features
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Fig. 4. Different scale weights WM for feature strengthening learned
by SMAFS on the XCAD dataset.

which would further establish affinity relationships among
neighboring pixels for feature enhancement of deeper layers.

Compared to SMAFS, UAFS builds similar category loca-
tion affinity field dlx only in the 3×3 scale to fuse the segmen-
tation features fseg(x) without affinity field supervision as in
Eq. (9).

fs(x) =
∑

l∈N(x)

dlx · fseg (xl) + fseg(x) (9)

According to Eq. (9), UAFS utilizes neighboring pixel
features and directly predicts a single-scale affinity field ylx
without supervision to strengthen segmentation features. For
the calculation of dlx in UAFS, we utilize ylx to construct
dlx in the same way as SMAFS in Eqs. (6) and (7). This
establishes semantic relationships of neighboring pixels for
encoding richer context and geometric information. In this
way, UAFS can combine both semantic features and affinity
information in deeper layers of the network to better encode
more geometric information and establish richer relationships
among features that are more robust to contrast change.

IV. EXPERIMENTS

A. Datasets

XCAD: An X-ray angiography coronary artery disease
(XCAD) dataset which include coronary angiography images
obtained during stent placement using a General Electric
Innova IGS 520 system [29]. Each image has a resolution of
512×512 pixels with one channel. This dataset contains 126
independent coronary angiograms with vessel segmentation
maps annotated by experienced radiologists, which are divided
into 84 training images and 42 test images with vessel segmen-
tation maps annotated by experienced radiologists. Low-power
X-ray and contrast agent doses are used during X-ray coronary
angiography, leading to noisy and low-contrast coronary an-
giograms [29]. In our experiment, we utilize artificial contrast

perturbations to evaluate the robustness of our method against
contrast variations.

DRIVE: The DRIVE dataset [30] is a retinal vessel seg-
mentation dataset consisting of 40 color retinal images with
the same resolution as 565×584 pixels. Following [1], we set
20 images for training and 20 images for testing.

Portal Vein: Portal vein vessel dataset (PV) is an in-
house dataset containing 32 patient cases. All these cases
were captured by a 3.0T MRI scanner (Philips, Netherlands
standardized protocols, using the following parameters: voxel
size, 1.75×1.75×3.5; Reconstruction matrix, 352; flip angle,
10 deg). These MRI images have different resolutions varying
from 352×352 to 448×448 pixels. For a fair evaluation,
we randomly divided the dataset into 24 cases for training
and 8 cases for testing. The whole dataset is annotated by
experienced radiologists.

DSA vessel: This dataset is an in-house dataset consisting
of 20 slices with the same resolution of 512×512 pixels
from different phases in digital subtraction angiography cere-
brovascular vessel acquired with a biplane angiography suite
(Artis zee, Siemens, Forchheim). The annotation process of
this dataset is time-consuming and extremely laborious. Thus,
this dataset is only annotated with the clearest vessel by
experienced radiologists. Due to the contrast variations of DSA
images from different frames, it can be used to evaluate the
robustness of different methods against contrast change across
images.

The in-house PV and DSA datasets have been reviewed and
approved by the institutional review boards of the Medical
Ethics Committee of the Union Hospital, Tongji Medical
College, Huazhong University of Science and Technology.
All the centers registered and approved the studies labeled
as Project Number 2022 (0311).

B. Implementation Details

Evaluation protocol: In order to make a fair comparison
as [1] to evaluate both the topology-level and pixel-level
performance for vessel segmentation, we choose two kinds
of metrics including: F1 score, Precision and Recall for
pixel-level evaluation, and the Correctness, Completeness and
Quality metrics in [51] for topology-level evaluation which
measures the similarity between the predicted skeletons and
the ground truth within a threshold (more detail shown in
Appendix. A). Here, Correctness and Completeness can be
regarded as the Precision and Recall metrics for skeleton
similarity while Quality is a combination of Completeness and
Correctness defined as

Quality =
Complete. · Correct.

Complete.− Complete. · Correct.+Correct.
(10)

In our experiments, the threshold is set to 1 for the DRIVE
dataset and 2 for other datasets.

Training details: Images are first augmented via horizontal
flipping, random brightness and contrast range from 1.0 to 2.1,
random saturation range from 0.5 to 1.5, and random rotation
with 90°, 180°, and 270°, and then cropped to 256×256 pixels
for training. All the networks were trained using an Adam
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Fig. 5. Exemplar segmentation results of AFN and alternatives. Green pixels: TPs; Red pixels: FNs; Blue pixels: FPs. The yellow box indicates the
local zoom area.

optimizer with an initial learning rate of 10−3 with a weight
decay of 5×10−4 and a batch size of 2 for 2000 epochs. The
hyper-parameter λb in Eq. (5) is set as 5. The affinity field
scale lists are [3,5,7] for DRIVE and [3,9,15] for XCAD. The
total amount parameter of AFN is 38.51M. The computational
requirements FLOPS of AFN is 272.726G.

C. Comparison with State-of-the-art

We compare our AFN with various state-of-the-art methods
on three-vessel datasets, including XCAD, DRIVE and PV.

For comprehensive evaluation, the most representative state-
of-the-art pixel-level (CS2Net [31]), topology-level (Topoloss
[11]), hybrid-level (JTFN [1]), and affinity field feature learn-
ing (AAF [32]) based methods are selected for comparison.
Table I shows the performance of AFN and alternatives on
the XCAD, DRIVE, and PV datasets respectively. Across
different datasets, AFN consistently outperforms these state-
of-the-art methods in terms of most metrics, leading to better
performance in both pixel and topology levels. Specifically,
AFN improves the Quality score by up to 7.03% and the F1
score by up to 3.72% compared to the second-best approach

on the XCAD dataset. Exemplar qualitative results are given
in Fig. 5. Compared to other methods, AFN achieves better
vessel connectivity with fewer false positives, resulting in bet-
ter pixel-level and topology-level segmentation performance.
AFN can even segment the real vessels (denoted by blue
pixels), which are of very low contrast and ignored by the
manual annotation in Fig. 4 and Fig. 5. These ”false positives”
in turn would degrade the segmentation performance according
to the classical pixel-level metrics, such as Precision.

D. Ablation Study
To validate the effectiveness of each component in AFN, we

conduct ablation studies on the XCAD dataset, including Base:
The baseline model of AFN by removing supervised multi-
scale affinity feature strengthening (SMAFS) and unsupervised
affinity feature strengthening (UAFS).

Supervised Single-scale Affinity Feature Strengthening
(SSAFS): The model in which supervised single-scale affinity
feature strengthening (i.e., 5×5 scale) is introduced to the Base.
According to Table II, SSAFS achieves slight improvements
on Recall, Complete and F1, indicating the limitation of a
single-scale affinity field for feature strengthening.
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TABLE I
QUANTITATIVE IN-DATASET EVALUATION OF AFN COMPARED WITH

DIFFERENT METHODS ON XCAD, DRIVE AND PORTAL VEIN DATASETS.

Datasets Methods Precision Recall F1 Correct. Complete. Quality

XCAD

AAF 73.96 77.91 75.51 71.30 79.22 59.76
Topoloss 75.08 81.15 77.70 70.12 83.42 61.07
CS2Net 74.95 78.79 76.42 74.25 81.22 63.13
JTFN 78.11 79.55 78.45 76.87 82.78 65.86
AFN 81.05 83.95 82.17 84.44 84.53 72.89

DRIVE

AAF 81.49 72.10 76.24 49.07 35.84 26.10
Topoloss 82.94 80.29 81.36 55.67 46.95 34.22
CS2Net 78.59 81.95 80.01 54.78 46.11 33.39
JTFN 82.71 83.40 82.81 57.09 49.28 36.02
AFN 83.22 83.50 83.16 57.26 49.40 36.10

PV

AAF 84.86 75.65 78.04 82.75 84.05 70.42
Topoloss 76.29 76.67 73.67 70.87 81.84 60.68
CS2Net 80.36 78.50 77.93 75.82 87.96 68.49
JTFN 81.90 82.02 80.63 79.84 91.43 70.76
AFN 83.15 83.56 82.07 85.58 86.71 73.42

TABLE II
ABLATIONS OF MAFS AND AFS FOR AFN ON XCAD DATASET.

Methods Precision Recall F1 Correct. Complete. Quality
Base 81.30 80.44 80.49 82.30 82.19 69.34

SSAFS 80.91 81.22 80.74 80.88 82.23 68.47
SSAFS+UAFS 80.33 82.58 81.05 82.23 84.47 71.08

SMAFS 80.34 81.35 80.50 84.38 81.19 70.09
AFN 81.05 83.95 82.17 84.44 84.53 72.89

Supervised Multi-scale Adaptive-affinity Feature
Strengthening (SMAFS): A model in which we integrate the
SMAFS module with three scales into the Base. Comparing
the results of SMAFS and SSAFS in Table II, we can see
noticeable improvements in terms of Recall, Correct and
Quality. Especially for Quality, SMAFS is 0.75% and 1.62%
higher than those of Base and SSAFS respectively. It shows
that the value of multi-scale affinity feature strengthening
establishes more geometric relationships among pixels.
However, as feature strengthening is only implemented on
the highest resolution features, it can hardly improve the
pixel-level segmentation performance plenty.

Unsupervised Affinity Feature Strengthening (UAFS): A
model in which we integrate both SSAFS and UAFS into the
Base. As shown in Table II, SSAFS+UAFS performs 0.31%
higher in F1 and 2.61% higher in Quality compared to SSAFS.
The above results prove that UAFS can consistently strengthen
the segmentation features by implicit affinity feature strength-
ening.

Including both SMAFS and UAFS (AFN): According
to Table II, jointly using SMAFS and UAFS achieves the
best overall performance, outperforming Base by up to 1.68%
in F1 and 3.55% in Quality. As discussed above, “over-
segmentation” (i.e. detecting more true but unannotated ves-
sels) would be counter-productive according to classical pixel-
wise evaluation metrics like Precision. It explains why the
Precision score of AFN is slightly lower while the overall
performance is much better. Compared to different component
combinations, combining SMAFS and UAFS can perform
feature strengthening most effectively and improve both the
pixel-level and the topology-level performance simultaneously.

V. DISCUSSION

A. Evaluation of AFN with varying sizes
Accurately segmenting vessels of different sizes, in partic-

ular for thin vessels, are quite challenging. To this end, we set
the vessels thinner than seven pixels as thin vessels and the rest
vessels as thick vessels for the XCAD dataset. Then, each thin
vessel is assigned with a 5-pixel searching range and pixels
in the given segmentation map located within the range are
counted for pixel-to-pixel matching, while each thick vessel
is assigned with a 10-pixel searching range for pixel-to-pixel
matching as [25].

Quantitative segmentation results of both thick and thin
vessels on the two datasets are summarized in Table III.
Here, only Correctness, Completeness, Quality and F1 are
selected as evaluation metrics to emphasize more on topolog-
ical completeness (F1 is a balance metric for pixel-level and
Quality is a balance metric for topology-level ). Compared to
different methods, AFN achieves the best overall segmentation
performance, especially in F1, Correctness and Quality.

Robustness to Various Sizes Our AFN adopts different
multi-scale adaptive weights for the SMAFS module to capture
the semantic relationships with cross-scale neighbors. Specif-
ically, the smaller weight map focuses more on the boundary
and detailed information as these regions have stronger affinity
associations with their neighboring regions. As the scale of the
affinity field increases, more large-scale structures are taken
into consideration. Given vessels with various thicknesses,
jointly utilizing the multi-scale affinity relationships as context
and geometric guidance is helpful. Thus, our AFN brings
stable performance improvements for various sizes of vessels.

TABLE III
QUANTITATIVE RESULTS OF DIFFERENT METHODS ON THICK AND THIN

VESSEL SEGMENTATION ON THE XCAD DATASET.

Thickness Methods F1 Correct. Complete. Quality

Thin

AAF 81.23 94.00 78.23 74.49
Topoloss 82.85 94.07 82.83 78.69
CS2Net 80.91 92.47 80.60 75.60
JTFN 81.83 93.88 82.23 78.01
AFN 83.67 94.64 83.51 79.74

Thick

AAF 88.76 88.94 84.32 76.94
Topoloss 90.14 89.03 86.44 78.79
CS2Net 88.32 86.53 82.72 74.01
JTFN 88.52 90.14 84.77 78.26
AFN 90.62 92.04 84.98 79.61

B. Evaluation of AFN with contrast changes
In clinical scenarios, various image contrast often degrades

the performance of deep learning-based methods. In this
section, we evaluate the robustness of the proposed AFN
against contrast variations. We follow the approach in [52]
to edit image contrast on XCAD and DRIVE defined as

Icontrast(x) = Iaverage + (I(x)− Iaverage) · Contrast Ratio (11)

where Icontrast(x) and I(x) represent the adjusted intensity
and the original intensity of pixel x, Iaverage represents
the average intensity of the whole image. In terms of the
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Fig. 6. Exemplar segmentation results under various contrast in XCAD. Green pixels: TPs; Red pixels: FNs; Blue pixels: FPs.

Fig. 7. Quantitative various contrast evaluation compared with state-of-the-art methods

contrast ratio, it is sampled from [1.7,1.6,1.5,0.9,0.85,0.8] for
XCAD and [1.3,1.2,1.1,0.4,0.3,0.2] for DRIVE respectively.
Then, the images with varying contrast are used to evaluate
different methods as depicted in Fig. 7 (more segmentation
result in DRIVE shown in Appendix. B). Compared with the
state-of-the-art methods, AFN achieves the best results in F1
and Quality, indicating better pixel-level and topology-level
segmentation performance. In addition, across different levels
of contrast change, AFN is also with the least performance
degradation. Compared to the most competitive method JTFN,
AFN achieves significant improvements of 3.59% in F1 and
7.01% in Quality on XCAD and 1.79% in F1 and 2.31% in
Quality for DRIVE. Exemplar qualitative results on XCAD

are shown in Fig. 6. AFN stably produces a more complete
vascular structure under different contrasts, demonstrating the
robustness of AFN when applied to vessel segmentation in
real clinical scenarios.

To validate this, we conduct an additional evaluation of the
vessel segmentation of DSA images, as there exists natural
contrast change between DSA images from different frames.
We use the models trained on XCAD directly to the test DSA
images as shown in Fig. 8. Despite of DSA contrast agent
changing, AFN achieves the most robust results, not only for
blood vessels but also for some disturbances (such as skull
bones).

Though image contrast can change across different sit-
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uations, the semantic and geometric structure relationships
among pixels should be consistent and this information in
turn makes AFN more robust against absolute pixel intensity
change. It explains why AFN is more stable than other
methods in terms of contrast change.

Robustness to Contrast Changes The proposed SMAF
and UAFS modules establish semantic and geometric structure
relationships among different scale neighboring pixels for
feature enhancement of different layers. As such relationships
remain consistent in different contrast scenarios, AFN can well
achieve good robustness to contrast changes. Furthermore,
AFN has better feature representation capability by enhancing
features of each pixel using an aggregation of its neighboring
pixel features.

C. Evaluation of generalizability
To further demonstrate the generalizability of the proposed

AFN, we apply the models trained on XCAD to the DSA
dataset for testing. Though DSA also consists of angiogra-
phy images, there exist large contextual/appearance variations
compared to XCAD. As stated in Table IV, compared to
other methods, AFN achieves the best overall segmentation
performance, resulting in significant improvements in terms
of F1 ranging from 3.63% to 16.71%. For topology-level
performance, AFN outperforms other methods by a large
margin (up to 11.64% in Quality).

Robustness to Domain Changes According to the qual-
itative results of the arterial phase 1, venous phase 2 and
capillary phase 3 shown in Fig. 9, AFN is proven to be
capable of capturing true vessel structures across different
domains. It is because AFN can learn more relevant structure
and semantic relations for feature strengthening, which helps
better distinguish vessels and alleviate vessel-like interferences
(such as skull bone structures). The above results demonstrate
the generalization ability of the proposed AFN for better
deployment.

TABLE IV
QUANTITATIVE GENERALIZATION EVALUATION OF AFN COMPARED WITH

DIFFERENT METHODS ON XCAD->DSA.

Methods Precision Recall F1 Correct. Complete. Quality
AAF 68.38 69.16 68.09 74.12 49.51 41.57

Topoloss 68.98 72.84 69.53 79.75 60.27 50.88
CS2Net 73.92 67.69 70.02 82.02 55.98 49.28
JTFN 55.39 60.37 56.94 76.90 48.45 41.83
AFN 70.13 78.74 73.65 91.63 56.42 53.21

D. Limitation and Future Work
In this work, AFN was designed in a 2D manner without

exploring cross-slice information for 3D vessel segmentation.
Through extensive comparison experiments, the affinity field
is proven effective for feature enhancement of each pixel using
an aggregation of its neighboring pixel features. In 3D vessel
segmentation, the affinity field can be directly applied by
extending the neighborhood of each pixel from 2D to 3D.
In this way, the affinity field could work as a context and
geometric guidance for 3D blood vessel feature enhancement.

Fig. 8. Exemplar segmentation results for various contrast on DSA.

In the future, we will extend AFN to more vessel segmentation
applications.

VI. CONCLUSION

We propose an Affinity Feature Strengthening Network
(AFN) for vessel segmentation. The cores of our AFN are one
SMAFS and three UAFS modules which utilize affinity fields
to encode semantic relationships as the geometric constraint
for the segmentation feature enhancement. Extensive experi-
mental results on several datasets demonstrate that our AFN
consistently outperforms state-of-the-art methods in terms of
higher pixel-level accuracy, better topological completeness
and robustness to contrast changes. Besides, the cross-dataset
evaluation also shows the impressive generalizability perfor-
mance of AFN.
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APPENDIX

A. Definition of Topology Metrics

As shown in Fig. 10, we have defined the metrics of
Completeness and Correctness. Fig. 10 illustrates the matching
principle between the extracted vessel and the reference vessel
based on which we calculate the metrics. The buffer of
constant predefined width (buffer width) is constructed around
the reference vessel data (see Fig. 10a). Within this buffer any
parts of the extracted data do not exceed a predefined threshold
are considered as matched, and are labeled as true positive

Fig. 10. Matching principle.

(TP) to signify that the extraction algorithm has successfully
identified vessel data. On the other hand, unmatched extracted
data is labeled as false positive (FP), because the extracted
vessel hypotheses are deemed to be incorrect. In the second
step, the matching process is performed in reverse with buffer
is now constructed around the extracted vessel data (see
Fig. 10b). Any parts of the reference data located within the
buffer are considered as matched, while unmatched reference
data are denoted as false negative (FN).

Completeness =
length of matched reference

length of reference
=

TP

TP + FN
(12)

Completeness refers to the percentage of the reference
vessel that can be accounted for by the extracted vessel, i.e.
the percentage of the reference vessel which lies within the
buffer around the extracted vessel.

Correctness =
length of matched extraction

length of extraction
=

TP

TP + FP
(13)

Correctness represents the percentage of the correctly ex-
tracted vessel, i.e., the percentage of the extracted vessel which
lies within the buffer around the reference vessel.

B. More Examples for DRIVE dataset with different
intensities

As shown in Fig. 11, more example on DRIVE dataset with
3 different intensities (Low level: contrast 0.2, Middle level:
original image, High level: contrast 1.1 on DRIVE) are shown
and zoomed the segmentation maps for better visualization
performance in Fig. 11.
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Fig. 11. Exemplar segmentation results of AFN and alternatives on
DRIVE. Green pixels: TPs; Red pixels: FNs; Blue pixels: FPs. The yellow
box indicates the local zoom area.
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