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Abstract— Gastric endoscopic screening is an effective way to
decide appropriate gastric cancer treatment at an early stage, re-
ducing gastric cancer-associated mortality rate. Although artificial
intelligence has brought a great promise to assist pathologist to
screen digitalized endoscopic biopsies, existing artificial intelli-
gence systems are limited to be utilized in planning gastric cancer
treatment. We propose a practical artificial intelligence-based deci-
sion support system that enables five subclassifications of gastric
cancer pathology, which can be directly matched to general gastric
cancer treatment guidance. The proposed framework is designed
to efficiently differentiate multi-classes of gastric cancer through
multiscale self-attention mechanism using 2-stage hybrid vision
transformer networks, by mimicking the way how human pathol-
ogists understand histology. The proposed system demonstrates
its reliable diagnostic performance by achieving class-average
sensitivity of above 0.85 for multicentric cohort tests. Moreover, the
proposed system demonstrates its great generalization capability
on gastrointestinal track organ cancer by achieving the best class-
average sensitivity among contemporary networks. Furthermore,
in the observational study, artificial intelligence-assisted pathol-
ogists show significantly improved diagnostic sensitivity within
saved screening time compared to human pathologists. Our re-
sults demonstrate that the proposed artificial intelligence system
has a great potential for providing presumptive pathologic opinion
and supporting decision of appropriate gastric cancer treatment in
practical clinical settings.

Index Terms— Digital pathology, endoscopic screening,
histology, gastric cancer treatment, artificial intelligence

I. INTRODUCTION

Gastric cancer (GC) is reported as the fourth most leading cause
of cancer death worldwide [1]. Endoscopic screening is an effective
way to detect GC at an early stage, guiding patients to get appro-
priate treatment according to their cancer stage. Although gastric
endoscopic screening and proper early treatment have reduced GC-
associated mortality rate [2], the increasing number of daily endo-
scopic biopsy cases adds a diagnostic workload to limited clinical
resources. Accordingly, emerging application of artificial intelligence
(AI) in the field of digital pathology has brought a great opportunity to

This work was supported in part by the Na- tional Research Foun-
dation (NRF) of Korea under Grant NRF-2020R1 A2B5B03001980,
in part by the Institute of Information & communications Technology
Planning & Evaluation (IITP) grant, funded by the Korea government
(MSIT) under Grant 2019-0-00075, in part by Artifi- cial Intelligence
Graduate School Program (KAIST)), in part by Korea Health Technology
R&D Project through the Korea Health Industry De- velopment Institute
(KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea
under Grant HR20C0025, and in part by KAIST Key Research Institute
(Interdisciplinary Research Group) Project. (Corresponding authors:
Min-Kyung Yeo; Jong Chul Ye.)

Yujin Oh and Jong Chul Ye are with Kim Jaechul Graduate
School of Artificial Intelligence, KAIST, 291 Daehak-ro, Yuseong-gu,
Daejeon, 34141, Republic of Korea. (e-mail: yujin.oh@kaist.ac.kr;
jong.ye@kaist.ac.kr)

Go Eun Bae and Min-Kyung Yeo are with Department of Pathology,
Chungnam National University School of Medicine, Chungnam National
University Hospital, Munwha-ro 282, Daejeon, 35015, Republic of Ko-
rea. (e-mail: goeunbae1@gmail.com; mkyeo83@cnu.ac.kr)

Kyung-Hee Kim is with Department of Pathology, Chungnam National
University School of Medicine, Chungnam National University Sejong
Hospital, 20 Bodeum 7-Ro, Sejong, 30099, Republic of Korea. (e-mail:
phone330@cnu.ac.kr)

effectively reduce diagnostic overloads, by automatically classifying
massive number of digitalized whole slide images (WSI).

AI applications in the field of digital pathology have already
achieved powerful diagnostic performance in prostate or breast cancer
screening [3]–[5]. AI-assistance systems have also been developed
for GC [6]–[11]. An ideal fine-grained classification criteria of GC is
presented by World Health Organization (WHO) [12], however, tradi-
tional AI systems mostly focus on detecting malignancy over benign
or diagnosing only three subclassifications, i.e., benign, adenoma and
carcinoma, which cannot fully cover detailed GC subclassifications.
Indeed, differentiating fine-grained cancer subclassifications can be
challenging even for pathologists, since adjacent diagnostic classes
have region-level morphological similarities. Histologic GC classi-
fication needs comprehensive understanding of cell-level to tissue-
level morphological features. In particular, when to diagnose a case
confused between two adjacent classes, pathologists review slides by
switching magnification from low to high resolution to understand
both global structural relationships and regional morphological fea-
tures.

Most existing AI systems for classifying GC employ convolutional
neural network (CNN) [7]–[11]. In order to diagnose gigapixel-
level WSI using traditional CNN, patch-level training has become
widespread by dividing WSI into sub-patches [13]. However, the
patch-wise training is not effective in exploiting relationships be-
tween non-adjacent patches and understanding inter-patch structural
relationships. To better understand global information, Park and
colleagues proposed a RACNN, which aggregates patch-level features
using additional convolution layers [9]. However, due to limited
receptive field size of the convolutional kernel, the additional convo-
lution layers still limit comprehensive understanding of non-adjacent
inter-patch relationships.

In contrast, our in this paper are multifold. First, inspired by
recent success of Vision Transformer (ViT) [14] that exploits long-
range dependency between non-adjacent patches through multi-head
self-attention mechanism, here we propose a patch-stacked hybrid
ViT framework that can significantly expand receptive field, which
better understand inter-patch relationship. Specifically, as illustrated
in Fig. 1(a), our system is composed of 2-stage ViTs: the first stage
hybrid ViT encodes region-of-interest (ROI)-level histologic features
from stacked patches, which is followed by the second stage ViT
for understanding slide-level information. Specifically, multiple patch
stacks from each WSI are fed into the ROI-level network to be
trained to match their corresponding patch-stacked annotations. The
ROI-level network inference results are then fed into the slide-level
network and trained to diagnose its corresponding subclass. As a
whole, we can expand receptive field up to the entire size of WSI for
comprehensive prediction. In this way, the proposed AI system can
mimic the entire process of how pathologists understand WSI.

Furthermore, our AI system can classify gastric endoscopic biop-
sies into 5 categories: negative for dysplasia (NFD), tubular adenoma
(TA), differentiated carcinoma (Diff-CA), undifferentiated carcinoma
(Undiff-CA), and MALT lymphoma (MALT). As shown in Fig. 1(b),
the proposed subclassifications can be matched to the general GC
treatment guidance [15], thus the results can be directly utilized to
guide proper GC treatment in clinical settings.
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Fig. 1. Schematic of AI-assisted gastric cancer treatment guidance. (a) The AI system is composed of 2-stage Vision Transformer modules for
comprehensive understanding of ROI-level and slide-level features. (b) Once a slide is diagnosed by the AI-assisted pathologist, the clinician can
decide gastric cancer treatment based on the five subclassifications result.

To the best of our knowledge, diagnosing five subclasses of
GC, including MALT lymphoma, is firstly tried by the proposed
AI system. Specifically, MALT lymphoma has a relatively high
prevalence in East Asia related with high Helicobacter pylori (H.
pylori) infection [16]. In South Korea, 1-2% of patients receiving
upper endoscopic biopsy are classified as MALT lymphoma, and
it corresponds to 12% of patients who diagnosed as gastric malig-
nancy [17]. Diagnosis of MALT lymphoma largely depends on the
pathologic confirmation, thus classification of MALT class should be
listed on the GC screening program, especially in countries with high
infection rates of H. pylori. Histologic features of MALT lymphoma
help to diagnose the disease; however, diagnosis of MALT lymphoma
is a challenge even for the pathologist and requires ancillary test,
such as immunohistochemistry (IHC) or molecular evaluation, due to
its morphological similarities with other inflammatory or tumorous
diseases [18].

Morevoer, the proposed classification additionally categories GC
into differentiated and undifferentiated carcinoma. Undifferentiated-
type carcinoma is reported to have high incidence of lymph node
metastasis [19], [20], thus, identifying undifferentiated carcinoma
is important for deciding surgical treatment [21]. A recent work
reported sequential application of a differentiated/undifferentiated
binary classifier on a normal/tumor classifier result [11]. However,
relatively poor performance of undifferentiated carcinoma class in-
dicates the difficulty of discriminating confusing differentiated and
undifferentiated cancer cells.

The proposed AI system demonstrates promising GC classification
performance including MALT lymphoma, differentiated and differen-
tiated carcinoma by achieving average diagnostic sensitivity of above
0.85 for both internal and external cohort test set. Moreover, the
proposed system is proven to have great generalizability on gas-
trointestinal organ test by achieving the best class-average sensitivity
compared to its counterpart networks. Furthermore, in the observation

study, pathologists assisted by the AI system show significantly im-
proved diagnostic performance by achieving class-average sensitivity
of 0.93 ± 0.06 compared to human pathologist performance of 0.83
± 0.03. The reliable performance of the proposed system and the
observer study result demonstrates that the proposed AI system holds
great promise in providing practical opinion for guiding appropriate
treatment for early-stage GC patients.

Innovation points of our work can be summarized as:

• Our work firstly proposes five subclassification system of GC
histology, which can guide treatment in clinical settings

• We propose 2-stage multi-scale hybrid vision transformer net-
work, which enables comprehensive histology feature analysis

• Our AI system demonstrates its reliable class-average sensitivity
above 0.85 on muticentric cohort sets, and assists pathologists to
achieve improved prediction sensitivity by 0.10 under improved
confidence level and within reduced screening time.

II. METHODS

Vision Transformer (ViT) has shown state-of-the-art (SOTA) per-
formance in various computer vision tasks [22]. By extending this
idea, one of the important contributions of this paper is a 2-stage
ViT architecture that effectively learns inter-patch relationships within
gigapixel-level WSI through multiscale self-attention mechanism. As
depicted in Fig. 2, the AI system is composed of ROI-level and slide-
level networks. The ROI-level hybrid ViT network is composed of a
convolutional neural network (CNN) module, a ViT encoder module
and a ROI-level prediction head, which learn patch-level features
from stacked patches. The slide-level ViT network is composed of a
ViT encoder module and a slide-level classification head, which learn
comprehensive information from stage-1 network output features over
the entire slide. More details are as follows.
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Fig. 2. Proposed 2-stage multiscale hybrid Vision Transformer framework. (a) ROI-level prediction network with a hybrid Vision Transformer
backbone. (b) Slide-level prediction network with a Vision Transformer backbone.

A. Stage 1. ROI-level Network
As illustrated in Fig. 2(a), for ROI-level prediction, a 2,048 ×

2,048-pixel input patch stack X is firstly stain normalized and fed
into the CNN module. The CNN module extracts low-level features
given the patch stack X , resulting an 8 × 8 grid 2-D feature map F :

F =

 f1 · · · fw
...

. . .
...

fh · · · fp

 = CNN


 x1 · · · xw

...
. . .

...
xh · · · xp


 , (1)

where fp denotes a p-th feature map and xp denotes a p-th input
patch in the patch stack X .

The extracted features over the entire patch stack F are then
flattened and embedded. The embedded patches added by positional
embeddings are then fed into the ViT encoder module composed of
successive self-attention layers to output an encoded feature array Z:

Z = [z1, z2, ..., zp] , (2)

where zp denotes a p-th encoded feature in Z.
The encoded features Z are then linearly projected through the

ROI-level prediction head and reshaped into its original 2D-feature
map dimension. The ROI-level output predictions are trained to
be matched with their corresponding patch-level ground truths by
minimizing standard cross entropy (CE) loss:

LCEstage−1
= −

∑
cls∈C

∑
p∈P

1(yp = cls)log(HROI(zp)), (3)

where zp denotes a p-th encoded feature in Z, HROI denotes
the softmax probability of the ROI-level prediction head output, yp
denotes the ground truth label for a p-th patch, P denotes the set of
patches in the patch stack, 1(·) denotes the indicator function, and
C denotes the set of GC subclassification.

B. Stage 2. Slide-level Network
As depicted in Fig. 2(b), the slide-level network takes intermediate

features Z inferenced by the stage-1 network over entire receptive

field of a slide. To effectively cover the entire receptive field of the
gigapixel-level WSI within limited patch grids of the ViT module,
the stage-2 network adapted a max pooling module translating 3 ×
3 adjacent patches into a representative 1 × 1 feature. As a whole,
the entire slide-level receptive field can be expanded up to a 96 ×
96 grid 2-D feature map, which correspond to a 12 × 12 mm slide.

The pooled input features are then flattened to be fed into the ViT
encoder (ViT-B) module. In front of the flattened feature array, a
learnable class token with identical feature dimension is prepended,
which can attend to the entire feature embeddings throughout succes-
sive self-attention layers. The encoded class feature O is then linearly
projected to be matched to its corresponding slide-level ground truth
by minimizing class-weighted CE loss:

LCEstage−2
= −

∑
cls∈C

wCLS1(y = cls)log(HCLS(O)), (4)

where O denotes the encoded class feature, HCLS denotes the
softmax probability of the slide-level classification head output, y
denotes the slide-level ground truth label, and wCLS denotes a weight
for adjusting unbalanced class distribution.

C. Model Implementation

For training the ROI-level network, we utilized ResNet50 [23] and
ViT-B [14] for each CNN and ViT backbone, respectively. The batch
size was set 4 and the model was trained for 30 epochs with the
initial learning rate of 0.00001. For optimizing the ROI-level network
training, we used Adam with decoupled weight decay (AdamW) op-
timizer with cosine scheduler for learning rate and weight decay. We
applied geometric augmentation including random rotating, flipping
and scaling with additional data augmentation techniques following
BYOL [24] (color jittering, gaussian blurring and solarization).

For training the slide-level network, we utilized ViT-B [14] as
backbone. The batch size was set 5 and the model was trained for
50 epochs with initial learning rate of 0.0004. For optimizing the
slide-level network training, we used the stochastic gradient descent
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(SGC) optimizer with cosine scheduler. For providing clinician-
friendly results, the slide-level output was converted to probability
score ranging from 0 to 100% by using Softmax function.

All the experiments were performed using Python version 3.9 and
Pytorch library version 1.10 on a Nvidia RTX 3090 GPU.

III. EXPERIMENTS

A. Data Annotation
For training the proposed model, hematoxylin and eosin (H&E)

stained slides were collected from the archives of Chungnam National
University Hospital (CNUH), and were scanned with a Pannoramic
250 (3DHISTECH) scanner at ×40 magnification. For the internal
training dataset, an expert pathologist annotated ROI-level labels into
five subclasses using ImageJ [25]. Cases with negative for any tumor-
ous condition and background pixels were classified as NFD. Cases
with low to high grade dysplasia were classified as TA. Malignant
tumor was divided into Diff-CA, Undiff-CA, and MALT lymphoma.
Diff-CA and Undiff-CA were classified by following Japanese clas-
sification guideline that was suggested for endoscopic resection [15].
Diff-CA included well to moderately differentiated tubular/papillary
adenocarcinoma, and Undiff-CA included poorly differentiated tubu-
lar/poorly cohesive/signet ring cell (SRC)/mucinous adenocarcino-
mas. MALT class was diagnosed followed by Wotherspoon criteria,
which was score 4 or above [26]. For all the datasets, the slide-level
ground truth was established by three experienced gastrointestinal
pathologists. A lead expert pathologist primarily classified histology
to five subclasses, and the ground truth was confirmed by two other
pathologists. For difficult cases, the ground truth was established
through consensus between three pathologists.

B. Datasets

(a) (b) (c) (d)

Fig. 3. Representative slides from Diff-CA class selected from different
dataset: (a) internal stomach train set, (b) internal stomach cohort set,
(c) external stomach cohort set and (d) external colon cohort set.

1) Internal Stomach Dataset: The internal training dataset were
collected from CNUH, including 1,228 endoscopic biopsy slides. The
internal stomach dataset were randomly split into train, validation
and internal test set of 70, 10 and 20 percentiles from the entire
dataset, respectively, following class distribution of the entire dataset.
A detailed dataset distribution is described in Table I.

For the convenience of training the AI system, one clear WSI per
each slide was collected automatically and down-sampled at ×20
magnification with resolution of 0.485 µm per pixel. 2,048×2,048-
pixel patch stacks were sampled from all the train set. From each
WSI, patch stacks were collected by sliding window which allow
limited overlapped pixels between each patch stack, and for each
slide, we collected at most 100 patch stacks. Patch stacks containing
foreground tissues below 30 percentiles to the entire patch stack size
were excluded from the train set.

2) Internal Stomach Cohort Set: The internal stomach cohort
set was collected from CNUH, including 876 slides from endoscopic
biopsy slides cohort from June 2021 to July 2021.

3) External Stomach & Colon Cohort Set: The external cohort
sets were prepared for both stomach and colon specimens, which were
collected from Sejong Hospital of Chungnam National University
Hospital (CNUSH), including 336 and 400 slides respectively. These
datasets have different slicing and staining characteristics to that
of the training dataset, as shown in Fig. 3. The specimens were
collected from endoscopic biopsy slides cohort from September 2020
to February 2021.

TABLE I
Class distribution of training and test dataset.

Int. train set Int. val set Int. test set
Class #slides % #PS. % #slides % #slides %
0 NFD 263 31 1,850 15 38 28 73 30
1 TA 160 19 1,825 15 24 18 43 17
2 Diff-CA 175 21 2,977 24 31 23 54 22
3 Undiff-CA 180 21 5,032 40 33 24 58 23
4 MALT 68 8 826 7 9 7 19 8
Total 846 12,510 135 247

Int. stomach set Ext. stomach set Ext. colon set
Class #slides % #PS. % #slides % #slides %
0 NFD 772 88 297 88 221 55
1 TA 47 5 11 3 165 41
2 Diff-CA 26 3 12 4 13 3
3 Undiff-CA 19 2 8 2 1 0
4 MALT 12 1 8 2 - -
Total 876 336 400
Note: Int.: Internal; Ext.: External; PS: Patch stacks

Observer set BObserver set ADiagnostic 
difficulty MALTUndiffDiffTANFDTotalMALTUndiffDiffTANFDTotal

2136212271
133531513334142

121421143
--4

34666253664625Total

Accu.MALTUndiffDiff-CATANFDTotal
Diagnostic difficulty

0.901219263030117

0.9741012182064Easy to diagnose under low magnification1

0.943679833Easy to diagnose,
but needed examination under high magnification2

0.631332-9Difficult to diagnose, ancillary test not required3
0.554-41211Challenging to diagnose, ancillary test required4

(b)

(a)

Fig. 4. Observer study design. (a) Diagnostic difficulty analysis on
internal stomach cohort set. (b) Observer test sets distribution.

C. Observer Study Design
The observer study was designed to evaluate the AI-assisted

pathologist performance on daily gastric endoscopic screening. As
shown in Fig. 4, from 117 cases of the sampled internal cohort test
set, 2 observer test sets (n = 25/set) were prepared considering the
class distribution and the diagnostic difficulty level. The diagnostic
difficulty was stratified following previous trial [7]: level 1, easy to
diagnose under low magnification; level 2, easy, but needed exami-
nation under high magnification; level 3, difficult, but ancillary test
not required; level 4, challenging and ancillary test required. Then,
three expert gastrointestinal pathologists established the diagnostic
difficulty ground truth for the entire observer test set through a
consensus meeting. We excluded cases with the highest diagnostic
difficulty, for avoiding potential diagnostic disagreement.
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All the participants were given documented AI system performance
and classification guidelines justified by an expert pathologist par-
ticipated in the annotation process. For each test set, participants
were given 25-minutes of time constraints. Neither case revision nor
answer correction was restricted. Total 6 pathologists from CNUH
and CNUSH were participated in the observer test. Among the
participants, 4 pathologists of over 10 years of experience were
equally split into different test groups. A pathologist of over 5 years
of experience and a pathology resident of over 4 years of experience
were split into different test groups.

Participants were asked to diagnose WSI in each observer
test set with AI-assistance (AI-assisted) and without AI-assistance
(Pathologist-only), respectively. The order of the AI-assistance and
the pathologist-only trials was pre-determined, as described in Fig 5.
Minimum 3-hours of break time was given between each test sets.
The participants were asked to fill out answers in tables (Excel 2019,
Microsoft), and asked to score their confident level of the diagnosis
from least (0) to most (1.00) for each case. Confident level of the
diagnosis was justified as follows: indefinite for, <0.50; suspicious
for, 0.51-0.70; favor, 0.71-0.80; consistent with, 0.81-0.90; diagnostic
of, 0.91-1.00, following [27].

D. Evaluation Metrics

For evaluating the ROI-level network performance, we utilized
patch-level accuracy per each WSI. The metric is defined as follows:

Accuracypatch(y, ŷ) =
1

|Sc|
∑
s∈Sc

(
1

|Ps|
∑
p∈Ps

Mp · 1(ŷp = yp)

)
,

where Sc is the set of WSI samples of each slide-level truth class, Ps
is the set of patches within s-th WSI sample, ŷp is the predicted value
of the p-th patch and yp is the corresponding patch-level annotation
label, and Mp is foreground mask, which is set to 1 when a patch
consists of more than 10% of foreground pixels.

For evaluating the slide-level multi-class classification perfor-
mance, we utilized class-wise slide-level accuracy, specificity and
sensitivity, which are defined as follows:

Accuracy =
tp+ tn

tp+ tn+ fp+ fn
,

Specificity =
tn

tn+ fp
,

Sensitivity =
tp

tp+ fn
,

where tn, fp, tp, fn represent true negative, false positive, true
positive and false negative cases for each class, respectively. All the
metrics were by calculated using Scikit-learn package [28].

For averaging multi-class metrics or multi-observer test metrics, we
utilized macro average as default. The metric is defined as follows:

Average =
1

|C|
∑

cls∈C

Mcls,

where C is the set of slide-level ground truth classes and Mcls rep-
resents any class-wise performance metric, e.g., accuracy, specificity
and sensitivity.

For averaging the entire observer test records, e.g., confident level
of the diagnosis and screening time, we utilized micro average. The
metric is defined as follows:

Average(micro) =
1

|S|
∑
s∈S

s,

where S is the set of observer test records over all the participants.

Pathologist #1

Pathologist #3

Pathologist #5

Pathologist #2

Pathologist #4

Pathologist #6

Pathologist #1

Pathologist #3

Pathologist #5

Pathologist #2

Pathologist #4

Pathologist #6

All Pathologists (average)

All Pathologists                                                                      (average)

(a)

AI-alone

Pathologist-only AI-assisted AI-alone performance

0 0.75 1.000.80 0.85 0.90 0.95

...

**

Sensitivity

0 0.85 0.950.90
Confidence level (a.u.)

(c)

All Pathologists                                                                                          (average)

(b)

AI-alone

0 0.90 1.000.95

...

*

Specificity

**

All Pathologists (average)

0 20 4030
Screening time (second per case)

(d) *

Fig. 5. Diagnositc performance comparison between pathologist-
only, AI-assisted and AI-alone trials on (a) sensitivity, (b) specificity, (c)
diagnostic confidence level, and (d) screening time for each slide.

E. Statistical Analysis

Statistical analysis for the observer test was performed using
MATLAB R2020a (Mathworks, Natick). Kolmogorov Smirnov test
was used to evaluate normality of all the results. Since all the test
results were non-normally distributed, a two-sided Wilcoxon rank
sum test was used to statistically compare performance metrics.
P-value was utilized as statistical significance level and indicated
as asterisks, i.e., * for p<0.05; ** for p<0.01. We visualized the
statistical effects of the observer test by following a previous work
[29].

F. Ethical Approval

This study was approved by the institutional review board of
Chungnam National University Hospital (IRB file no. 2021-10-028)
and Chungnam National University Sejong Hospital (IRB file no.
2021-12-004), which waived the requirement for informed consent.

IV. EXPERIMENTAL RESULTS

A. ROI-level Prediction Performance

We first evaluated whether the proposed patch-stack hybrid vision
transformer model better understood inter-patch relationship. As
shown in Table III(a), The proposed ROI-level network achieved the
patch-level accuracy of 0.85 ± 0.06, which was the best performance
among other baseline networks (see Table II). Fig. 6 illustrates the
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representative ROI-level probability map. The proposed ROI-level
probability map highly corresponds to the ground truth annotation.
The class-wise diagnostic performance showed that our ROI-level
network was mostly confused when predicting the Diff-CA class
patches between TA or Undiff-CA classes, due to their patch-level
morphological similarity.

TABLE II
ROI-level network performance comparison on stomach datasets.

Magn. Resolution Receptive field
(H × W, mm)

Internal test set
(µm/pixel) Accuracypatch

ResNet50 ×20 0.49 0.13 × 0.13 0.79 ± 0.11
InceptionV3 ×20 0.49 0.13 × 0.13 0.80 ± 0.11
ViT ×20 0.49 0.13 × 0.13 0.82 ± 0.10
Patch-stacked
hybrid ViT
(Proposed)

×20 0.49 1 × 1 0.85 ± 0.06
×10 0.97 1.5 × 1.5 0.85 ± 0.08
×5 1.95 2 × 2 0.84 ± 0.07

Note: Magn.: maginification ratio

B. Slide-level Prediction Performance

We then evaluated slide-level prediction performance for each trial.
As shown in Table III, the proposed slide-level network achieved
class-average sensitivity of 0.93 ± 0.05, 0.87 ± 0.12, and 0.86
± 0.13 for each internal test set, internal stomach cohort test, and
external stomach cohort test, respectively. The comparable diagnostic
sensitivity throughout three different trials demonstrated that the
proposed model could be generalized to multicentre dataset with
reliable performance. We further analyzed detailed classification
performance on external stomach test set in Table IVand error cases
of each trial in section IV-E.

TABLE III
Diagnostic performance of the proposed AI system.

Class ROI-level Slide-level
Accuracypatch Accuracy Specificity Sensitivity

0 NFD 0.97 0.96 1.00 0.88
1 TA 0.82 0.97 0.98 0.93
2 Diff-CA 0.79 0.97 0.98 0.93
3 Undiff-CA 0.87 0.97 0.96 1.00
4 MALT 0.83 0.98 0.99 0.89
Average 0.85 ± 0.07 0.97 ± 0.01 0.98 ± 0.01 0.93 ± 0.05

(a) Internal test set

Class ROI-level Slide-level
Accuracypatch Accuracy Specificity Sensitivity

0 NFD - 0.89 0.95 0.89
1 TA - 0.95 0.95 0.89
2 Diff-CA - 0.98 0.97 0.88
3 Undiff-CA - 0.97 0.97 1.00
4 MALT - 0.98 0.98 0.67
Average - 0.95 ± 0.04 0.97 ± 0.02 0.87 ± 0.12

(b) Internal stomach cohort test

Class ROI-level Slide-level
Accuracypatch Accuracy Specificity Sensitivity

0 NFD - 0.82 0.97 0.80
1 TA - 0.95 0.95 0.73
2 Diff-CA - 0.96 0.94 0.75
3 Undiff-CA - 0.91 0.88 1.00
4 MALT - 0.97 0.96 1.00
Average - 0.92 ± 0.06 0.96 ± 0.03 0.86 ± 0.13

(c) External stomach cohort test

TABLE IV
Detailed classification performance on external stomach cohort test.

Detailed classification Sensitivity
NFD TA Diff-CA Undiff-CA MALT

0 NFD
- Foveolar hyperplasia 1.00
- Hyperplastic polyp 0.80 0.10 0.10
- Acute gastritis 0.69 0.05 0.05 0.14 0.07
- Atrophic gastritis 0.88 0.04 0.02 0.06
1 TA
- TA, Low grade 0.13 0.75 0.13
- TA, High grade 0.67 0.33
2 Diff-CA
- TAC, WD 1.00
- TAC, MD 0.10 0.70 0.20
3 Undiff-CA
- TAC, PD 1.00
- Poorly cohesive carcinoma 1.00
- Signet ring cell carcinoma
4 MALT
- MALT lymphoma 1.00
Others (excluded)
- Diffuse large B-cell lymphoma 1.00
Note: Underline indicates true positive ratio; TAC: Tubular adenocarcinoma;
WD: Well differentiated; MD: Moderately differentiated; PD: Poorly differentiated

C. Comparative Network Analysis

The proposed ROI-level performance was further compared with
baseline networks, i.e., ResNet50, InceptionV3, and ViT, including
traditional patch-level prediction methods utilized in comparative
studies [11], [30]. As shown in Table II, the proposed patch-stacked
hybrid ViT showed the most promising class-average patch-level
accuracy compared to its counterparts with statistically significant
level (P-value of <0.001 for all the counterparts). Moreover, as shown
in Fig. 6, the ROI-level probability map provided the least confusing
prediction compared to its counterparts. The proposed framework was
further evaluated with various experimental conditions, and showed
the best performance with magnification ratio of ×20 and ROI-level
receptive field of 1 × 1 mm.

The proposed slide-level performance was compared with base-
line classification methods, i.e., Tok-K Mean, Random Forest, and
ResNet50, including traditional classification methods utilized in
comparative studies [7], [9]. To focus on multi-class classification
capability of the AI system in clinical settings, we utilized class-
average sensitivity as a primary criterion for model comparison.
As shown in Table VI, The proposed combination showed the best
class-average performance among almost all combinations of stage-
1 and stage-2 networks. In specific, the proposed model showed
reliable external validation performance with class-average sensitivity
of above 0.86, whereas other methods showed drastic performance
degradation due to overfitting on internal training dataset, e.g., the
random forest method showed the best performance on internal test,
whereas showed the second-worst performance on external cohort
test.

D. Gastrointestinal Organ Generalization Performance

The proposed network performance was further evaluated on the
external colon cohort set. Gastrointestinal track organs basically
share the patch-level morphology, however, care should be taken
to diagnose slide-level classification, which need comprehensive
understandings of inter-tissue relationship. As shown in Table V, the
proposed model achieved class-average sensitivity of 0.77 ± 0.16,
which was the best among all the baseline networks with least inter-
class variation level. The experimental result demonstrated that the
proposed model had great potential for being generalized to unseen
gastrointestinal track organs compared to traditional methods, based
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on comprehensive understanding of gastrointestinal organ cancer
characteristics.

TABLE V
Model generalization performance on GI track organ.

Stage-1 Network Receptive field
(H × W, mm)

Stage-2 Network External colon set
ROI-level Slide-level Sensitivity

ResNet50
0.13 × 0.13 ViT

0.73 ± 0.19
InceptionV3 0.67 ± 0.28
ViT 0.75 ± 0.18

Patch-stacked
hybrid ViT
(Proposed)

1 × 1

Top-K Mean 0.58 ± 0.47
Random Forest 0.59 ± 0.32
ResNet50 0.73 ± 0.34
ViT (Proposed) 0.77 ± 0.16

Note: GI.: gastrointestinal

E. Error Case Analysis
We counted error cases of each test trial and further analyzed

frequent errors. In the internal test, most error cases were counted
when distinguishing between adjacent classes (9 of 247 cases) and
false-positive cases of NFD (9 of 73 cases). A representative falsely
diagnosed case is shown in Fig. 8(a). The representative result shows
complex ROI-level probabilities of multiple classes, i.e., NFD, Diff-
CA and Undiff-CA classes, thus the slide-level prediction is uncertain
with probability score of around 70%.

In the internal cohort test, similar to the internal test results,
most error cases were counted when distinguishing between adjacent
classes (8 of 104 cases) and false-positive cases of NFD (87 of
772 cases). Errors cases were also counted when discriminating non-
adjacent classes between NFD/MALT (3 of 12 cases) and TA/MALT
(1 of 47 cases). Fig. 8(b) depicts a representative case which failed to
be diagnosed as MALT class. The ROI-level probability map shows
small amount of patches diagnosed as MALT class, thus the ROI-
level probability for the MALT class is under-estimated. The result
indicates that the AI system shows poor performance on MALT cases
that need ancillary test for accurate diagnosis, which will be further
discussed in section V-B.

In the external cohort test, most error cases were counted when
distinguishing between adjacent classes (6 of 39 cases) and false-
positive cases of NFD (59 of 297 cases), similar to the internal test
results. A representative falsely diagnosed case is shown in Fig. 8(c).
The ROI-level probability map shows small portion of patches which
falsely-diagnosed as Undiff-CA class, thus the slide-level prediction
is uncertain for top-1 prediction with probability score of around
50%, followed by the ground truth class of around 40%.

F. Observer Test Result
The practical usability of the AI system was further evaluated

through observation of AI-assisted pathologist performance. We ob-
served that pathologist performance with AI-assistance trails was im-
proved from pathologist-only trials with statistically significant level,
as shown in Fig. 5, The class-average sensitivity and specificity were
increased by 0.10 from 0.83 ± 0.02 to 0.93 ± 0.06, and by 0.02 from
0.96 ± 0.01 to 0.98 ± 0.01 with AI-assistance, respectively. We also
found that the improved performance was achieved under improved
confident level of the diagnosis from 0.85 ± 0.13 to 0.89 ± 0.11
with AI-assistance, and within reduced screening time from 34.80
± 27.24 (range 13-48) to 28.53 ± 23.15 (range 16-44) second with
AI-assistance. Moreover, the stand-alone AI system performance (AI-
alone) was comparable to that of AI-assisted pathologist, and even
exceeded pathologist-only trials with 0.94 and 0.99 for sensitivity and
specificity, respectively.

We further evaluated receiver operating characteristics (ROC)
curves over the entire internal cohort tests, as shown in Fig. 7. AI-
assisted pathologist performance for all the classes were improved
from pathologist-only performance toward the upper-left side of
the curve near the AI-alone performance. We further discovered
that the AI system helped pathologists make decision more consis-
tently, by decreasing inter-pathologists variation compared to that of
pathologist-only performance, as depicted as error bar of each trial.

V. DISCUSSION

A. Reliable Multi-class Classification Performance for Planning
Gastric Cancer Treatment

The AI system achieves promising diagnostic accuracy on the
proposed five subclassifications, which cover almost all prevalent
cases of external daily endoscopic cohort except for diffuse large
B-cell lymphoma (DLBCL), as indicated as Others in Table IV. In
this study, we exclude other types of lymphoma including DLBCL.
Although DLBCL is one of the gastric malignancy, lymphomas
are very rare (under 0.1%), except the MALT lymphoma. We also
exclude diseases such as gastrointestinal stromal tumor (GIST) or
neuroendocrine tumor (NET) because these lesions usually presented
as subepithelial masses that superficial gastric biopsy samples were
not enough for pathology. We need to collect each subclass at
least more than 3% of entire dataset for training the AI system,
but these diseases are not sufficient. We rather focus on common
tumorous diseases diagnosed from gastric biopsy including epithelial
lesions and MALT lymphoma. Moreover, though H.pylori infection
is important for the physician and clinical implementation for the
treatment, H.pylori infection can be commonly diagnosed by other
diagnostic tools, such as urea breath test, PCR test, or Giemsa
staining. Herein, we exclude H.pylori infection and focus on planning
cancer treatment on tumorous lesions.

In fact, differentiating confusing adjacent classes, e.g., differen-
tiated/undifferentiated and adenoma/adenocarcinoma, needs compre-
hensive understanding of structural characteristics. CNN-based patch-
wise training has difficulty in understanding structural relationship
between non-adjacent patches due to limited receptive field size. The
proposed multiscale hybrid ViT models the long-range dependency
among non-adjacent patch features after capturing short-range depen-
dency among adjacent patch stacks exploited by CNN, thus the ViT-
based framework shows promising multi-class classification perfor-
mance compared to traditional CNN-based methods. As shown in Fig.
6(c), the proposed patch-stacked hybrid ViT model provides stable
ROI-level probability map with less confusing prediction between
differentiated and undifferentiated tissues. Based on the improved
ROI-level prediction results, the proposed network achieved diagnos-
tic sensitivity of 1.00 for undifferentiated-type carcinoma class on all
the test trials (see Table III). Moreover, the proposed AI system’s
diagnostic sensitivity performance of MALT class demonstrates its
capability for classifying MALT lymphoma and guiding clinician to
proceed additional evaluation for the H.pylori infection.

B. Limitations
Our AI system is not free of limitations. As shown in Fig. 7,

the AI system ROC performance for TA, Diff-CA and Undiff-CA
exceed average performance of human pathologists. However, for
NFD and MALT, average human pathologist performance exceeds the
AI system ROC performance. One reasonable solution for improving
degraded class performance may be matching class-wise distribution
between training data set and daily cohort test set. For example, NFD
distribution (15%) showed significant gap from that of the daily-
acquired internal cohort test set (88%), as shown in Table I. Similarly,
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TABLE VI
Slide-level network performance comparison on vaious stomach datasets.

Stage-1 Network Receptive field Stage-2 Network Internal test set Internal cohort set External cohort set
ROI-level (H × W, mm) Slide-level Accu. Spec. Sens. Accu. Spec. Sens. Accu. Spec. Sens.

ResNet50 0.13 × 0.13
ViT (Proposed)

0.97 0.98 0.94 0.94 0.96 0.74 0.88 0.94 0.83
InceptionV3 0.13 × 0.13 0.96 0.98 0.91 0.93 0.90 0.70 0.86 0.92 0.76
ViT 0.13 × 0.13 0.97 0.98 0.92 0.93 0.94 0.68 0.84 0.91 0.78

Patch-stacked
hybrid ViT
(Proposed)

1 × 1

Top-K Mean 0.83 0.88 0.49 0.97 0.87 0.41 0.97 0.86 0.47
Random Forest 0.99 0.99 0.98 0.63 0.81 0.60 0.64 0.82 0.52
ResNet50 0.96 0.98 0.92 0.96 0.94 0.68 0.96 0.93 0.78
ViT (Proposed) 0.97 0.99 0.97 0.95 0.97 0.87 0.92 0.96 0.86

1.5 × 1.5
ViT (Proposed)

0.96 0.98 0.90 0.96 0.97 0.85 0.92 0.93 0.75
2 × 2 0.97 0.93 0.92 0.94 0.95 0.82 0.91 0.93 0.80

Input WSI Ground truth

(b)

(a)

(d)

(c)

Patch-stacked hybrid ViT
(Proposed)ResNet50 InceptionV3 ViT

0 NFD              1 TA                 2 Diff-CA              3 Undiff-CA 4 MALT

Fig. 6. ROI-level probability map generation performance comparison. Representative cases selected from (a) TA, (b) Diff-CA, (c) Undiff-CA and
(d) MALT classes. All the scale bars indicate 500 µm.
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Fig. 7. Class-wise ROC curve and observer test results. ROC curves represent the proposed AI system performance of the entire internal cohort
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Fig. 8. Representative error cases. Falsely-diagnosed cases (indicated as dashed circles) selected from (a) internal test set, (b) internal cohort
test set and (c) external cohort test set. All the scale bars indicate 500 µm.

daily internal cohort test sets contain around 30% of MALT cases
that require ancillary test, as analyzed in Fig. 4. If our AI system
was trained with large number of NFD samples or samples required
ancillary test, it may have predicted samples of daily endoscopic
screening dataset with reliable performance.

Secondly, variations in the staining condition may cause increased
false-positive rate (18%, 59 of 336 cases) of the external cohort test
compared to that of the internal cohort test (10%, 87 of 876 cases),
as analyzed in Fig. 8. This generalizability issue may be alleviated by
developing advanced stain normalization techniques or training the
system with multicentre datasets.

Lastly, our AI system architecture is limited in its receptive field.
The slide-level network is designed to get multiple patches with
dimension of 96 × 96 (total 9,216) patches by aggregating all the
patch features throughout each endoscopic biopy sample. However,
in order to adapt the proposed network to cover large tissue samples,
almost 100M patch features need to be aggregated, as can be inferred
from Table VII. To achieve this goal under a memory-efficient
condition, Reisenbuchler et al. [31] proposed an efficient feature
aggregation method by clustering unlimited patch features through
k-nearest neighbor graphs. As a future study, we plan to expand our
network to further analyze tissue samples by proposing an effective
feature clustering method within the slide-level network.

Moreover, our ROI patch-level network is also limited in its
input grid with 8 × 8 (total 64) patches for each patch stack,
which is compromised depending on our computing resources. The
restricted input gird dimension can degrade the patch-level network
performance, especially when predicting ROI-level characteristics on
the boundary of each endoscopic biopsy sample. For mitigating the
performance degradation, we plan to design a memory-efficient ROI-
level network structure without explicitly limiting its grid dimension
for achieving better prediction accuracy.

TABLE VII
Comparison of patch feature aggregation method.

Methods Target sample ROI patch-level network Slide-level network
Aggregation #Patch Aggregation #Patch

Ours Endoscopic biopsy ViT embedding 64

ViT

9,216
[32] Endoscopic biopsy RN-50 w/ K-Means 1 10,000
[33] Entire tissue ViT embedding 256 104M
[31] Entire tissue DN-101 w/ KNN 1 Unlimited

Note: RN: ResNet; DN: DenseNet; KNN: k-nearest neighbor

C. Practical Usability in Clinical Settings
Despite aforementioned limitations, our AI system has a strong

point in providing explainable probability map together with the slide-
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level prediction. As shown in Fig. 6, pathologists can refer ROI-level
probability maps to better understand the slide-level predictions, espe-
cially when the ROI-level probability distribution is non-dominant or
the slide level probability is uncertain. Moreover, for region marked
as suspicious for MALT class, as shown in Fig. 8(b), pathologist
can proceed ancillary test to confirm the final diagnosis of MALT
lymphoma.

Finally, it should be noted that the results of the observer test show
the stand-alone AI performance exceeds the average diagnostic per-
formance of human pathologists for all classes. Therefore, integrating
the AI system within the diagnostic workflow would be benefit
of decreasing workloads on pathologists, while providing practical
aid for planning surgical treatment, and can also provide diagnosis
services for regions that have shortages in access to pathologists.

VI. CONCLUSION

Previous AI assistance systems were developed as a pre-analytic
tool for early attention of the suspicious lesion in the cases and give
second opinion to the pathologists. We proposed a multiscale hybrid
ViT-based AI system capable of reliable multi-class classification,
which can be matched to general gastric cancer treatment guidance.
Assisted by the proposed AI system, clinicians can receive a pre-
sumptive pathologic opinion for predicting prognosis and planning
appropriate cancer treatment.
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