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Sketch-supervised Histopathology Tumour
Segmentation: Dual CNN-Transformer with

Global Normalised CAM
Yilong Li, Linyan Wang, Xingru Huang, Yaqi Wang†, Le Dong, Ruiquan Ge, Huiyu Zhou, Juan Ye, Qianni

Zhang†

Abstract— Deep learning methods are frequently used
in segmenting histopathology images with high-quality an-
notations nowadays. Compared with well-annotated data,
coarse, scribbling-like labelling is more cost-effective and
easier to obtain in clinical practice. The coarse annotations
provide limited supervision, so employing them directly
for segmentation network training remains challenging.
We present a sketch-supervised method, called DCTGN-
CAM, based on a dual CNN-Transformer network and a
modified global normalised class activation map. By mod-
elling global and local tumour features simultaneously, the
dual CNN-Transformer network produces accurate patch-
based tumour classification probabilities by training only
on lightly annotated data. With the global normalised class
activation map, more descriptive gradient-based represen-
tations of the histopathology images can be obtained, and
inference of tumour segmentation can be performed with
high accuracy. Additionally, we collect a private skin cancer
dataset named BSS, which contains fine and coarse anno-
tations for three types of cancer. To facilitate reproducible
performance comparison, experts are also invited to la-
bel coarse annotations on the public liver cancer dataset
PAIP2019. On the BSS dataset, our DCTGN-CAM segmenta-
tion outperforms the state-of-the-art methods and achieves
76.68 % IOU and 86.69 % Dice scores on the sketch-based
tumour segmentation task. On the PAIP2019 dataset, our
method achieves a Dice gain of 8.37 % compared with U-Net
as the baseline network. The dataset, annotation and code
will be published at https://github.com/skdarkless/DCTGN–
CAM.
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I. INTRODUCTION

CANCER is one of the most deadly diseases in the world.
Despite tumour resection surgery, patients are at high risk

of recurrence. Pathologists create stained histology slides using
samples of the resected tumour tissue, to assess the effect of
the pre-operation treatment regimen. The visual examination
of histopathological images involves searching for specific
medical features such as the tumour’s shape, location and
growth pattern [1]. In clinical practice, digital scanners [2]
capture digitised whole slide images (WSIs), making the visual
examination of histopathology slides easier and more flexible.
Nevertheless, the time and efforts required for pathologists
to visually analyse WSIs of every single case are enormous
as a result of the large number of slides to be analysed, in
contrast to the limited availability of specialised pathologists.
Besides, visual evaluations are inherently subject to inter-
observer and intra-observer variabilities. The inconsistent and
imprecise output annotations may be not satisfied, leading to
a negative impact on the actual diagnosis and future treatment
planning [3].

Recent improvements in computer vision open new rev-
enues for (semi-)automatic analysis of digital WSIs, saving
significant time and resources in manual analysis. Tumour
segmentation in histopathological images is heavily depen-
dent on the quality and quantity of annotated ground truth
boundaries, which, however, are costly and challenging to
acquire. Specifically, tumour borders are complex, vague, and
non-rigid, making it extremely difficult for even experienced
pathologists to define.

In a more practical scenario, pathologists tend to mark
tumour regions with a rough outline instead of drawing
out every detail around the tumour border [4]. However, in
normal deep-learning methods, the learned models generate
predictions that are equivalent to the training labels. Accurate,
detailed boundaries can only be predicted by segmentation
models trained with accurate, detailed annotations. It becomes
unusual, yet highly demanded capability, to segment tumour
regions accurately using models trained on coarse markings.
Particularly, factors such as intrinsic tumour variance, patient
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Fig. 1. The pipeline of the proposed sketch-supervised tumour segmentation method DCTGN-CAM. A Dual CNN-Transformer classification
network (DCT) is trained by the tumour image patches and refined P-label patches, processed by an annotation refinement (AR), and supervised
by a binary classification (cross-entropy) loss. In the test stage, the testing image patches are passed through the trained DCT classification network.
A GN-CAM visualizer combines the local with global tumour heat maps simultaneously to create accurate tumour boundaries. The final denoising
tumour segmentation results are obtained by a noise eliminator (NE).

variance and technical variance generated in scanning will fur-
ther complicate training and result in unsatisfactory prediction
results.

Weakly supervised methods try to solve model training
with coarse annotations including category-based, sketch-
based, bounding box-based, point-based, and interaction-based
categories [5]. However, weakly supervised methods only train
the model on the coarse annotations without consideration
of subsequent annotation refinement. Thus, in this paper, we
are motivated to boost supervision signals by refining coarse
annotations. Additionally, fully convolutional networks, e.g.,
VGG [6], GoogleNet [7]and ResNet [8], have been adopted
as the mainstream backbones to extract medical object features
supervised by coarse annotations. Transformer-based methods
have recently been proposed for the representation of global
features and the segmentation of medical objectives on 2D and
3D images [9] . There have been several CNN-Transformer
fusion studies that demonstrate the brilliant performance of
global features on CNN structures. Inspired by these ap-
proaches, we propose a novel scheme to join the strength
of CNN and Transformers in the context of sketch-based
supervision for segmenting tumour regions.

This research is committed to developing a tumour seg-
mentation model that can learn from the light annotation
of coarse region boundaries, and once trained, is able to
define accurate tumour boundaries with fine details on unseen
histology images. To facilitate experiments and evaluation, we
acquire two versions of annotations of tumour regions on our

target datasets, a set of poor-quality labels (P-label) and a set
of fine-quality labels (F-label). P-label can be obtained with
relatively light efforts by pathologists and is used for training
the models. In contrast, F-label requires significant time to
prepare, and in this paper is only utilised as ground truth. The
accuracy of F-labels is far better than that of the P-labels.
Based on this scenario, we propose a framework that follows
a sketch-supervised paradigm [10]. More specifically, it aims
to generate accurate tumour region masks by models learned
only from P-labels. The core of the framework entails a Dual
CNN-Transformer network (DCT), supported by a Global
Normalisation class activation map (GN-CAM). The main idea
of the Dual CNN-Transformer structure is to integrate the
advantages of CNN and Transformer, and provide descrip-
tive joint global and local tumour representations. This dual
network structure forms the foundation for the sketch-based
tumour segmentation task. Fig. 1 introduces the training and
testing pipelines of our DCTGN-CAM method. The overall
framework contains four main components:

Annotation refinement (AR): Due to the poor quality
of the P-label, the network training may be greatly limited.
To alleviate this problem, the P-label is first pre-processed
before being used for training. A classical colour-based seg-
mentation is performed based on pixel grouping using the
k-means algorithm, and the resulting region boundaries are
characterised by their precision to colour, contrary to the
semantic-guided manual annotation by experts. Therefore, the
use of this method can greatly optimize the accuracy of the
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P-label.
Dual CNN-Transformer Network (DCT-Net): The patch-

based segmentation paradigm is a common resort to image
segmentation in many applications [11], which transfers seg-
mentation to a patch classification problem and establishes the
segmentation borders based on patch class grouping. A com-
mon issue in this approach is that the information contained
in each individual patch is limited, and the patch classification
result is often non-ideal [12]. Intuitively, a feature extraction
method that can take into account the information from a
patch’s neighbourhood and exploit the contextual visual cues
is the key. As large false-positive patch exists on the sketch-
based coarse annotations, showing that the global relationship
among patches with different locations is one of the main
challenges. In this regard, we propose a dual-branch structure
that includes a local CNN branch and a Parallel SWIN
transformer branch, to extract the feature relationship between
patches while containing the suitability with the CAM module.
The CNN branch is designed to extract accurate boundaries
inside patches while the Transformer branch is to eliminate the
effect of coarse false-positive patches according to the high-
dimensional global representations. We proposed a structure
that concatenates each convolution block with parallel SWIN
transformer blocks, the output of this network is then input to
the CAM module.

A global-normalised CAM module (GN-CAM): Class
activation mapping can show the deep focus of the features.
Therefore, this method can also be used to generate more
specific thermal maps for deep features. Thus, we design a
method to calculate patch-based segmentation annotation using
the heat map generated by CAM. Since CAM is generally used
to explain the results of patch-based classification tasks, we
propose a fusion method for the results of two CAM. Ordinary
CAM has a high recognition of the details of each patch, but
this method lacks consistency and cannot cope with the con-
nection between patches. We designed a Global Normalised
CAM, which calculates the thermal map of CAM from WSI
rather than each patch. This CAM ensures continuity in WSI
and smooth boundaries of tumour sites. Finally, we fuse the
results of two kinds of CAM.

A Noise Elimination module (NE): The patch-based
network will face the problem of large boundary error, even
after using the heat maps generated by CAM. Therefore, our
NE module is based on matrix processing to optimize tumour
boundaries and eliminate noise. This method can smooth the
boundaries of patch-based segmentation results, and eliminate
the noise caused by CAM heat maps to a large extent.

Our proposed method has more satisfying performances
against the popular methods in this area, and our final result
is even better than the primitive P-label while using F-label in
the evaluation as ground truth. The average improvement of
our proposed methods against the P-label is more than 20 %,
which proves the success of our work as a sketch-supervised
framework and also an ideal way of annotation improvement
of poor-quality annotations. Our contributions are threefold:

- By calculating the intersection of cancer regions in un-
supervised k-means and sketch annotations, annotations from
experts are optimized to facilitate subsequent patch-based

cancer localization.
- A dual-branch DCT classification method leverages the tu-

mour features comprehensively. The proposed Parallel SWIN
Transformer block ensures the consistency of global feature
representation.

- A Global-normalised CAM is introduced to generate a
whole-slide-based heat map from patch-based tumour clas-
sification predictions, which combine the local and global
normalisation.

II. RELATED WORKS

A. Tumour segmentation

Conventional image processing techniques, such as Otsu
thresholding, Canny, Fuzzy C-mean and Watershed segmen-
tation, do not work effectively when applied to tissue seg-
mentation in histopathology images, as these methods cannot
capture either the local low-level features along tumour bound-
aries or the global semantic features. Instead of relying on
manually crafting features, deep convolution networks make a
more straightforward choice by training the models to extract
the most relevant and descriptive feature information. Patch-
based classification networks like [13] and [14] achieve WSI
image segmentation with low computational complexity while
sacrificing boundary smoothing conditions. U-Net is one of
the most widely used techniques in patch-based pathological
image segmentation [15]. Its main idea is to capture global
features on the shrinking path and achieve accurate positioning
on the expanding path. However, U-Net does not fully consider
the local dependence among pixels, especially when the target
to be segmented has weak edges and sparse colouring. To ad-
dress this issue, a fusion framework is proposed for promoting
the accuracy of tumour edge segmentation [16]. Long-range
dependencies can be modelled by conditional random fields,
which can be exploited to post-process semantic segmentation
predictions of the proposed network. However, this method is
computational-intense and requires a large number of expert
annotations for training.

B. Weakly supervised segmentation

Generally, sketch refers to sparse annotations that provide
masks for small areas of pixels [17]. In existing methods,
selective pixel loss is usually used for annotated pixels. For
model training, some studies attempt to expand sketches
or reconstruct the entire mask[18]. Pixel-relabeling requires
iterative training. A number of works employ conditional
random fields in post-processing [19], [20] or as a trainable
layer to refine segmentation results without relabeling[21].
These methods, however, are not effective in providing better
supervision for the training of models. More recent methods
for evaluating and refining segmentation masks are developed,
leading to more accurate predictions, such as a multi-scale at-
tention gate proposed by Gabriele et al. [22], and a PatchGAN
discriminator to leverage shape priors by Zhang et al. [23].
However, these methods require additional sources of mask
data and are not applicable in more general scenarios.
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Fig. 2. The structure of the proposed Dual CNN-Transformer network (DCT). Subfigure (a) presents the details of five stages inside the DCT
network. Each stage contains a local CNN block and a global transformer block except for the 5th stage. Subfigure (b) shows the residual connection
of the CNN block. Subfigure (c) illustrates the subblocks inside the proposed transformer block including the patch partition, the patch embedding,
the parallel SWIN encoder, the patch merging and the patch expanding. It is noticeable that the patch partition and the patch embedding layer are
only executed in the first stage. Subfigure (d) presents a simple but effective way to fuse the global and local tumour features of the image patches.

Initial cues are essential for weakly supervised segmentation
tasks since they provide reliable priors to generate segmen-
tation maps. Class activation map (CAM) can be a good
auxiliary as it can provide the preliminary information of
object localisation [24]. It highlights class-specific regions that
can serve as the initial cues. In [24], the authors demonstrate
that a CNN with a Global Average Pooling (GAP) layer has
localization capabilities despite not being explicitly trained to
do so. Our work in this paper takes inspiration from two
algorithms of this kind, namely, CAM [24] and Grad-CAM
[25], we intend to resolve their existing issues modelling
global tumour representation in the whole slide level.

C. Attention mechanism and Transformers

Attention mechanisms are designed to discover and explore
the key parts of a batch of data. All attention modules can
be inserted into full convolution networks and extract global
context information. Several existing works have applied Non-
local modules to segmentation tasks. In [26], the authors in-
troduce a global feature with the Non-local operation. In [27],
the local features are integrated with their global dependence
adaptive, which models semantic interdependence in spatial
and channel dimensions respectively. Global-guided Local
Affinity is proposed to play a crucial role in modelling capture
context information [28]. Adaptive Context Modules with
a pyramid structure are built to present global information.
The above non-local-based attention models are not friendly
to memory. In order to reduce computation costs, several
related works are proposed later. Attention in CCNet collects
all kinds of information near and far on crisscross paths
with low computation complexity [29]. Inspired by Spatial
attention and Non-local block, GCNet uses a simple non-local
block with fewer memory requirements [30]. However, these
models are embedded into convolution layers and sampling
layers. Sampling layers like the pooling layer always lose the
details of images, causing poor performances. Additionally,

self-attention blocks like Non-local blocks can exploit global
information integrated by channel and spatial dimensions, but
with high computational complexity [31].

Simon et al. introduce a multi-task learning approach to
segment and classify nuclei, glands, lumina, and various tissue
regions in digitized pathology slides [32]. This method cap-
italizes on data from multiple independent sources, ensuring
alignment in tissue type and resolution. By employing a single
network, they achieve simultaneous predictions for multiple
tasks. Rudiger et al., on the other hand, propose a method
for merging model paths with different spatial scales while
maintaining spatial relationships [33]. They employ a straight-
forward attention block that can be seamlessly incorporated
into standard encoder-decoder networks at various levels. Ad-
ditionally, they suggest the use of a context classification gate
block as an alternative means of incorporating global context
solely from diverse spatial scales. These studies exhibit multi-
scale feature extraction and concatenation modules, although
their complexity for each scale is high. These findings have
inspired me to explore multi-scale tumor feature processing
while keeping computational costs low.

Recently, the Vision Transformer has emerged as a novel
approach by integrating a Non-local block to facilitate attentive
interaction among different patch tokens [34]. In the domain
of medical image segmentation, several techniques have been
developed to address the limitations associated with capturing
both global semantic information and local contextual de-
tails [35]. The TransUNet method leverages the self-attention
mechanism to compute global context [36], while SETR
replaces the coding component of conventional convolutional
layers with Transformers, resulting in improved segmentation
performance [37]. SwinU-Net, resembling Unet architecture,
employs a hierarchical Swin Transformer with shifted win-
dows as the encoder to extract contextual features [38].
Additionally, a symmetric Swin Transformer-based decoder
with a patch expanding layer is designed to up-sample feature
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YILONG LI et al. 5

maps and restore spatial resolution [39]. The MSHT model
adopts a multistage hybrid design, combining Transformer
blocks with convolutional neural networks (CNNs) to enhance
spatial features and leverage the global modeling capabilities
of Transformers [40]. SEGTRANSVAE combines an encoder-
decoder architecture, a Transformer, and a variational autoen-
coder (VAE) branch, synergistically utilizing the strengths
of CNNs, Transformers, and VAEs, making it a promising
solution for medical image segmentation [41]. Nevertheless,
the inference time of hybrid CNN-Transformer or pure Trans-
former structures is longer compared to CNNs, due to the
increased computational resources required by Transformer
blocks. Inspired by the success of these approaches, we
incorporate Transformers into our network design to leverage
their capabilities in our proposed hybrid models based on CNN
and Transformer methods. Additionally, we also prioritize
addressing the computation complexity to ensure efficient
processing.

III. METHODS
Fig. 1 shows the overall framework architecture. Using

an unsupervised Annotation refinement (AR) module, coarse
annotations are first refined as much as possible. Then, super-
vised by a binary cross-entropy loss, the proposed Dual CNN-
Transformer Network (DCT) simultaneously train a fully con-
volutional network and a transformer for patch classification.
Tumour segmentation masks for a test image are inferred based
on the patch classification output from DCT. Specifically,
the proposed Global Normalised CAM (GN-CAM) calculates
gradient-based heat maps derived from the final convolution
layer of DCT. To produce the whole heat map with the same
size as the WSI, all individual heat map patches are placed
in order. Global normalization models the global tumour
information over the whole heat map and ensures precise
marking of tumour boundaries. Lastly, noise is eliminated
using a convolutional CRFs-driven eliminator.

A. Annotation Refinement
P-label is the sketch-like coarse mask drawn by experts.

Its boundaries are inexact, meaning that many non-tumour
regions around the boundaries are likely to be included inside
the mask, and some visual features in these vague regions
are considered in training rather than only from the genuine
tumour tissue. In contrast, F-label illustrates the tumour re-
gions and boundaries accurately and requires significant time
to prepare. In this paper, F-labels are only utilised as ground
truth for performance testing.

To relieve these data challenges and improve the training
data quality, an annotation refinement module is designed
based on the K-means clustering algorithm, to refine the pixel
memberships in marginal regions of tumours marked by P-
labels. Following this unsupervised process, pixels with similar
visual features are grouped together, while regions of distinct
colours are better delineated by the mask boundaries. When
experts annotate the coarse tumour masks, they tend to do it
slightly excessively by including all tumour regions inside the
mask, as well as some non-tumour tissues along the margin.

Thus, the coarse P-label, denoted as Y0, only roughly separates
non-tumour regions from tumour regions roughly. The AR
module is designed to preliminarily improve the coarse masks,
by re-examining the tissue membership along the mask margin
based on pixel colours. Unsupervised K-means clustering is
applied to all pixels of WSIs, creating a new set of labels Y1

to represent the tumour boundaries. Nevertheless, the Y1 label
sometimes includes some non-tumour pixels that have similar
colour features to the tumour regions, while the original coarse
annotation Y0 normally does not include these regions unless
they are in contact with the genuine tumour region. The region
of Y0 is usually much larger than the region of Y1, while Y1

may consist of some outlier, disconnected regions from the
main tissue region. Thus, the refined tumour mask is obtained
by finding the intersection of the two Ŷ = Y1 ∩ Y0.

B. DCT Network for Patch Classification
In existing unsupervised or weakly supervised, patch

classification-based segmentation methods, VGG is commonly
used as a CNN-based backbone for classification. VGG [6]
shows substantial improvement through the use of deeper
convolutional layers and small kernels, and it is popular in
patch-based classification and segmentation tasks on weakly-
supervised medical imaging. However, VGG has some internal
design limitation that leads to network gradient vanishing and
ignorance of long-term dependency among pixels. Besides
the VGG structure, UNet is also taken as a commonly used
CNN-based backbone to extract high-dimensional features.
However, this pixel-wise segmentation structure may introduce
more false-positive results when the annotations are coarse
sketches, which is unacceptable for weakly supervised tumor
segmentation tasks. Recently, several Transformer-based meth-
ods attempt to describe global features effectively. Therefore,
the an intuitive idea is to exploit Transformers to complement
for the lack of CNN structures. In light of the fact that most
category-based weakly supervised approaches use VGG as
their backbones, taking VGG as our base network makes it
easy to demonstrate network improvements and comparisons
with other approaches.

Algorithm 1 Annotation refinement by K-means
1: repeat
2: Compute the cluster centroids of background C1 and

tumor C2, where xi is one pixel of WSI, xi′ ̸= xi. The
kth cluster centroid is the vector of the feature means in
the kth cluster.

3: C1, C2 = minC1,C2

{∑2
k=1

1
|Ck|

∑
i,i′∈Ck

(xi − xi′)
2
}

4: Assign each observation xi in the unsupervised label
Y1 to the cluster whose centroid is closest.

xi ∈

{
C1, | xi − xC1 |<| xi − xC2 |
C2, others

5: until the cluster assignments stop changing.
6: Obtain the refined annotation Ŷ by the intersection oper-

ation: Ŷ = Y1 ∩ Y0.
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6

Fig. 3. Comparison between the existing SWIN Transformer and our proposed parallel SWIN Transformer block. Feature representation is
continuous and independent in our parallel design rather than local layer normalisation (LN) and residual connection in each shifted-window-
based/window-based multi-head self-attention module (SW/W-MSA). SW/WSA is the shifted-window-based/window-based self-attention module.
MLP is the Multi-layer Perceptron.

Specifically, the VGG network prioritises shallow features
(colour) over high-level features (morphological structure) in
the pathological image classification task [42]. It means that
the convolution networks like VGG lack a global understand-
ing of a whole image, while, for the classification of pathologi-
cal image patches, the extraction of global semantic features is
the key to cancer recognition at the boundary. As a result, VGG
cannot classify cancer tissues accurately, especially around
cancer borders with complex visual characters. Recently, the
emergence of Transformers shows a promising perspective in
solving the problem of long-term dependence in the field of
computer vision. To combine the strength of convolutional
neural networks and Transformers, we propose a dual CNN-
Transformer network, namely, the DCT net, which consists of
two branches, a CNN branch, and a Transformer branch. In
the CNN branch, we substitute the usual fully convolutional
block structures as in VGG, with residual blocks to focus on
local features. The transformer branch is designed to extract
global semantic features that complement the local visual
representations. This dual branch structure ensures a robust
and precise tumour classification by modelling the local details
and global tissue relationship simultaneously.

The dual-branch DCT classification is organised in 5 stages,
as shown in Fig. 2. In stage 1, image patches are first passed
through a local CNN block, then a global Transformer block,
and a fusion block. Stages 2,3 and 4 follow the same structure
but have different network parameters. These stages do not
contain an extra channel-adjustment convolution layer in the
CNN branch compared with stage 1. Finally, in stage 5 a
classification head ( Linear + BatchNorm + ReLu+ SoftMax
) is proposed to generate classification vectors for each image
patch according to the output feature of stage 4.

As shown in sub-figure (b) of Fig. 2, each local CNN block
contains three convolution layers, and the kernel size of each
layer is 3 × 3. By using a residual connection, the output
features of the third convolutional layer are added to those of
the first convolutional layer as the final output of the local
tumour representation L. Compared with VGG structures, this
CNN block ensures more stable gradient backpropagation for
weakly supervised learning.

As shown in sub-figure (c) of Fig. 2, our proposed global
transformer block has a similar structure to that of the
SWIN Transformer block, which includes patch partition,
patch embedding, parallel SWIN Transformer encoder, and

patch expanding. Extracted from the coarsely annotated masks,
some patch labels may be wrongly corresponded to meaningful
visual features, leading to problems in the learning of such
features and subsequently affecting the decision power of
the network. Therefore, we hope to separate the calculation
process of each feature as much as possible. Our expecta-
tion is that each head can independently extract a type of
global feature such as global texture, global tumour colour
distribution, or global tumour boundary. However, a SWIN
Transformer fuses multi-head attention results for the nor-
mal window before calculating self-attention based on shift
windows. Consequently, each head cannot model one type of
global feature independently, resulting in redundant multi-head
shift-window attention. To resolve this issue, we adjust the
structure by using a stack of these sub-blocks to ensure the
consistency of feature representation and fusing the features of
each head after the cascade self-attention calculation on two
windows (a normal window and a shift window), as shown in
the sub-figure (b) of Fig. 3. Our design ensures a consistent
representation of global features.[

x1
p;x

2
p; · · · ;xN

p

]
= xE (1)

z0 =
[
x1
p;x

2
p; · · · ;xN

p

]
+Epos (2)

z′ℓ = MLP (LN (WSA (LN (z0)))) (3)

zℓ = MLP (LN (SWSA (LN (z′ℓ)))) (4)

G =
∑

zℓ, ℓ = 1 . . . T (5)

Rather than flattening the patches x and mapping them by
a trainable linear projection [34], we exploit a convolution
operation E shown in equation (1), to project the image
patch to a high-dimensional space and to split the image
patch into smaller window-based patches simultaneously. The
image patch x ∈ RH×W×3 is transformed into a sequence of
patches xp ∈ R

H
PH

× W
PW

×C , where (H,W ) is the resolution
of image patch, C is the adjusted channel number, (PH , PW )
is the resolution of each resulting window-based image patch.
Then we add the Random Position Embedding Epos on these
window-based patches by a 3D dropout operation, and obtain
the embedding z0 by the equation (2). Then, the embedding
z0 is passed through a Parallel SWIN encoder. As shown
in sub-figure (II) of Fig. 3, a part of our Parallel SWIN
encoder consists of Window-based Self Attention (WSA) and
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YILONG LI et al. 7

Multilayer Perceptron (MLP) sub-blocks. The other parts of
our Parallel SWIN encoder include Shift-Window-based Self
Attention (SWSA) and MLP. Additionally, LayerNorm (LN)
layers are applied before each sub-block. In Parallel SWIN,
sub-blocks are computed exactly the same as in SWIN Trans-
former, so we will not repeat the computational details inside
the WSA and SWSA sub-modules. Parallel SWIN makes
feature representation more continuative since the T heads
operate independently. As a result of one Parallel SWIN, a
global representation called G is produced.

In each stage, the local CNN feature L is concatenated with
the global Transformer feature G, and then passed through a
convolutional layer, a BatchNorm layer, and a non-linear ReLu
layer. Through this fusion module, the two views of tumour
features are effectively combined, enabling accurate tumour
extraction, and modelling of long-term dependence and local
tumour details.

C. CAM Feature Extractor and Visualizer

Class Activation Mapping (CAM) [43] presents exemplary
visualisation ability and has attempted to be utilized in sketch-
based learning. The aim of CAM is to show interest in features
for the target network and thus reveal the focus of the network
on every patch. By using CAM, we can see that the network’s
interest in the tumour region is not only in the colour value,
thus the output of CAM will grant the final result a significant
improvement in accuracy.

However, CAM can only calculate and analyze tumour
information within a patch. In the patch-based segmentation
task, the proportion of a patch in a WSI is very small, and the
relationship between patches is also very important because it
plays a fundamental role in defining tumour region boundaries.
Intuitively, we need to consider both information within the
patches as well as that between the patches. To this end,
we designed a Global Normalised class activation map (GN-
CAM). Firstly, we calculate the heat map of CAM in two
forms, i.e., the class activation heat map inside the patches and
that of the whole WSI. The heat values are fused as the final
results of GN-CAM. By taking into account the overall picture
of WSI, this fusion result captures the changes of details within
patches and prevents noises in visually confusing regions, like
tumour boundaries.

As a first step, the global normalised CAM (GN-CAM)
collects the gradient-guided information Bl flowing from the
DCT-Net’s last convolution layer and the output map of the
DCT-Net yout . The lth and (l + 1)th layers are the two
convolutional layers inside the last fusion block of the DCT-
Net. Denote i as the channel index of a feature map. Assuming
the ith feature map from the (l+1)th layer as yl+1

i according
to the gradient backpropagation, the ith guided gradient map
from the (l + 1)th layer as Rl+1

i . The gradient feature of the
l + 1 layer is calculated by

yl+1
i = relu

(
yli
)
= max

(
yli, 0

)
, (6)

Bl+1
i =

∂yout

∂yl+1
i

. (7)

The guided gradient map flowing out the l layer Bl is
calculated by:

Bl
i =

(
yli > 0

)
·
(
Bl+1

i > 0
)
·Bl+1

i . (8)

We define an updateable queue O1 to store all guided
gradient-based features B from the same whole slide image.
Then we decentralize the feature set B by a global normal-
isation and store the processed features B

′
in a new queue

O2. Additionally, every pixel Bl
i,m,n, m ∈ M,n ∈ N is

normalised locally by a patch-based level, where m,n is one
position in the feature map B.

µl
i =

∑M
m=1

∑N
n=1 B

l
i,m,n

MN
(9)

sli =

√√√√∑M
m=1

∑N
n=1

(
Bl

i,m,n − µl
i

)2
(MN)

2 (10)

Bl
i

′′

=
Bl

i − µl
i

sli
(11)

The locally normalised features from the same whole slide
image are collected in a queue O3. Each two corresponding
normalised gradient maps from O2 and O3 are counted to-
gether and outputted as the final segmentation results M by:

Mi =
Bi

′
+Bi

′′

2
. (12)

D. Noise Eliminator
The final refinement of tumour segmentation relies on the

convolutional CRFs [44]. Consider an input M(the probability
map from the output of the GN-CAM) with shape [b, c, h, w]
where b, c, h, w denote batch size, number of classes,
input height and width respectively. Assuming that two pixels
u = (p, q) and v = (p + dp, q + dq) come from two
conditionally independent distributions, where p and q are the
image coordinates. d(u, v) > t is a restraint called Manhattan
distance, where t refers to the filter size. All pixels with a
distance greater than t have a pairwise potential of zero. The
Gaussian kernel matrix kg is defined as

kg[b, dp, dq, p, q] = exp(−
d∑

u=1

ω

2δ2u
). (13)

Denoting E ∈ Rb×c×h×w as the final output of the CAM
visualizer. A Gaussian kernel g can be calculated based on
feature vectors e1, ..., ed by Equ.13. ω is defined as:∣∣∣e(d)]u [b, p, q]− e(d)]u [b, p− dp, q − dq]

∣∣∣2 , (14)

where δi is a learnable parameter. For a set of Gaussian kernels
{g1...gS}, S is the number of kernels. We define the global
kernel matrix G =

∑S
a=1 wr · gr. In the combined message

passing of all S kernels, the result M defined as:

M[b, c, p, q] =
∑

dp,dq≤t

G[b, dp, dq, p, q] ·E[b, c, p+ dp, q+ dq]

(15)
So the final tumour segmentation for one whole side image is
given as the matrix M.
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8

TABLE I
A SUMMARY OF THE DATA STATISTICS IN THE PRIVATE DATASET (BSS) AND THE PUBLIC DATASET (PAIP2019), INCLUDING THE NUMBER OF

WHOLE SLIDE IMAGES, AND THE NUMBER OF IMAGE PATCHES.

Dataset Tumour # Training image # Training patch # Validation image # Validation patch # Testing image # Test patch

BSS [45]
BCC 30 600k 10 200k 10 200k
SP 30 600k 10 200k 10 200k

SKC 30 600k 10 200k 10 200k

PAIP2019 [46] Resection 30 750k 10 250k 10 250k
Biopsy 0 0 0 0 9 225k

Fig. 4. Three types of tumour patch samples are extracted from the
WSIs in the private BSS dataset, which contains basal cell cancer
(BCC), the squamous papilloma (SP), and seborrheic keratosis cancer
(SKC). These patches show a close look at tumour shapes and colours
of different classes.

IV. EXPERIMENTS AND RESULTS

A. Data introduction
1) BSS dataset: The BSS dataset [47] is a private tumour

dataset and has been adopted in our previous work. The
BSS dataset contains 150 WSIs of squamous cell carcinoma
including basal cell cancer (BCC), squamous papilloma (SP)
and seborrheic keratosis cancer (SKC). All of the images on
the BSS dataset are from the Second Affiliated Hospital of
the Zhejiang University of China. It takes around 4 years to
collect the dataset, make annotations and review the data in
total. To protect the privacy of patients, all personal labels on
scan images have been removed. For each scan, the invited
experts roughly spent 60 minutes marking fine tumour labels
(F-labels) and 5 minutes annotating coarse tumour labels (P-
labels). After that, we invited 2 senior experts to spend one
week checking whether all tumour regions are marked in the
scans of the BSS dataset.

Several patch samples are cut from the WSIs and shown in
Fig. 4. It is clear to observe that the whole tumour lesion is
composed of multiple lobules as shown in Fig.4. Each lobule is
covered with squamous epithelial cells. Fibrous vascular tissue
in the centre is infiltrated with inflammatory cells. There is an
obvious thickening of squamous epithelium, vacuoles in the
cytoplasm, and an increase in goblet cells. Inside tumour cells,
there was no obvious mitotic phase or nuclear heterogeneity.

2) PAIP2019 dataset: PAIP2019 dataset [45] has facilitated
the development and benchmarking of cancer diagnosis and
segmentation. This dataset contains 50 high-quality anno-
tations for liver cancer WSIs and is first released by the
PAIP Liver Cancer Segmentation Challenge, organised in

conjunction with the Medical Image Computing and Computer
Assisted Intervention Society (MICCAI 2019). Hepatocellular
carcinoma (HCC) is a cancer of the internal organs. Most
primary liver cancers are caused by hepatocellular carcinomas.
There are a number of cellular and stromal components in
HCC scans, including tumour cells, inflammatory cells, blood
vessels, acellular stroma, tumour envelopes, fluids, mucus, or
necrosis. This dataset contains all cases diagnosed between
2005 and 2018. All whole slide images were randomly ar-
ranged for training, validation, and test sets.

Fig. 5. Three whole slide image samples of the public dataset
(PAIP2019 [45]). The first column is the original images; the second and
third columns present the corresponding poor labels (P-labels) and the
fine labels (F-labels) marked by experts.

The annotations published by PAIP2019 are of very high
quality. However, in the course of clinical practice, the major-
ity of tumour WSIs don’t have precise annotations. In order to
simulate this common situation, we invited two tumour experts
who are also responsible for the marking of the private BSS
dataset, to mark 50 WSIs with coarse annotations (P-label)
for PAIP2019. The original high-quality annotations from
the PAIP2019 dataset are used as F-labels in the evaluation
process. The two versions of annotation are shown in Fig. 5.

To alleviate the potential impact of variations in coarse
labels, we adopted a meticulous approach during the data
preparation phase. Specifically, we enlisted the expertise of
four histopathologists, who independently labeled the tumor
datasets using coarse annotations. We carefully considered
subjective independence and authoritative annotations by invit-
ing four histopathologists to mark the BSS dataset and the
remaining four experts to label the PAIP2019 dataset. The final
coarse annotations were generated by aggregating the inputs
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YILONG LI et al. 9

from all four experts, resulting in a more comprehensive and
representative labeling scheme. In Section IV, we presented ex-
perimental results obtained from two different tumor datasets,
namely the BSS dataset and the PAIP2019 dataset in Tables
III and IV, respectively. These datasets encompassed a total
of five tumor sub-categories, providing a diverse set of cases
for evaluating the performance of our proposed method.

B. Evaluation matrics
The segmentation inference results are evaluated using

Recall, Specificity, Accuracy, IOU and Dice. Assuming the
positive sample is the tumour and the negative sample is the
normal tissues. Six results are defined to demonstrate the rela-
tionship between ground truth and prediction results, including
True Positive (TP), True Negative (TF), False Positive (FP) and
False Negative (FN).

Recall =
TP

TP + FN
(16)

Specificity =
TN

TN + FP
(17)

Accuracy =
TP + TN

TP + TN + FP + FN
(18)

Precision =
TP

TP + FP
(19)

IOU =
TP

FP + TP + FN
(20)

Dice =
2TP

FP + 2TP + FN
(21)

To verify the generalizability of our proposed method, the
segmentation performances need to be inferred from both
of the private BSS tumour dataset and the public PAIP2019
tumour dataset. We evaluate five performance metrics of four
components in our proposed method.

C. Training details
In Tables II, III, and Table IV, we compare four state-

of-the-art (SOTA) pixel-wise medical image segmentation
methods and three classification-based image segmentation
methods for the task of sketch-based tumor segmentation.
The classification-based methods require the use of CAMs
to visualize tumor distribution within patches, whereas the
pixel-wise methods do not rely on CAMs. To ensure a fair
comparison of these networks, we provide the necessary
parameter settings for data preparation, model training, and
inference.

For the data preparation in the experiments presented in
Tables II, III, and Table IV, we randomly shuffled all Whole
Slide Images (WSIs) from the BSS dataset. We allocated 20%
of the WSIs for validation, 20% for testing, and the remaining
60% for training. The same data split ratio was applied to
the resection scan of the PAIP2019 dataset. We saved all the

patches in three sub-datasets for subsequent model training,
validation, and testing. The number of split patches from
each WSI ranged from 20,000 to 25,000 due to varying
resolutions. Overall, the BSS dataset contained approximately
3 million patches, while the PAIP2019 dataset had 1.25 million
patches. This demonstrates sufficient data support for model
training and performance testing. For a detailed breakdown
of the data preparation in the training, validation, and testing
stages, please refer to Table I, which gives the details on the
distribution of WSI images and patches in both datasets.

During model training, we utilized cross-entropy loss for all
the networks listed in Tables II, III, and Table IV. The initial
learning rate was set to 0.0001, and the SGD optimizer was
employed. Each method was trained for 500 epochs using an
Nvidia RTX 3080 GPU. To ensure consistent input sizes, we
divided all images into (512, 512) patches, and a batch size
of 64 was used.

For model inference, we tested all the trained models on
600k testing patches from the BSS dataset and 475K patches
from the PAIP2019 dataset. A comprehensive comparison of
segmentation performance for all classification-based models
is presented in Table II. Table III provides a comparison
of tumor segmentation performance for both pixel-wise and
classification-based methods on the BSS dataset. Similarly,
Table IV compares the tumor segmentation performances of
these methods on the PAIP2019 dataset. It is important to note
that the (GN-)CAMs shown in Tables III and IV were utilized
during model inference and did not require additional training.

D. Sketch-based Tumour Segmentation Results on the
BSS Dataset

1) The Annotation Refinement: We implement a series of
ablation studies to figure out the gain when using our proposed
annotation refinement module (AR) as shown in Tab. II.
Experimental results show that the AR module is robust and
efficient on two CAMs (CAM and GN-CAM) and three types
of models (VGG, VF, and DCT). The base VGG+CAM+NE
combination achieves a Specificity of 98.90 % after using the
AR module. Especially, the segmentation precision increases
from 83.97 % to 88.29 % after only adding the AR model to
the base experimental configuration. Further, the AR module
has more gains in Recall, IOU, and Dice metrics on the
proposed GN-CAM visualizer compared to the base CAM. In
detail, after using the AR module, the VGG+GN-CAM+NE
combination achieves a Recall of 81.96 % (+8.64 %), an IOU
of 70.83 % (+5.39 %), and a Dice of 82.62 % (3.92 %).

2) The Dual CNN-Transformer Classification network (DCT):
The proposed DCT network is designed to classify whether a
patch belongs to the ”tumour” class. Tab. II shows the qual-
itative comparison results between the existing methods and
our proposed DCT. The proposed DCT network outperforms
the compared VGG and VF methods, especially when using
the GN-CAM module simultaneously. The best sketch-based
tumour segmentation performances achieves Recall 84.44 %,
Specificity 97.85 %, Accuracy 96.23 %, IOU 71.33 %, and
Dice 83.12 %, which sets the experimental configuration
of AR+DCT+GN-CAM+NE. A series of experimental evi-
dence demonstrates the effectiveness of the proposed DCT
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TABLE II
PERFORMANCE COMPARISON OF TUMOUR SEGMENTATION WITH DIFFERENT CLASSIFICATION NETWORKS, VISUALISER, ANNOTATION REFINEMENT

(AR) AND THE NOISE ELIMINATOR (NE) IN THE BSS DATASET (%).

Model CAM AR NE Recall Specificity Accuracy Precision IOU Dice

VGG [6]

CAM [43]
× × 69.66 97.75 93.79 80.84 60.34 74.83

✓ 70.81 98.31 94.21 83.97 62.80 76.83

✓
× 69.38 98.21 94.01 83.27 61.57 75.69
✓ 70.82 98.90 94.47 88.29 65.03 78.60

GN-CAM(ours)
× × 71.29 97.71 94.20 81.08 61.81 75.87

✓ 73.32 98.30 94.86 84.93 65.44 78.70

✓
× 79.79 97.73 95.62 80.94 67.62 80.36
✓ 81.96 98.10 96.18 83.30 70.83 82.62

VF [47]

CAM [43]
× × 73.73 97.67 94.61 78.27 62.64 75.93

✓ 76.44 97.70 95.00 77.28 64.32 76.86

✓
× 78.89 97.79 95.59 81.79 67.56 80.31
✓ 80.56 98.32 96.16 85.07 71.00 82.75

GN-CAM(ours)
× × 76.80 98.06 95.22 82.60 66.40 79.59

✓ 79.45 98.72 95.95 86.83 71.16 82.97

✓
× 83.00 97.61 96.02 80.75 69.50 81.86
✓ 85.46 98.00 96.60 82.95 72.96 84.18

DCT(ours)

CAM [43]
× × 72.71 97.79 94.49 82.57 63.27 77.33

✓ 75.01 98.79 95.42 88.51 68.54 81.20

✓
× 73.66 98.04 94.77 83.97 64.87 78.48
✓ 75.61 98.60 95.41 87.43 68.41 81.09

GN-CAM(ours)
× × 85.96 97.48 96.37 79.59 70.73 82.65

✓ 88.19 97.86 96.92 81.73 74.04 84.83

✓
× 84.44 97.85 96.23 80.84 71.33 83.12
✓ 88.28 98.40 97.08 83.97 76.68 86.69

Fig. 6. Qualitative segmentation results of sketch-supervised based methods. Three types of binary tumour classification networks (VGG, VF and
ours) are trained and tested along with AR, GN-CAM, and NE modules. Each type of network is trained three times with different types of images
for distinguishing three types of skin tumours (BCC, SP and SKC). For one method i, Mi means the final tumour segmentation result and Ni is
defined as the visualized heat map. The tumour segmentation performances of our proposed DCTGN-CAM method are closest to the fine labels
annotated by experts. The upper left corner of each image presents enlarged tumour segmentation results.

for sketch-based tumour segmentation tasks. Compared with
the recent VF-based method (VF+CAM) [47], our proposed
method outperforms 14.55 % of Recall, 14.04 % of IOU and
10.76 % of Dice, which is a significant improvement on the
BSS dataset.

Fig. 6 further illustrates the qualitative segmentation anal-
ysis among VGG, VF and our proposed DCT networks.
We carefully draw three types or tumour predictions using
three different methods, respectively. It can be found that the
predictions of DCT are closest to the F-labels. For example, in
the SKC WSI, the magnified image in the upper right corner
shows that the enlarged tumour region looks like a ”horse”
in the green-box-selected area of the F-label. It is clear to

distinguish the shape and location of the ”horse” when using
our DCT but is impossible to discriminate the ”horse” body in
the predictions of VGG and VF methods. Qualitative results
present that our proposed DCT is effective and outperforms
other networks on sketch-based tumour segmentation.

3) GN-CAM: Inspired by the CAM concept, we design
a GN-CAM module to represent local and global tumour
features and to refine the tumour location on the patch level.
We attempt to solve the non-negligible challenge for patch-
based segmentation tasks: representing the global relationship
between patches and the boundary of the generated WSI is
not consistent. Our work involves generating and merging
the output heat map patches by GN-CAM globally. Although
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YILONG LI et al. 11

Fig. 7. Three types of predicted heat maps obtained by our proposed
method DCTGN-CAM on the BSS dataset. The blue areas in the
heat maps illustrate a relatively high probability of belonging to tumour
regions.

we only train a binary classification network with sketch
supervision, the proposed GN-CAM is capable to infer tumour
location and boundaries precisely in the inference stage. Fig.
7 provides a close look at the predicted heat maps of tumour
patches. Heat maps illustrate accurate tumour location and
region information on three types of patches after using the
proposed GN-CAM module. It proves that the GN-CAM
module can illustrate precise tumour segmentation results
based on the classification probabilities.

Fig. 8. Qualitative segmentation results of different visualizers in the
sketch-supervised framework. Each method is trained three times with
different types of images for distinguishing three types of skin tumours
(BCC, SP and SKC). The tumour segmentation performances of our
proposed DCTGN-CAM method are closest to the fine labels.

AR and GN-CAM modules complement each other clearly.
Fig. 8 shows the segmentation improvement of AR and GN-
CAM modules under the same DCT classification network. As
compared with AR+CAM and GN-CAM, our segmentation
results have fewer false-positive pixels than the GN-CAM,
which means fewer normal tissues are classified as tumours

due to the usage of AR. Furthermore, the boundaries of our
predicted tumour regions are more precise than those predicted
by AR+CAM, indicating the GN-CAM improves the boundary
details effectively. Therefore, the AR and the GN-CAM work
together to improve tumour segmentation performances.

4) The noise eliminator: Using patch-based segmentation
has another challenge: jagged edges always appear at patch
boundaries, and noise effects in non-tumour areas often look
square or rectangular. As a result, taking threshold-based
results as the final tumour segmentation results may lead to
great visual errors. In our ablation study, the problem of noise
is significantly relieved by the noise eliminator module. Fig. 9
shows the predicted patches focus on the noise eliminator. It is
proven that the noise eliminator is responsible for eliminating
false negative samples (filling voids within tumour tissue) and
false positive samples (eliminating isolated noise areas outside
the large tumour areas). Compared with the middle results di-
rectly from the output of the CAM, the final results processed
by NE effectively improve the segmentation performances.

Fig. 9. Optimized segmentation results with the noise eliminator in
our proposed DCTGN-CAM. The first row is the original image patches;
The second row shows the middle results only processed by the binary
threshold. The third row presents the final tumour predictions processed
by the noise eliminator.

5) Comprehensive analysis: We compare our proposed
method to the existing methods to analyze their performance
comprehensively in the Tab. III. The P-labels are used to
train the methods and the F-labels are used to evaluate them.
Compared to CNN-based networks such as U-Net and Att-
nUNet, our method surpasses Transformer-based networks like
SWinU-Net and hybrid CNN-Transformer networks, including
TransUnet and MSHT, in terms of recall, specificity, accuracy,
Intersection over Union (IoU), and Dice metrics. Furthermore,
in contrast to the pure CNN methods U-Net and AttnUnet, the
pixel-wise approaches presented in Tab. III, comprising U-
Net, AttnUNet, TransUnet, and MSHT, demonstrate superior
performance. This suggests that the global context feature
encoding provided by the Transformer is more suitable for
the sketch-based tumor segmentation task than pure CNNs.
Furthermore, the highest performance metrics are achieved
using classification-based segmentation methods, with 88.28%
recall, 98.90% specificity, 97.08% accuracy, 76.68% IoU,
and 86.69% Dice coefficient. Notably, our proposed methods
account for four out of the five best performances As all
learnable networks are supervised by coarse labels, the pixel-
wise label will bring in large false-positive errors. In this case,
segmentation-based methods like U-Net are ineffective.
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TABLE III
TUMOUR SEGMENTATION PERFORMANCES ON THE BSS DATASET (%).

Auxiliary module Network Recall Specificity Accuracy IOU Dice
Pixel-wise segmentation methods

P-label 57.60 97.89 87.97 45.04 61.34
U-Net [48] 47.90 98.09 85.91 44.21 60.83

AttnUNet [49] 49.61 98.36 86.77 48.49 62.52
TransUNet [9] 50.34 98.54 89.95 48.83 64.87

SwinU-Net [50] 52.67 98.63 91.61 50.79 65.36
MSHT [51] 54.84 98.77 92.05 52.21 66.79

Classification-based segmentation methods

CAM [43]
VGG [6] 70.82 98.90 94.47 65.03 78.60
VF [47] 80.56 98.32 96.16 71.00 82.75

DCT (ours) 75.61 98.60 95.41 68.41 81.09

GN-CAM
(ours)

VGG [6] 81.96 98.10 96.18 70.83 82.62
VF [47] 85.46 98.00 96.60 72.96 84.18

DCT (ours) 88.28 98.40 97.08 76.68 86.69

TABLE IV
SEGMENTATION PERFORMANCE ON THE PAIP2019 DATASET (%).

Network Recall Specificity Accuracy IOU Dice
P-label 77.14 84.57 89.21 70.14 81.57

U-Net [48] 85.70 96.29 92.02 75.97 85.86
AttnUNet [49] 87.89 96.76 94.02 78.03 88.1
TransUNet [9] 89.28 96.73 94.44 80.45 89.23

SwinU-Net [50] 90.71 96.8 94.92 82.89 91.51
MSHT [51] 91.86 96.93 95.37 84.29 92.25

Ours 95.42 97.23 96.57 89.10 94.23

E. Sketch-based Tumour Segmentation Results on the
PAIP2019 Dataset

Another ablation study is to compare our method with the
non-classification method on the public PAIP2019 dataset, to
further prove the efficiency of our methods. Tab. IV compares
the P-label, U-Net and our method with F-label, respectively.
U-Net is a pixel-wise method commonly used for tumour
segmentation [48]. Experiment results show that U-Net has
a 3-12% performance gain compared with P-label even if the
U-Net training with only supervision on P-label. However, our
method shows a large performance gain compared with U-Net
when using the same experiment configurations. Specifically,
our proposed method outperforms approximately 9% increase
of Recall, 4% of Accuracy, 13% of IOU, and 12 % of Dice.

Although our proposed method has an exciting performance
on the above private datasets, we still need to evaluate our
method on the public datasets to verify the universality of
our method. Compared with various types of skin cancers
in the previous private dataset, the boundaries between the
non-tumour tissues and tumour tissues are relatively smooth
and hard to recognise. Tab. IV and Fig. 10 show the sys-
tematic evaluation results among the existing methods on
the PAIP2019 dataset. It presents that our method (and our
proposed modules) has better segmentation results on every
evaluation metric. Our methods still obviously outperform the
fully supervised network U-Net, proving the significant suc-
cess of our methods on sketch-supervised tumour segmentation
tasks. As all learnable networks are supervised by coarse
labels, the pixel-wise label will bring in large false-positive
errors. In this case, segmentation-based methods like U-Net
are ineffective.

F. Clinic Application
It is noticeable that the P-label of the PAIP 2019 is a rough

outline drawn based on the location of the tumour in the F-
label. Similarly, the P-labels of the BSS dataset also have
false positive samples only. Therefore, the premise of the good
results for our method is the P-label should include all tumour
regions.

Fig. 10. Qualitative segmentation results on PAIP2019 dataset. Com-
pared with the U-Net method, our method has more accurate tumour
segmentation results in tumour boundaries for the sketch-supervised
tumour segmentation task. The fifth row shows that the tumour regions
have high responses after processing by our method.

It is possible to use our method in clinics as well. As a
pathologist, all that needs to be done is to coarsely label the
contours of the tumour boundaries in a short amount of time.
The accurate tumour segmentation results can then be easily
achieved by using the methods that we have suggested. Our
work enables doctors to automatically obtain more accurate
cancer segmentation results at a lower cost of labelling.

V. CONCLUSION

In this paper, we propose a framework for sketch-supervised
tumour segmentation in histopathology, called DCTGN-
CAM. Annotations from experts are optimized by calculating
the intersection of cancer regions in unsupervised k-means
and sketch annotations. The dual-branch DCT classification
method leverages tumour features comprehensively. Parallel
SWIN Transformer ensures the consistency of global feature
representation. With a Global-Normalised CAM, a whole-slide
heat map is generated from patch-based tumour classification
predictions, which combine local and global normalization. A
robust analysis of two tumour datasets shows that DCTGN-
CAM is superior to weakly supervised tumour segmentation
methods. This work is valuable and practical for computer-
aided histopathology analysis. However, the multi-step design
may cause influent feature flow or noise effects. To optimize
this work in the future, an end-to-end approach might be
more effective. Additionally, the adaptability of the front-
end trainable model to the back-end CAM remains to be
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studied. In the future, we will continue to optimize CAM
visualization, lightweight the dual CNN-Transformer structure,
and study the adaptability of CAM visualization in sketch-
based segmentation tasks.
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